
Object Oriented
Programming Systems

Robert Gentleman

OOP
 basically it has been observed that writing

code, so that it contains components that
represent real things, and the actions that
you might perform on them, leads to better
programs that are more easily understood and
that interoperate

 hence OOP - objects, represent things and
methods (generic functions) represent the
actions that can be performed on these things

OOP
 the R implementation has 2 built in OOP

systems and 3 others available as add-ons
 S3 and S4 are builtin
 some Java-style add-ons R.oop, OOP, etc
 some rationalization is needed - the technical

part of this talk is about mechanisms that
might lead to convergence

Basics
 four things every OOP system should support

 objects: encapsulate state information and control
behavior

 classes: describe general properties for groups of ob
jects

 inheritance: new classes can be defined in terms
existing classes

 polymorphism: a (generic) function has different
behaviors, although similar outputs, depending on
the class of one or more of its arguments

Single versus multiple
inheritance
 suppose we define two classes, A and B

setClass(“a”, representation(s1=“numeric”)
 setClass(“b”, contains=“a”,
 representation(s2 = “numeric”)
 then we say A extends B, or that A is a superclass of

B, and that B is a subclass of A
 when a class can inherit from at most one subclass

the language has single inheritance
 when a class can extend two more more classes at

the same time the language has multiple inheritance

Dispatch
 if a generic function specializes the

method used based on a single argument
the language is said to have single
dispatch

 if a generic can specialize based on
multiple arguments it is said to have
multiple dispatch

Comparison

 Java is single inheritance, single
dispatch (that is slowly changing)

 R is multiple inheritance and multiple
dispatch

 in a single inheritance, single dispatch
language things are easy, you can
associate methods with the class, since
there is only one

Comparison
 for multiple dispatch and multiple inheritance

this no longer makes sense
 code organization tends to separate class

definitions from generic/method definitions
 we define our classes in one place and our

generic functions somewhere else.
 methods group with generic functions, not

with classes

S3 Design
 classes are determined (more or less) by

the presence of a class attribute on the
object

 there is no formal notion of “slots”, or
of inheritance

 the order of the class in the class
attribute determines inheritance, most
specific first

OOP S3 Classes
 S3 - members of a class are not

guaranteed to conform
 so testing of instances is constantly

required (and inefficient)
 it is not possible to make use of

inheritance in any real way

S3: Generic Functions
 generic functions - polymorphism

 plot does something useful for many different data
types

 methods - implement the actual mechanisms
for different classes of objects

 the link between generic and method is very
weak - things with the right names are
methods

 this make it possible, likely, for unintended
interactions

S3: Generic Functions
 the generic has a name, like plot
 the body is a call to UseMethod
 methods have names like plot.lm, for plotting

instances of the lm class
 methods are almost regular functions
 they have special variables defined and can

use NextMethod,
 not very nice things can happen if methods

are called directly

Finding methods
 you can use the function methods to find out

about methods
methods(“plot”)

 methods(class=“glm”)
 getS3method(“plot”, “Date”)
 getAnywhere("plot.Date")
 there does not seem to be an easy way to get

all generics
 really no hope for classes

