Biostrings Lab (BioC2008)

H. Pages
Gentleman Lab

Fred Hutchinson Cancer Research Center
Seattle, WA

July 31, 2008

1 Lab overview

1.1 Goals

Learn the basics of the Biostrings package and how to use it together with the
BSgenome data packages for different kinds of genome-wide sequence analyses.

1.2 Prerequisites

For this lab you need:
e A laptop with the latest release version of R (R 2.7 series).
e The following Bioconductor packages (installed with biocLite()):

— Biostrings

— BSgenome

hgu95av2probe

drosophila2probe
BSgenome.Hsapiens.UCSC.hg18
— BSgenome.Dmelanogaster. UCSC.dm3

— BSgenome.Celegans.UCSC.ce2
— SNPlocs.Hsapiens.dbSNP.20071016

e Some familiarity with R and object oriented programming.

1.3 Useful links and additional resources
e Bioconductor website: http://bioconductor.org/

e This document and other material used for this lab (including solutions to
the exercises): http://bioconductor.org/workshops/2008/BioC2008/labs/biostrings/

¢ The Bioconductor mailing lists: http://bioconductor.org/docs/mailList.html

2 Introduction

2.1 Biostrings
The Biostrings package provides:

e The infrastructure for representing and manipulating large nucleotide se-
quences (up to hundreds of millions of letters) in Bioconductor. This
infrastructure consists of a class system (the DNAString, DNAStringSet,
XString Views containers, etc...), plus a set of constructors for creating ob-
jects belonging to these classes, plus a set of accessor methods for querying
or modifying the content of these objects.

e Utility functions for extracting basic sequence information (alphabetFrequency,
dinucleotideFrequency functions, etc...), or for performing basic se-
quence transformations (reverseComplement, chartr, injectHardMask
functions, etc...).

e String matching functions for finding all the occurrences (hits) of arbitrary
motifs in a reference sequence (matchPattern, matchProbePair, match-
PWM, matchPDict functions, etc...) or for finding palindromes or com-
plemented palindromes in a reference sequence (findPalindromes and
findComplementedPalindromes functions).

e String alignment functions (pairwiseAlignment function and related util-
ities). Not covered in this lab.

2.2 BSgenome data packages

The Bioconductor project also provides a collection of BSgenome data pack-
ages (e.g. BSgenome.Dmelanogaster.UCSC.dm3). Each of them contains the full
genomic sequence for a given organism. These sequences are stored in the con-
tainers defined in the Biostrings package so they are ready to be used (no format
conversion needed). Because of this, these packages are also called Biostrings-
based genome data packages. Regardless to the particular genome that they
contain, all the BSgenome data packages packages are very similar and can be
manipulated in a consistent and easy way. They all require the BSgenome soft-
ware package in order to work properly.

Note that these packages are big (from a few Mb to more than 800 Mb for
BSgenome.Hsapiens.UCSC.hg18) so installating them over the network can take
a long time.

3 Checking your installation

Exercise 1
1. Start R and load the Biostrings package.

2. Then load the BSgenome package and use the available.genomes func-
tion to check the list of BSgenome data packages that are available on the
Bioconductor repositories for your version of R.

3. Check that you have BSgenome.Dmelanogaster.UCSC.dm3 (try to load it).

4 Basic containers

4.1 DNAString objects

The DNAString class is the basic container for storing a large nucleotide se-
quence. Unlike a standard character vector in R that can store an arbitrary
number of strings, a DNAString object can only contain 1 sequence. Like for
most classes defined in Biostrings, DNAString is also the name of the constructor
function for DNAString objects.

Exercise 2
1. Use the DNAString constructor to convert R character string "aagtac"
into a DNAString instance.

2. Use nchar and alphabetFrequency on it.
3. Get its reverse complement with reverseComplement.

4. Extract an arbitrary substring with subsegq.

4.2 DNAStringSet objects

The DNAStringSet class is the basic container for storing an arbitrary number of
nucleotide sequences. Like with R character vectors (and any vector-like object
in general), use length to get the number of sequences stored in a DNAStringSet
object and the subsetting operator [to subset it. In addition, the subsetting
operator [[can be used to extract an arbitrary element as a DNAString object.

Exercise 3

1. Use the DNAStringSet constructor to convert R character vector c ("aagtac",

"ceec", "gtt") into a DNAStringSet instance. Let’s call this instance xO0.

2. Use width and length on xO0.

7.

Use subsetting operator [to remove its 2nd element.
How would you invert the order of its elements?

Use subsetting operator [[to extract its 1st element as a DNAString
object.

Use the DNAStringSet constructor to remove the last 2 nucleotides of each
element.

Try alphabetFrequency and reverseComplement on xO.

For the next exercise, you need the hgu95av2probe package. It contains all
the probe sequences for microarray hgu95av2 from Affymetrix.

Exercise 4

1.
2.

3.
4.

4.3

Load the hgu95av2probe package.

Store the sequence variable of the hgu95av2probe object into a DNAS-
tringSet object (let’s call this object x1). Display it.

How many probes have a GC content of 80% or more?

What’s the GC content for the entire microarray?

XStringViews objects

An XStringViews object contains a set of views on the same sequence called
the subject (for example this can be a DNAString object). Each view is defined
by its start and end locations: both are integers such that start <= end. The
views function can be used to create an XStringViews object given a subject
and a set of start and end locations. Like for DNAStringSet objects, length,
width, [and [[are available for XStringViews objects. Additional subject,
start, end and gaps methods are also provided.

Exercise 5

1.

Use the views function to create an XStringViews object with a DNAS-
tring subject. Make it such that some views are overlapping but also that
the set of views don’t cover the subject entirely.

Try subject, start, end and gaps on this XStringViews object.
Try alphabetFrequency on it.

Turn it into a DNAStringSet object with the DNAStringSet constructor.

5 BSgenome data packages

The name of a BSgenome data package is made of 4 parts separated by a dot
(e.g. BSgenome.Celegans.UCSC.ce2):

e The 1st part is always BSgenome.
e The 2nd part is the name of the organism (abbreviated).
e The 3rd part is the name of the organisation who assembled the genome.

e The 4th part is the release string or number used by this organisation for
this assembly of the genome.

All BSgenome data package contain a single top level object whose name
matches the second part of the package name.

Exercise 6
1. Load BSgenome.Celegans.UCSC.ce2 and display its top level object.

2. Display some of the chromosomes. Do they contain IUPAC extended
letters?

3. Load BSgenome.Dmelanogaster.UCSC.dm3 (Fruit Fly genome). Do the
chromosomes contain IUPAC extended letters?

4. Put the first 5M bases from Fruit Fly chromosome 2L into a DNAString
object and slice it, that is, create the set of views obtained by moving
an imaginary windows of width 20 from the 5’ end to the 3’ end of the
sequence and one nucleotide at a time.

5. Use chartr to simulate a bisulfite transformation of chromosome 4.

Starting with Bioconductor 2.2 (the current release), some BSgenome data
packages contain masked sequences, that is, chromosome sequences that have
built-in masks defined on them (those masks are not active by default). More
on this later...

6 String matching

6.1 The matchPattern function

This function finds all matches of a given pattern in a reference sequence called
the subject.

Exercise 7
1. Find all the matches of an arbitrary nucleotide sequence in Fruit Fly chro-
mosome 2L. (Don’t choose it too short!)

2. In fact, if we don’t take any special action, we only get the hits in the plus
strand of the chromosome. Find the matches in the minus strand too.
(Note: the cost of taking the reverse complement of an entire chromosome
sequence can be high in terms of memory usage. Try to do something
better.)

IUPAC extended letters can be used to express ambiguities in the pattern
or in the subject of a search with matchPattern. This is controlled via the
fixed argument of the function. If fixed is TRUE (the default), all letters in
the pattern and the subject are interpreted litterally. If fixed is FALSE, [IUPAC
extended letters in the pattern and in the subject are interpreted as ambiguities
e.g. M will match A or C and N will match any letter (the TUPAC_CODE_MAP
named character vector gives the mapping between IUPAC letters and the set
of nucleotides that they stand for). The most common use of this feature is to
introduce wildcards in the pattern by replacing some of its letters with Ns.

Exercise 8
1. Search pattern GAACTTTGCCACTC in Fruit Fly chromosome 2L.

2. Repeat but this time allow the 2nd T in the pattern (6th letter) to match
anything. Anything wrong?

3. Call matchPattern with fixed="subject" to work around this problem.

6.2 Masking

Starting with Bioconductor 2.2, some BSgenome data packages contain masked
sequences, that is, chromosome sequences that have built-in masks defined on
them. There are 3 built-in masks per sequence:

1. the mask of assembly gaps,
2. the mask of repeat regions (as reported by RepeatMasker),

3. and the mask of tandem repeats with a period <= 12 (as reported by
Tandem Repeats Finder).

Note that each of these masks corresponds to a track in the UCSC genome
browser.

Each masked sequence is stored in a new container: the Masked DNAString
class. Use the unmasked accessor to turn a MaskedDNAString object into a
DNAString object (the mask information will be dropped). Use the masks
accessor to extract the mask information (the sequence that is masked will be
dropped). The built-in masks are NOT active by default. They can be activated
individually with:

> chrl <- Hsapiens$chrl
> active(masks(chr1))[3] <- TRUE # activate Tandem Repeats Finder mask

or all together with:

> active(masks(chrl)) <- TRUE # activate all the masks

Some functions in Biostrings like alphabetFrequency or the string matching
functions will skip the masked region when walking along a sequence with active
masks.

Exercise 9
1. Activate the mask of assembly gaps in Human chromosome 1. What
percentage of the sequence is masked?

2. Check the alphabet frequency of this masked sequence (compare with non-
masked chromosome 1).

3. Activate all masks in Human chromosome 1 and find the occurences of an
arbitrary DNA pattern in it. Compare to what you get with non-masked
chromosome 1.

In addition to the built-in masks, the user can put its own mask on a se-
quence. Two types of user-controlled masking are supported: by content or by
position. The maskMotif function will mask the regions of a sequence that con-
tain a motif specified by the user. The Mask constructor will return the mask
made of the regions defined by the start and end locations specified by the user
(like with the views function).

Exercise 10
1. Activate the mask of assembly gaps in Human chromosome 2 and check
its alphabet frequency. Do you see something unexpected?

2. Use as(chr2 , "XStringViews") to turn this masked sequence into an
XStringViews object. Do you see the unmasked Ns?

3. Which contig do they belong to?

4. Have a look at the inter-view gaps of this XStringViews object.

6.3 Finding palindromes

The findPalindromes function finds palindromic regions in a sequence. The
palindromes that will be detected are either strict palindromes or 2-arm palin-
dromes i.e. palindromes where the 2 arms are separated by an arbitrary se-
quence called "the loop”. The findComplementedPalindromes function finds
complemented palindromes i.e. palindromes where the 2 arms are reverse-
complementary sequences from each other.

Exercise 11
1. Find all the complemented palindromes with arms of at least 30 bp and a
loop of at most 10 bp in Fruit Fly chromosome X.

2. Try to do the same with Human chromosome 2. Which palindromic re-
gions contain the 4 bases?

Note that findPalindromes and findComplementedPalindromes are still a
work-in-progress: they don’t support the max.looplength and max.mismatch
args yet and they don’t return a “clean” set of palindromic regions (the same
palindromic region is reported several times). These issues need to be addressed
in future versions of Biostrings.

6.4 Finding the hits of a large set of short motifs

The set of short reads that one gets from an ultra-high throughput sequencing
experiments can be very large (typically a few millions of 35-mers with a Solexa
machine) so we need fast algorithms if we want to be able to align all those
reads to the reference genome in reasonable time.

Starting with Bioconductor 2.2, this can be done with the matchPDict func-
tion from the Biostrings package. Note that this new functionality is currently
under active development in the devel version of Bioconductor (2.3) that will be
released in the fall of 2008. If you are planning to use Bioconductor for process-
ing ultra-high throughput sequencing data, you are invited to check the Short-
Read package (not released yet, available only in BioC devel) and to subscribe to
the bioc-sig-sequencing mailing list (see http://bioconductor.org/docs/mailList.html
for the details).

The workflow with matchPDict is the following:

1. Preprocess the set of short reads with the PDict constructor.
2. Call matchPDict on it.

3. Query the MIndex object returned by matchPDict.

Exercise 12
In this exercise we want to find the hits of all the probes of chip hgu95av2 in
Human chromosome 1. For now, “hit” means “location of an exact match”.

1. Load the BSgenome data package for Human (hgl8 from UCSC).

2. Load the hgu95av2probe package and put the probe sequences in a DNAS-
tringSet object (let’s call this object dict0).

3. Preprocess dict0 with the PDict constructor.

4. Call matchPDict on this PDict object (1st arg) and Human chromosome 1
(2nd arg). Put the result in a variable called mindex (matchPDict returns
an MIndex object).

5. Use countIndex on mindex to extract the count of hits.

6. Which probe has the highest number of hits? Display those hits as an
XStringViews object.

7 SNP injection

When the patterns to match against a genome of reference come from a sequenc-
ing experiment then they will contain the SNPs of the individual that was used
for the experiment. In this case looking for exact matches will miss a lot of hits,
not only because of the sequencing errors inherent to the sequencing technology,
but because of the presence of SNPs.

This second type of hit loss can be partially avoided by injecting the known
SNPs in the reference genome, that is, by replacing the non-ambiguous letter
by an ITUPAC ambiguity letter at each SNP location in the reference genome.
Then, when matchPattern or matchPDict are used on this modified genome
and with fixed=FALSE, hits that contain a known SNP will be found too. This
provides a way to detect known SNPs in the individual.

Starting with Bioconductor 2.2, one SNPlocs package is available: the SNPlocs.Hsapiens.dbSNP.20071016
package. It contains the locations of all known SNPs for Human (extracted from
dbSNP) together with the alleles information (an ITUPAC ambiguity letter for
each SNP). It is aimed to be used in conjonction with the BSgenome.Hsapiens.UCSC.hg18
package (more on this below).

Note that the SNPlocs packages are a new type of annotation packages and
more packages can be added in the future if they are found useful. The avail-
able.SNPs function (from the BSgenome software package) will allow you to
check the list of SNPlocs packages that are available on the Bioconductor repos-
itories for your version of R.

It’s easy to imject SNPs in the reference genome. For example, with the
Human genome:

> library(SNPlocs.Hsapiens.dbSNP.20071016)
> hg18snp <- injectSNPs(Hsapiens, 'SNPlocs.Hsapiens.dbSNP.20071016')

The resulting hg18snp object is a modified version of the original genome (the
Hsapiens object) where ITUPAC ambiguity letters have been injected in the
chromosome sequences at the SNP locations. You can display and use hg18snp
exactly in the same way that you use Hsapiens (both are BSgenome objects).

Exercise 13
In this exercise, we reuse the PDict object obtained by preprocessing the probe
sequences of the hgu95av2probe package.

1. Inject the SNPs from SNPlocs. Hsapiens.dbSNP.20071016 in the hg18 genome
and display the resulting BSgenome object (note the additional line "with
SNPs injected from...").

2. Load the modified sequence for chromosome 1 and look at its alphabet
frequency (compare with the original chromosome 1).

3. Mask the assembly gaps in this modified chromosome 1 and look at its
alphabet frequency again.

4. Use countPDict with fixed="pattern" to count the nb of hits for all the
hgu95av2 probes.

5. Try to “see” some hits with SNPs.

8 Genome-wide analysis

So far you’ve written code for performing single chromosome analyses. Most of
the time, your analysis will need to be extended to the entire genome (plus and
minus strands of all chromosomes) so your code will need to be adapted.

For example here is some simple code that finds all the hits of the drosophila2
probes (Affymetrix microarray) in the Fruit Fly genome:

> walkGenome <- function(bsgenome, seqnames, pdict, objname_suffix)
+ 4

+ for (seqname in seqnames) {

+ objname <- paste(seqname, objname_suffix, sep="")
+ filename <- paste(objname, ".rda", sep="")

+ cat ("Walking ", seqname, " (will save hits ",
+ "in ", filename, " file)... ", sep="")

+ subject <- unmasked(bsgenome[[seqname]])

+ hits <- matchPDict(pdict, subject)

+ rm(subject)

+ unload(bsgenome, seqname)

+ assign(objname, hits)

+ save (list=objname, file=filename)

+ rm(hits, list=objname)

+ cat ("OK\n")

+ }

+ }

> library(drosophila2probe)

> dictO <- DNAStringSet (drosophila2probe$sequence)

> library(BSgenome.Dmelanogaster.UCSC.dm3)

> SEQNAMES <- seqnames (Dmelanogaster)

> ### Find hits in the + strands

> pdict <- PDict(dict0)

> walkGenome (Dmelanogaster, SEQNAMES, pdict, "phits")
> ### Find hits in the - strands

> rc_dictO <- reverseComplement (dict0)

> pdict <- PDict(rc_dict0)

> walkGenome (Dmelanogaster, SEQNAMES, pdict, "mhits")

Writing code that performs genome-wide analysis is described in the Genome-
Searching vignette from the BSgenome software package. Note that this vignette
is still a work-in-progress (feedback is always appreciated).

10

