
Using the new Annotation Packages

Marc Carlson

29 July 2008

1 Introduction

The older style of annotation packages used simple environments to represent
data in a searchable way. But there were some drawbacks. More data could not
be added to a package without creating more environments which sometimes
resulted in duplicated information. But even more importantly, the data was
not packaged in a format that allowed for efficient re-purposing. Because it is
impossible to predict what questions will arise, this lack of flexibility is a major
problem for data that is needed for scientific inquiry. While the older packages
might be able to address questions for a handful of information types today, as
more and more kinds of information get added, it becomes increasingly difficult
to guess in advance all of the ways that people will need to use it. To address
this the newer style of annotation packages contain real databases within them.
The databases used are lightweight SQLite databases, which are modular and
can be connected to each other on the fly to allow data to be re-purposed not
only within a database, but also between databases.

In order to provide backwards compatibility and convenience, the new sys-
tem allows access from two different levels. Users can use mappings which are
generated on the fly to emulate the old style environments, or they can access
the databases with direct SQL queries. The emulated mappings are provided
by the AnnotationDbi package, which is built on packages that already allow
direct access to the database. Meanwhile the schemas for the databases created
by using the SQLForge functions in AnnotationDbi have been designed with a
consistent pattern in order to allow easy reuse of the data. This lab will go
through a series of examples to illustrate how these new annotation packages
work and how users can take advantage of both kinds of access to get the most
out of the new annotation system.

2 The contents of an annotation package

Lets begin by loading a typical annotation package

> library("hgu95av2.db")

1

Notice all that stuff that loaded along with it? A lot of that stuff is here
to to allow us to interface with the database. DBI and RSQLite allow R to
talk to SQLite databases, and AnnotationDbi helps by emulating the old style
annotation environments

Now lets look at what sorts of things get made whenever we load the package:

> ls("package:hgu95av2.db")

[1] "hgu95av2" "hgu95av2ACCNUM" "hgu95av2ALIAS2PROBE"
[4] "hgu95av2CHR" "hgu95av2CHRLENGTHS" "hgu95av2CHRLOC"
[7] "hgu95av2_dbconn" "hgu95av2_dbfile" "hgu95av2_dbInfo"
[10] "hgu95av2_dbschema" "hgu95av2ENSEMBL" "hgu95av2ENSEMBL2PROBE"
[13] "hgu95av2ENTREZID" "hgu95av2ENZYME" "hgu95av2ENZYME2PROBE"
[16] "hgu95av2GENENAME" "hgu95av2GO" "hgu95av2GO2ALLPROBES"
[19] "hgu95av2GO2PROBE" "hgu95av2MAP" "hgu95av2MAPCOUNTS"
[22] "hgu95av2OMIM" "hgu95av2ORGANISM" "hgu95av2PATH"
[25] "hgu95av2PATH2PROBE" "hgu95av2PFAM" "hgu95av2PMID"
[28] "hgu95av2PMID2PROBE" "hgu95av2PROSITE" "hgu95av2REFSEQ"
[31] "hgu95av2SYMBOL" "hgu95av2UNIGENE"

As before, each package has a function named after it that can be called to
get some QC information about it.

> qcdata <- capture.output(hgu95av2())

> head(qcdata, 20)

[1] "Quality control information for hgu95av2:"
[2] ""
[3] ""
[4] "This package has the following mappings:"
[5] ""
[6] "hgu95av2ACCNUM has 12625 mapped keys (of 12625 keys)"
[7] "hgu95av2ALIAS2PROBE has 36833 mapped keys (of 36833 keys)"
[8] "hgu95av2CHR has 12117 mapped keys (of 12625 keys)"
[9] "hgu95av2CHRLENGTHS has 25 mapped keys (of 25 keys)"
[10] "hgu95av2CHRLOC has 11817 mapped keys (of 12625 keys)"
[11] "hgu95av2ENSEMBL has 11156 mapped keys (of 12625 keys)"
[12] "hgu95av2ENSEMBL2PROBE has 8286 mapped keys (of 8286 keys)"
[13] "hgu95av2ENTREZID has 12124 mapped keys (of 12625 keys)"
[14] "hgu95av2ENZYME has 1957 mapped keys (of 12625 keys)"
[15] "hgu95av2ENZYME2PROBE has 709 mapped keys (of 709 keys)"
[16] "hgu95av2GENENAME has 12124 mapped keys (of 12625 keys)"
[17] "hgu95av2GO has 11602 mapped keys (of 12625 keys)"
[18] "hgu95av2GO2ALLPROBES has 8383 mapped keys (of 8383 keys)"
[19] "hgu95av2GO2PROBE has 5898 mapped keys (of 5898 keys)"
[20] "hgu95av2MAP has 12093 mapped keys (of 12625 keys)"

2

Alternatively, you can get similar information on how many items are in
each of the provided maps by looking at the MAPCOUNTs:

> hgu95av2MAPCOUNTS

hgu95av2ACCNUM hgu95av2ALIAS2PROBE hgu95av2CHR
12625 36833 12117

hgu95av2CHRLENGTHS hgu95av2CHRLOC hgu95av2ENSEMBL
25 11817 11156

hgu95av2ENSEMBL2PROBE hgu95av2ENTREZID hgu95av2ENZYME
8286 12124 1957

hgu95av2ENZYME2PROBE hgu95av2GENENAME hgu95av2GO
709 12124 11602

hgu95av2GO2ALLPROBES hgu95av2GO2PROBE hgu95av2MAP
8383 5898 12093

hgu95av2OMIM hgu95av2PATH hgu95av2PATH2PROBE
10390 4415 199

hgu95av2PFAM hgu95av2PMID hgu95av2PMID2PROBE
12048 12097 178969

hgu95av2PROSITE hgu95av2REFSEQ hgu95av2SYMBOL
12048 12011 12124

hgu95av2UNIGENE
12097

It can also sometimes be useful to quickly look at some of the metadata from
the package. The following will give information about the database and the
sources that were used to make the hgu95av2 package:

> hgu95av2_dbInfo()[c(1:4, 8:10),]

name value
1 DBSCHEMAVERSION 1.0
2 DBSCHEMA HUMANCHIP_DB
3 ORGANISM Homo sapiens
4 SPECIES Human
8 EGSOURCEDATE 2008-Apr2
9 EGSOURCENAME Entrez Gene
10 EGSOURCEURL ftp://ftp.ncbi.nlm.nih.gov/gene/DATA

Because these packages are based on SQLite databases underneath, it can
also sometimes be useful to know what is in there. The 1st thing we give you
for this is a handle to the database:

> con <- hgu95av2_dbconn()

This handle lets you do things like list all the database tables:

> dbListTables(con)

3

[1] "alias" "chrlengths" "chromosome_locations"
[4] "chromosomes" "cytogenetic_locations" "ec"
[7] "ensembl" "gene_info" "genes"
[10] "go_bp" "go_bp_all" "go_cc"
[13] "go_cc_all" "go_mf" "go_mf_all"
[16] "kegg" "map_counts" "map_metadata"
[19] "metadata" "omim" "pfam"
[22] "probes" "prosite" "pubmed"
[25] "refseq" "sqlite_stat1" "unigene"

Or list all the fields from one such table:

> dbListFields(con, "map_metadata")

[1] "map_name" "source_name" "source_url" "source_date"

You can also use this handle to get data straight out of the database by
submitting SQL queries. Here is a simple teaser example of how you can do
this:

> sql <- "SELECT * FROM map_metadata;"

> dbGetQuery(con, sql)[c(1, 12, 20, 23),]

map_name source_name
1 ENTREZID Entrez Gene
12 GO Gene Ontology
20 CHRLOC UCSC Genome Bioinformatics (Homo sapiens)
23 ALIAS2PROBE Entrez Gene

source_url
1 ftp://ftp.ncbi.nlm.nih.gov/gene/DATA
12 ftp://ftp.geneontology.org/pub/go/godatabase/archive/latest
20 ftp://hgdownload.cse.ucsc.edu/goldenPath/currentGenomes/Homo_sapiens
23 ftp://ftp.ncbi.nlm.nih.gov/gene/DATA

source_date
1 2008-Apr2
12 200803
20 2006-Apr14
23 2008-Apr2

You will notice that this table has data that is very similar to the output
of hgu95av2 dbInfo(), so now you know where hgu95av2 dbInfo() gets its infor-
mation from.

3 A brief SQL primer

SQL is worth learning. Not only is it very powerful, it is also dead simple to
start using. SQL is very declarative and so a simple example is easy to ”read”.

4

Consider the following SQL statement:

SELECT * FROM table;

This statement will retrieve all (indicated by the wildcard *) of the entries
from ”table”. Not too hard. But we can embellish that previous statement with
a WHERE clause like this:

SELECT * FROM table WHERE field=”bar”;

This statement just adds a filter to the content returned to by the statement.
Thats still easy to read. But WHERE clauses can make things really compli-
cated in a hurry. Not only can WHERE clauses be used to filter, but they can
also be used to join information in different tables by requiring that two keys
match. This can result in queries that start to look more like this:

SELECT field1,field2
FROM table1,table2
WHERE table1.field1=table2.field2;

Which is still pretty simple, but I think you can see why this can get messy.
This is why the AS keyword was created. The AS keyword just lets you give an
alias to a part of your query so that you can write things more clearly. Here how
the previous example would read once you put an alias on both the table-names.

SELECT field1,field2
FROM table1 AS T1, table2 AS T2
WHERE T1.field1=T2.field2;

Now that we have had a look at a little bit of SQL, lets try another select
from the database:

> sql <- "SELECT * FROM alias LIMIT 10;"

> dbGetQuery(con, sql)

_id alias_symbol
1 4 AAC1
2 4 NATI
3 4 NAT1
4 5 AAC2
5 5 NAT2
6 7 AACT
7 7 ACT
8 7 GIG24
9 7 GIG25
10 7 MGC88254

5

And another:

> sql <- "SELECT * FROM genes LIMIT 10;"

> dbGetQuery(con, sql)

_id gene_id
1 4 9
2 5 10
3 7 12
4 8 13
5 9 14
6 10 15
7 11 16
8 13 18
9 14 19
10 15 20

You will notice that one of the fields in these last couple of tables is id. This
is not a coincidence, and it is actually quite important because id is an impor-
tant internal key for almost all of the tables in these databases. It is important
to be aware however that id has no meaning outside of a given database. You
cannot join on id outside of a database. To join across databases, you need to
use a different key.

EXERCISE 1: Query one of the other database tables.

4 Using the new annotation mappings

To demonstrate the environment API, we’ll start with a random sample of probe
set IDs.

> all_probes <- ls(hgu95av2ENTREZID)

> length(all_probes)

[1] 12625

> set.seed(10600175)

> probes <- sample(all_probes, 5)

> probes

[1] "31882_at" "38780_at" "37033_s_at" "1702_at" "31610_at"

Now that we have some probes to test with, we can demonstrate that the
usual ways of accessing annotation data are also available.

> hgu95av2ENTREZID[[probes[1]]]

6

[1] "9136"

> hgu95av2ENTREZID$"31882_at"

[1] "9136"

> syms <- unlist(mget(probes, hgu95av2SYMBOL))

> syms

31882_at 38780_at 37033_s_at 1702_at 31610_at
"RRP9" "AKR1A1" "GPX1" "IL2RA" "PDZK1IP1"

In terms of the underlying database, most mappings are simple joins between
two tables. You may recall the id field that is present in most of the tables. This
id is what is used for the internal joins to make each mapping. To demonstrate,

here is an example of the simple join used to make the symbol mapping described
above:

> sql <- paste("SELECT probes.probe_id, gene_info.symbol",

+ "FROM probes, gene_info WHERE probes._id = gene_info._id",

+ "AND gene_info.symbol NOT NULL;")

> table <- dbGetQuery(con, sql)

> head(table)

probe_id symbol
1 38187_at NAT1
2 38912_at NAT2
3 33825_at SERPINA3
4 36512_at AADAC
5 38434_at AAMP
6 36332_at AANAT

Many filtering operations on the annotation environment objects require
conversion of the environment into a list . There is an as.list() method for
AnnDbBimap objects. In general, converting to lists will not be the most effi-
cient way to filter the annotation data when using a SQLite-based package.

> zz <- as.list(hgu95av2SYMBOL)

In the older style environment-based packages, each mapping was its own
object. To save disk and memory resources, not all reverse mappings were
included in these older environment-based packages.

For compatibility, the newer SQLite-based packages provide the same reverse
maps as were available before. But now the reverse mappings of any map can be
made instantly available as well. This done with the revmap() function. Since
the data are stored as tables in the internal database, no extra disk space is
needed to provide reverse mappings.

7

> syms <- unlist(mget(probes, hgu95av2SYMBOL))

> syms

31882_at 38780_at 37033_s_at 1702_at 31610_at
"RRP9" "AKR1A1" "GPX1" "IL2RA" "PDZK1IP1"

> unlist(mget(syms, revmap(hgu95av2SYMBOL)))

RRP9 AKR1A1 GPX1 IL2RA PDZK1IP1
"31882_at" "38780_at" "37033_s_at" "1702_at" "31610_at"

So now that you know about the revmap() function you might try something
like this:

> as.list(revmap(hgu95av2PATH)["00300"])

$`00300`
[1] "34336_at" "35870_at" "35761_at"

But in the case of the PATH map, we don’t actually need to use revmap()
because hgu95av2.db already provides the PATH2PROBE map. In fact, we can
demonstrate that what is made by revmap() is the same as the default reverse
mapping.

> revPATH <- hgu95av2PATH2PROBE

> revPATH

PATH2PROBE map for chip hgu95av2 (object of class "AnnDbBimap")

> revPATH2 <- revmap(hgu95av2PATH, objName = "PATH2PROBE")

> revPATH2

PATH2PROBE map for chip hgu95av2 (object of class "AnnDbBimap")

> identical(revPATH, revPATH2)

[1] TRUE

> as.list(revPATH["00300"])

$`00300`
[1] "34336_at" "35870_at" "35761_at"

EXERCISE 2: Use revmap() to find out which probes map to the gene symbol
”HOXA9”.

8

5 Displaying the Contents and Structure of Bimap
Objects

Sometimes you may just need to know a little bit more about what elements are
in an individual mapping. An example might be if you were wondering whether
or not a map is reversible. Most maps are simple enough to be reversible, but
some are more complex and reversing them would result in information loss. A
Bimap interface is available to access the data as a table (data.frame) format
using [and toTable().

> head(toTable(hgu95av2GO[probes[1:3]]))

probe_id go_id Evidence Ontology
1 31882_at GO:0006364 TAS BP
2 37033_s_at GO:0001836 IMP BP
3 37033_s_at GO:0006749 IDA BP
4 37033_s_at GO:0006916 IMP BP
5 37033_s_at GO:0008631 IEA BP
6 37033_s_at GO:0009650 IMP BP

Each Bimap has a set of left and right keys that it maps. Between each pair
of mapped keys, there is an edge. Additional information can be attached to
the edge of a bimap or to either of the keys as attributes. In the case of the
mapping represented above, the evidence code is an attribute that is attached
to each edge, because this information is affiliated with the relationship between
the Lkey and the Rkey. In contrast, the Ontology information is an attribute
that is attached to the Rkey only.

As you can see, the toTable() function will display all of the information
in a Bimap. This includes both the left and right key values along with any
other attributes that might be attached to those values or to the edges between
those values. The left and right keys of the Bimap can aslo be extracted using
Lkeys() and Rkeys().

> Lkeys(hgu95av2GO[probes[1:3]])

[1] "31882_at" "38780_at" "37033_s_at"

> head(Rkeys(hgu95av2GO[probes[1:3]]))

[1] "GO:0008152" "GO:0006953" "GO:0006954" "GO:0019216" "GO:0006928"
[6] "GO:0007623"

If is is necessary to only display information that is directly associated with
the left to right links in a Bimap, then the links() function can be used. The
links() returns a data frame with one row for each Lkey to Rkey link in the
bimap that it is applied to. The links() function only reports the left and right
keys along with any attributes that are attached to the edge between these two
values.

9

> head(links(hgu95av2GO[probes[1:3]]))

probe_id go_id Evidence
1 31882_at GO:0006364 TAS
2 37033_s_at GO:0001836 IMP
3 37033_s_at GO:0006749 IDA
4 37033_s_at GO:0006916 IMP
5 37033_s_at GO:0008631 IEA
6 37033_s_at GO:0009650 IMP

Notice that the results returned by toTable() does not depend on the direc-
tion of the map. The output the Lkeys are always on the left (1st col), and the
Rkeys are always in the 2nd col. Thus, toTable() is an ”undirected” method.

> toTable(hgu95av2PATH)[1:6,]

probe_id path_id
1 38187_at 00232
2 38912_at 00232
3 36512_at 00650
4 36512_at 00960
5 36332_at 00380
6 36185_at 00252

> toTable(revmap(hgu95av2PATH))[1:6,]

probe_id path_id
1 38187_at 00232
2 38912_at 00232
3 36512_at 00650
4 36512_at 00960
5 36332_at 00380
6 36185_at 00252

Here is another example of a map where toTable() returns a value that
contains additional attributes, and thus the data frame contains 3 cols.

> toTable(hgu95av2PFAM)[1:6,]

probe_id ipi_id PfamId
1 1000_at IPI00018195 PF00069
2 1000_at IPI00304111 PF00069
3 1000_at IPI00742900 PF00069
4 1000_at IPI00793141 PF00069
5 1001_at IPI00019530 PF07714
6 1001_at IPI00019530 PF00041

> as.list(hgu95av2PFAM["1000_at"])

10

$`1000_at`
IPI00018195 IPI00304111 IPI00742900 IPI00793141
"PF00069" "PF00069" "PF00069" "PF00069"

Notice that as before the Lkeys are the 1st col and the Rkeys are ALWAYS
in the 2nd col.

In contrast to toTable(), for the functions length() and keys(), the result
returned does depend on the direction of the input map. Thus, these are directed
methods:

> length(hgu95av2PATH)

[1] 12625

> length(revmap(hgu95av2PATH))

[1] 199

> allProbeSetIds <- keys(hgu95av2PATH)

> allProbeSetIds[1:3]

[1] "1000_at" "1001_at" "1002_f_at"

> allKEGGIds <- keys(revmap(hgu95av2PATH))

> allKEGGIds[1:3]

[1] "00232" "00650" "00960"

The functions Llength() and Rlength() are both handy for if you just want
to know how many Lkeys or Rkeys you have.

> Llength(hgu95av2PATH)

[1] 12625

> length(Lkeys(hgu95av2PATH))

[1] 12625

> Rlength(hgu95av2PATH)

[1] 199

> length(Rkeys(hgu95av2PATH))

[1] 199

Notice how they give the same result for hgu95av2PATH and revmap(hgu95av2PATH)?
The Llength() and Rlength() are therefore both undirected methods.

As a specific example, here is how we can ask whether the probes in ’pbids’
are mapped to cytogenetic location ”6p21.3”?

11

> pbids <- c("38912_at", "41654_at", "907_at", "2053_at", "2054_g_at",

+ "40781_at")

> regionalSubset <- subset(hgu95av2MAP, Lkeys = pbids, Rkeys = "18q11.2")

> toTable(regionalSubset)

probe_id cytogenetic_location
1 2053_at 18q11.2
2 2054_g_at 18q11.2

To coerce this map into a named vector:

> pb2cyto <- as.character(regionalSubset)

> pb2cyto[pbids]

<NA> <NA> <NA> 2053_at 2054_g_at <NA>
NA NA NA "18q11.2" "18q11.2" NA

The coercion of the reverse map works too but issues a warning because of
the duplicated names:

> cyto2pb <- as.character(revmap(regionalSubset))

EXERCISE 3: How could you used mget() to learn all possible aliased gene
symbols for pbids? And how could you use subset() to find out which of these
probesets are=”ADA”?

6 The Organism and Inparanoid packages

Sometimes you will have a list of genes from one species and wonder what the
homologous equivalent would be in another species. At other times you will
need some information that is maybe a little bit more exotic than what you find
in a standard chip package. Bioconductor provides mappings in the Inparanoid
packages to try and assist with the homology problem while putting more exotic
mappings into the organism level packages. Below is an example of how you
can use the mappings in the inparanoid packages along with supplementary
mappings in the organism packages to connect to a genes homolog in another
species.

> library("hom.Hs.inp.db")

> ls("package:hom.Hs.inp.db")

[1] "hom.Hs.inp" "hom.Hs.inpAEDAE" "hom.Hs.inpANOGA"
[4] "hom.Hs.inpAPIME" "hom.Hs.inpARATH" "hom.Hs.inpBOSTA"
[7] "hom.Hs.inpCAEBR" "hom.Hs.inpCAEEL" "hom.Hs.inpCAERE"
[10] "hom.Hs.inpCANFA" "hom.Hs.inpCANGL" "hom.Hs.inpCIOIN"
[13] "hom.Hs.inpCRYNE" "hom.Hs.inpDANRE" "hom.Hs.inp_dbconn"

12

[16] "hom.Hs.inp_dbfile" "hom.Hs.inp_dbInfo" "hom.Hs.inp_dbschema"
[19] "hom.Hs.inpDEBHA" "hom.Hs.inpDICDI" "hom.Hs.inpDROME"
[22] "hom.Hs.inpDROPS" "hom.Hs.inpENTHI" "hom.Hs.inpESCCO"
[25] "hom.Hs.inpFUGRU" "hom.Hs.inpGALGA" "hom.Hs.inpGASAC"
[28] "hom.Hs.inpKLULA" "hom.Hs.inpMACMU" "hom.Hs.inpMAPCOUNTS"
[31] "hom.Hs.inpMONDO" "hom.Hs.inpMUSMU" "hom.Hs.inpORGANISM"
[34] "hom.Hs.inpORYSA" "hom.Hs.inpPANTR" "hom.Hs.inpRATNO"
[37] "hom.Hs.inpSACCE" "hom.Hs.inpSCHPO" "hom.Hs.inpTETNI"
[40] "hom.Hs.inpXENTR" "hom.Hs.inpYARLI"

> library("org.Hs.eg.db")

> mget("MSX2", org.Hs.egSYMBOL2EG)

$MSX2
[1] "4488"

> mget("4488", org.Hs.egENSEMBLPROT)

$`4488`
[1] "ENSP00000239243"

> mget("ENSP00000239243", hom.Hs.inpMUSMU)

$ENSP00000239243
[1] "MGI:97169"

> library("org.Mm.eg.db")

> mget("MGI:97169", org.Mm.egMGI2EG)

$`MGI:97169`
[1] "17702"

> mget("17702", org.Mm.egSYMBOL)

$`17702`
[1] "Msx2"

EXERCISE 4: Now that you have seen how to map a gene from human to
mouse, try mapping the gene ”Shh” back from mouse to man.

7 Using SQL to get access to data that is not
exposed via a mapping

The most commonly used things will normally be placed into mappings for easy
access. But sometimes there will be more data that will be in the database
which will not be in a standard mapping. But this data can still be obtained

13

using some simple SQL queries. One example of this is within the inparanoid
packages. For the inparanoid packages, only some of the data is present within
the mappings, but all of the inparanoid data is present in the database tables.
So how could you access this other data?

> dbListTables(hom.Hs.inp_dbconn())

[1] "aedes_aegypti" "anopheles_gambiae"
[3] "apis_mellifera" "arabidopsis_thaliana"
[5] "bos_taurus" "caenorhabditis_briggsae"
[7] "caenorhabditis_elegans" "caenorhabditis_remanei"
[9] "candida_glabrata" "canis_familiaris"
[11] "ciona_intestinalis" "cryptococcus_neoformans"
[13] "danio_rerio" "debaryomyces_hanseneii"
[15] "dictyostelium_discoideum" "drosophila_melanogaster"
[17] "drosophila_pseudoobscura" "entamoeba_histolytica"
[19] "escherichia_coliK12" "gallus_gallus"
[21] "gasterosteus_aculeatus" "kluyveromyces_lactis"
[23] "macaca_mulatta" "map_counts"
[25] "map_metadata" "metadata"
[27] "monodelphis_domestica" "mus_musculus"
[29] "oryza_sativa" "pan_troglodytes"
[31] "rattus_norvegicus" "saccharomyces_cerevisiae"
[33] "schizosaccharomyces_pombe" "sqlite_stat1"
[35] "takifugu_rubripes" "tetraodon_nigroviridis"
[37] "xenopus_tropicalis" "yarrowia_lipolytica"

> dbListFields(hom.Hs.inp_dbconn(), "entamoeba_histolytica")

[1] "inp_id" "clust_id" "species" "score" "seed_status"

> sql <- "SELECT * FROM entamoeba_histolytica LIMIT 10;"

> dbGetQuery(hom.Hs.inp_dbconn(), sql)

inp_id clust_id species score seed_status
1 ENSP00000371526 1 HOMSA 1 100%
2 XP_653245 1 ENTHI 1 100%
3 ENSP00000358400 2 HOMSA 1 100%
4 XP_654752 2 ENTHI 1 100%
5 ENSP00000228347 3 HOMSA 1 100%
6 XP_654890 3 ENTHI 1 100%
7 ENSP00000317123 4 HOMSA 0.0694
8 ENSP00000320252 4 HOMSA 1 100%
9 XP_655520 4 ENTHI 1 100%
10 ENSP00000263200 5 HOMSA 0.7613

> toTable(hom.Hs.inpENTHI)[1:10,]

14

inp_id inp_id.1
1 ENSP00000371526 XP_653245
2 ENSP00000358400 XP_654752
3 ENSP00000228347 XP_654890
4 ENSP00000320252 XP_655520
5 ENSP00000269122 XP_650764
6 ENSP00000361446 XP_653748
7 ENSP00000354587 XP_655838
8 ENSP00000364811 XP_655936
9 ENSP00000264331 XP_651972
10 ENSP00000307940 XP_650528

EXERCISE 5: Query one of the tables and filter out entries that are not human
and where the score = 1.

EXERCISE 6: Now use the fact that the clust id is shared within this table
between matching keys to try to recreate the data that is in the original inpara-
noid mapping.

8 Using SQL to speed things up

Another area where the SQLite-based packages provide some advantages is when
one wishes to filter the available annotation data in a complex fashion. For
example, consider the task of obtaining all gene symbols on which are probed
on a chip that have at least one GO BP ID annotation with evidence code IMP,
IGI, IPI, or IDA. Here is one way to extract this using the environment-based
packages:

> probes <- sample(all_probes, 500)

> library("hgu95av2", warn.conflicts = FALSE)

> system.time({

+ bpids <- eapply(hgu95av2GO, function(hgu95av2PATH) {

+ if (length(hgu95av2PATH) == 1 && is.na(hgu95av2PATH))

+ NA

+ else {

+ sapply(hgu95av2PATH, function(z) {

+ if (z$Ontology == "BP")

+ z$GOID

+ else NA

+ })

+ }

+ })

+ bpids <- unlist(bpids)

+ bpids <- unique(bpids[!is.na(bpids)])

+ g2p <- mget(bpids, hgu95av2GO2PROBE)

15

+ wantedp <- lapply(g2p, function(hgu95av2PATH) {

+ hgu95av2PATH[names(hgu95av2PATH) %in% c("IMP", "IGI",

+ "IPI", "IDA")]

+ })

+ wantedp <- wantedp[sapply(wantedp, length) > 0]

+ wantedp <- unique(unlist(wantedp))

+ ans <- unique(unlist(mget(wantedp, hgu95av2SYMBOL)))

+ })

> detach("package:hgu95av2")

> length(ans)

> sort(ans)[1:10]

All of the above code could have been reduced to a single SQL query with
the SQLite-based packages. But to put together this query, you might need to
look at what tables are present and what the fields are for the tables you want:

> dbListTables(hgu95av2_dbconn())

[1] "alias" "chrlengths" "chromosome_locations"
[4] "chromosomes" "cytogenetic_locations" "ec"
[7] "ensembl" "gene_info" "genes"
[10] "go_bp" "go_bp_all" "go_cc"
[13] "go_cc_all" "go_mf" "go_mf_all"
[16] "kegg" "map_counts" "map_metadata"
[19] "metadata" "omim" "pfam"
[22] "probes" "prosite" "pubmed"
[25] "refseq" "sqlite_stat1" "unigene"

> dbListFields(hgu95av2_dbconn(), "go_bp")

[1] "_id" "go_id" "evidence"

> dbListFields(hgu95av2_dbconn(), "gene_info")

[1] "_id" "gene_name" "symbol"

If you need even more information then you can also look at:

> hgu95av2_dbschema()

This function will give you an output of all the create table statements that
were used to generate the hgu5av2 database. Whichever method you use, you
could then assemble a sql query to get the information directly from the database
as follows:

> system.time({

+ SQL <- paste("SELECT symbol FROM go_bp INNER JOIN gene_info USING(_id)",

+ "WHERE go_bp.evidence in ('IPI', 'IDA', 'IMP', 'IGI')")

16

+ SQLans <- dbGetQuery(hgu95av2_dbconn(), SQL)

+ SQLans <- unique(as.vector(t(SQLans)))

+ length(SQLans)

+ SQLans[1:10]

+ })

user system elapsed
0.092 0.000 0.094

EXERCISE 7: How would you change the above SQL query to only look for
evidence types of ’IPI’ and ’IDA’?

9 Combining data from separate annotation pack-
ages

Sometimes a user may wish to combine data that is found in two different
annotation packages. One nice thing about the new packages is a side benefit of
the fact that they are sqlite databases. This means that they can be attached
into the same session, allowing easy joining of tables across otherwise separate
databases. Being able to select items from multiple tables requires that their be
a common value that can be used to identify those entries which are identical. It
is also important to remember that the internal id’s used in the AnnotationDbi
packages cannot be used to map between packages since they have no meaning
outside of the databases where they are defined.

In this example, we will join tables from hgu95av2.db and GO.db. To do this,
we will attach the GO database to the hgu95-av2 database to allow access to
tables from both databases. We can then use GO identifiers as the link across the
two data packages to create the join. In this section we are using the term attach
to mean attaching using the SQL function ATTACH, and not the R function, or
concept, of attaching. Before we begin, we have to know a little about where
the GO database is located and its name. We use this information with the
system.file() function to construct a path to that database. In contrast,
the hgu95av2.db() package is already attached and we can use our predefined
AnnotationDbi connection to it, hgu95av2_dbconn() to pass the SQL query
that will attach the other database.

> goDBLoc <- system.file("extdata", "GO.sqlite", package="GO.db")

> attachSQL <- paste("ATTACH '", goDBLoc, "' as goDB;", sep = "")

> dbGetQuery(hgu95av2_dbconn(), attachSQL)

NULL

Next, we are going to select some data, based on the GO ID, from two tables,
one table from the hgu95-av2 database and one from the GO database. To keep
things brief we will limit the query to 10 values. The WHERE clause on the last

17

line of the SQL query sqecifies that the GO identifiers are the same. The first
five lines of the query set up what variables to extract and what they will be
named in the output.

> selectSQL <- paste("SELECT DISTINCT a.go_id AS 'hgu95av2.go_id',",

+ "a._id AS 'hgu95av2._id',",

+ "g.go_id AS 'GO.go_id', g._id AS 'GO._id',",

+ "g.ontology",

+ "FROM go_bp_all AS a, goDB.go_term AS g",

+ "WHERE a.go_id = g.go_id LIMIT 10;")

> dataOut <- dbGetQuery(hgu95av2_dbconn(), selectSQL)

> dataOut

hgu95av2.go_id hgu95av2._id GO.go_id GO._id ontology
1 GO:0000002 255 GO:0000002 13 BP
2 GO:0000002 1633 GO:0000002 13 BP
3 GO:0000002 3804 GO:0000002 13 BP
4 GO:0000002 4680 GO:0000002 13 BP
5 GO:0000003 41 GO:0000003 14 BP
6 GO:0000003 43 GO:0000003 14 BP
7 GO:0000003 81 GO:0000003 14 BP
8 GO:0000003 83 GO:0000003 14 BP
9 GO:0000003 104 GO:0000003 14 BP
10 GO:0000003 105 GO:0000003 14 BP

> #just to clean up we can now detach the GO database...

> detachSQL <- paste("DETACH goDB")

> dbGetQuery(hgu95av2_dbconn(), detachSQL)

NULL

This query combines the go_bp_all table from the hgu95-av2 database with
the go_term table from the GO database. They are joined based on their go_id
collumns. For illustration purposes, the internal ID _id and the go_id from
both tables are included in the output. This demonstrates that the go_ids can
be used to join these tables while the internal IDs cannot. The internal IDs,
_id, are suitable for joins within a single database, but cannot be used across
databases.

EXERCISE 8: Can you join across a couple of databases? Make a join across
the mapping in the hom.Hs.inp database to the ensemble prot mapping in the
org.Hs.eg.db database. This is an ”advanced” query, so don’t panic if you can’t
immediately figure this one out. The point is to get you a little more practiced.

18

10 Using SQLForge to make a custom package

In order to use SQLForge you really only need to have one kind of information
and that is a list of paired IDs. These IDs are to be stored in a tab delimited file
that is formatted in the same way that they used to be for the older AnnBuilder
package. For those who are unfamiliar with the AnnBuilder package, this just
means that there are two columns separated by a tab where the column on the
left contains probe or probeset identifiers and the column on the right contains
some sort of widely accepted gene accession. This file should NOT contain a
header. SQLForge will then use these IDs along with it’s own support databases
to make an AnnotationDbi package for you. Here is how these IDs should look
if you were to read them into R:

> read.table(system.file("extdata", "hcg110_ID", package = "AnnotationDbi"),

+ sep = "\t", header = FALSE, as.is = TRUE)[1:5,]

V1 V2
1 1000_at X60188
2 1001_at X60957
3 1002_f_at X65962
4 1003_s_at X68149
5 1004_at X68149

This example mapping is what SQLForge will use to define the package, but
you will also need the latest data, to get that, you need to have the latest .db0
package installed:

> source("http://bioconductor.org/biocLite.R")

> biocLite("human.db0")

Wrapper functions will allow you to then make a database and package it
up into a custom annotation package all at once. The following shows how:

> ## Because this is an example, we are going to use a tempdir()

> tmpout <- tempdir()

> ## Also need to get some IDs ready to pass in

> hcg110_IDs <- system.file("extdata",

+ "hcg110_ID",

+ package="AnnotationDbi")

> ## Then we just call the function

> makeHUMANCHIP_DB(affy=FALSE,

+ prefix="hcg110",

+ fileName=hcg110_IDs,

+ baseMapType="gb",

+ outputDir = tmpout,

+ version="1.0.0",

+ manufacturer = "Affymetrix",

+ chipName = "Human Cancer G110 Array",

+ manufacturerUrl = "http://www.affymetrix.com")

19

Wrapper functions are provided for making all of the different kinds of chip
based package types that are presently defined. These are named after the
schemas that they correspond to. So for example makeHUMANCHIP_DB() corre-
sponds to the HUMANCHIP DB schema, and is used to produce chip based
annotation packages of that type.

20

