Gene Set Enrichment Analysis

Martin Morgan Fred Hutchinson Cancer Research Center Seattle, WA, USA

Friday, November 30

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Motivation

Many analyses:

Exploratory, even in designed experiments: which of 1000's of probes are differentially expressed?

But often...

- ► A priori understanding of relevant biological processes
- Interested in signal from collection of probes (e.g., genes in a pathway)

Original idea applied to expresion data

 Mootha et al. (2003, Nat Genet 34, 267-273) – permutation-based GSEA.

Overall approach

- 1. Identify a priori biologically interesting sets for analysis.
- 2. Pre-process and quality assess as usual.
- 3. Non-specific filtering remove probes that cannot possibly be interesting.
- 4. Compute a test statistic, e.g., *t*-statisitic, for each probe.
- 5. Calculate an appropriate summary, call it z_k , of the test statistic in each set.
- 6. Compare the distribution of z_k across sets; by the *central limit theorem*, the distribution of z_k is approximately Normal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

1. A priori sets

- Biologically motivated.
- Combining 'signal' from several probe sets.
- Examples: KEGG or Gene Ontology pathways, chromosome bands, ...
- Here we'll use KEGG pathways.
- We'll also restrict attention to pathways represented by 10 or more probes.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

2. Pre-processing

 Use entire data set for background correction, normalization, probe set summary.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- > library("ALL")
- > data("ALL")
- . . .
- > dim(bcrneg)
- Features Samples 12625 79

3. Non-specific filtering: invariant genes

- Exclude genes that cannot be interesting
- Must not use criteria to be used in analysis, e.g., must not filter on expression in biological pathway of interest.
- Criterion: exclude genes with limited variation across all samples.
- > library("genefilter")
- > bcrneg_filt1 = nsFilter(bcrneg, var.cutoff = 0.5)\$eset

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

> dim(bcrneg_filt1)

Features Samples 5035 79

3. Non-specific filtering: KEGG I

- Criterion: remove probes with no KEGG annotations, or participating in pathways with fewer than 10 probes represented.
- ► How? Create a *GeneSetCollection* from the expression set, identify relevant sets, then filter the expression set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- > library(GSEABase)
- > gsc <- GeneSetCollection(bcrneg_filt1,</pre>
- + setType = KEGGCollection())

3. Non-specific filtering: KEGG II

> gsc

```
GeneSetCollection
  names: 00623, 00650, ..., 00130 (192 total)
  unique identifiers: 39354_at, 34790_at, ..., 39960_at (16
  types in collection:
    geneIdType: AnnotationIdentifier (1 total)
    collectionType: KEGGCollection (1 total)
> gsc[[2]]
setName: 00650
geneIds: 34790_at, 32747_at, ..., 41172_at (total: 19)
geneIdType: Annotation (hgu95av2)
collectionType: KEGG
  ids: 00650 (1 total)
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

```
details: use 'details(object)'
```

3. Non-specific filtering: KEGG III

> ok <- sapply(geneIds(gsc), length) > 10
> gsc <- gsc[ok]
> length(gsc)

[1] 118

- > uids <- unique(unlist(geneIds(gsc)))</pre>
- > bcrneg_filt2 <- bcrneg_filt1[uids,]</pre>

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

> dim(bcrneg_filt2)

Features Samples 1566 79

4. Compute a test statistic

- Many statistics possible; idea is to calculate a statistic that meaningfully contrasts expression levels between groups.
- Statistic chosen should be scale- and sample-size independent.
- We'll use a simple t-test, with t_k being the statistic associated with the kth probe set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

> rtt <- rowttests(bcrneg_filt2, "mol.biol")</pre>

```
> rttStat <- rtt$statistic</pre>
```

> names(rttStat) <- featureNames(bcrneg_filt2)
> head(rttStat)

34790_at 32747_at 33899_at 40409_at 36132_at -1.02 3.90 -0.65 0.22 0.68 37211_at -2.41 5. Calculate an average for each set I

- t_k follows a *t*-distribution.
- Sum of independent t-statistics is approximately Normal.
- Sum standardized by the square root of the number of genes |K| in a set K is approximately Normal with mean 0 and variance 1.

$$z_{\mathcal{K}} = rac{1}{\sqrt{|\mathcal{K}|}} \sum_{k \in \mathcal{K}} t_k$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Important that z_K is independent of the number of genes in the set.

5. Calculate an average for each set II

- Write a function to calculate z_K from a list of gene ids
- Apply that function to all gene ids in our gene set collection

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

6. Compare to Normal distribution

- ► We expect our z_K to have a Normal distribution. How to assess?
- Quantile-quantile plot: close agreement if points in plot lie on a diagonal.
- > qqnorm(z)
- > qqline(z)
 - One very distinct outlier!
- > z[z < -5]

03010

-8.2

Normal Q-Q Plot

Figure: Gene set Q-Q plot

- 日本 本語 本 本 田 本 王 本 田 本

Investigating the outlier

Figure: KEGG id 03010

More robust statistical assessment

Issues

- ► Strong assumptions, e.g., about independence of t statistics and normality of z_K.
- Very qualitative assessment; do other points deviate from Normal quantiles?
- A solution
 - More robust evaluation using permutation tests.
 - Function gseattperm in Category package provides one implementation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Analysis in the lab leads to six significant pathways.

Other approaches possible...

Overlapping gene sets

Issues

- Two (or more) gene sets may share the same probes, e.g., 21 genes in common between sets 04512 and 04510.
 - > overlap <- gsc[["04512"]] & gsc[["04510"]]
 - > length(GSEABase::geneIds(overlap))

[1] 21

If both gene sets are significant, is it because they share the same probes?

A solution

- Perform a series of linear models, e.g., models with (a) 04510,
 (b) 04512, (c) both sets, followed by a model with (d) probes only in 04510, only in 04512, and in both sets.
- Analyais in the lab suggests that 04512 is only interesting because of probes it shares with 04510.

Additional types of gene sets

Chromosome bands

 Predefined sets, e.g., Broad Institute positional, curated, motif-based, or computed gene sets. See ?getBroadSets, BroadCollection

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Gene Ontology (GO) and OBO collections.
- Pubmed IDs

▶ . . .

Related approaches

- PGSEA: implements Kim and Volsky, 2005 (BMC Bioinformatics 6: 144).
- Iimma: geneSetTest performs like Mootha et al., but with different statistical tests.
- GOstats: gene ontology visualization, testing for statistical over-representation of probe sets in ontologies.
- GlobalAncova: Multivariate analysis suitable for assessing differential expression of specific gene sets.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00