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1 Introduction

Motivation: two-color microarray experiment.

� 5 cell lines PEC32, PEC34, PEC36, PEC39, PEC40.

� 2 drugs (SFN and HGF) each present at two levels (Low and High).

� Each chip has 15488 spots representing 2 technical replicates of each
of 7744 genes.

1.1 Terminology

Response A dependent variable, e.g., gene expression level.

Factor A controlled independent variable, e.g., tissue source, drug treat-
ment, wild-type versus mutant, gender. A factor represents a general
category of treatment, and is likely to be administered at different
levels, e.g., presence versus absence of tumor, low medium or high
concentration of a drug.

Covariate Additional independent variables, measured not explicitly con-
trolled by the experimenter.

Biological replicate Statistically independent measurement on different
objects, e.g., tissues from different individuals, independent samples
of a cell line.

Technical replicate Repeated measurements on the same biological ma-
terial, e.g., replicate spots on an array; classical.
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Blocking Grouping samples into homogenous clusters. Blocking is often
an effective way to accommodate known differences in samples.

Randomization Assigning samples randomly to treatments. Randomiza-
tion also attempts to group samples into homogenous clusters, but does
so without retaining information about why samples might differ.

Experimental design The sensible assembly of replicates, factors, and re-
sponse variables in order to address specific statistical questions.

1.2 A simple experimental design

� One factor with two different treatments, samples assigned randomly
to each treatment; measure a single response variable. Label the treat-
ments Low and High.

� The classical way to analyze this type of experiment is with a t-test:
compare variation within each treatment to variation between treat-
ments. If the variation between groups is greater than variation within
groups, then conclude that members of the two groups differ in some
systematic way.

� A formula for the t-test. . .

t =
x̄High − x̄Low√

s2
High/nHigh + s2

Low/nLow

(1)

seems like it is comparing means (symbol x̄) but is actually asking
about variation between groups (x̄High − x̄Low) compared to average

variation within groups (
√

s2
High/nHigh + s2

Low/nLow; s2
High is the sample

variance in the High treatment).

� We can view the response measured on an individual j assigned to the
ith treatment as due to an overall average effect µ, plus a deviation
caused by the effect of the treatment i they were exposed to αi, plus
a residual deviation εij unique to that individual:

yij = µ + αi + εij (2)

The classical assumption is that the deviations εij follow a normal
distribution with mean 0 and variance σ2.
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� The expected value of an individual sampled from the Low treatment
group is

E[yij |i = Low] = µ + αLow (3)

The expected value of an individual sampled from the High treatment
group is

E[yij |i = High] = µ + αHigh (4)

The expected value of an individual sampled from the entire experi-
ment is

E[yij ] = µ (5)

� In a slightly different formulation, we could designate one of the treat-
ments as a kind of standard against which others are measured. Sup-
pose that we choose Low to be the standard. Then µ is the expected
value of this standard and µ + αHigh the expected value of the High
treatment (and (µ + αHigh) − (µ) = αHigh the deviation of the High
from the standard treatment). Moreover, we can write an expression
describing all the data as

y = Xβ + ε (6)

y is a vector of observed values. β is a vector with two elements,
corresponding to the expected value in the Low treatment and the de-
viation between the Low and High treatments. X is a design matrix
or model matrix of 0s and 1s that indicate how the components of
β are to be combined to describe the observed values. Here is a quick
example, supposing that the first 3 individuals are from the Low and
the second 3 individuals from the High treatment, and that the means
of the treatments are 1 and 2:

0.9
1.1
1.0
2.0
2.1
1.9

 =



1 0
1 0
1 0
1 1
1 1
1 1


[
1
1

]
+



−0.1
0.1
0.0
0.0
0.1
−0.1

 (7)

Normally, the values of β, ε are not known.

� The primary goal of an analysis is to estimate the values of β. With
an estimate of β in hand, it is possible to estimate the residuals εij and
to use these to assess whether our description of the data is somehow
adequate.
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� Estimates of β are usually accompanied by some statement of sta-
tistical support for the significance of each component. One way of
thinking about this is contrasting a model where a component of β
(e.g., corresponding to αi) is zero (e.g., yij = µ + εij), versus a model
where the component is different from zero (yij = µ + αi + εij). We
then compare the residuals in the first model with the residuals in the
second model. If the residuals are significantly smaller in the second
model, we accept it as a better description of the data. Having ac-
cepted the second model, we also accept the estimate of the coefficient
αi as statistically signficant.

� The approach extends to many other more complicated designs.

� A better estimate of a treatment mean is possible when there are more
samples assigned to each treatment, and in general statistical power
(the ability to detect differences between treatments, when in fact the
differences exist) increases with replication within treatments.

Factorial designs combine two or more factors simultaneously.

� Each factor can have two or more different levels.

� Main effects describe the average effect of a factor on the response,
averaging over all other factors.

� Interaction effects describe how different levels of one factor differ
over levels of another factor.

� The classical approach is to describe variation first in terms of main
effects, and then to attempt to explain remaining variation in terms
of interactions. Note that this is reductionist and parsimonious.

� For example, a linear model for an experiment with two factors (i, j)
each with two levels (Low, High) might be written as:

yijk = µ + αi + βj + γij + εijk (8)

We investigate the corresponding model matrix in the lab.

What makes for a good factorial design?

� Simplicity – There is no theoretical limit to the complexity of a facto-
rial ANOVA, but even three-way interactions (i.e., three factors) can
be difficult to interpret biologically, even at the best of times.
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� Replication – In a one-way ANOVA, a treatment represented by a sin-
gle sample has a mean but no variance, and hence the effect of the
treatment cannot be compared to other treatments in the experiment.
In a factorial experiment with two factors each with two treatment,
and with each treatment represented by a single individual, it is math-
ematically impossible to estimate an interaction effect. More generally,
replication of each treatment combination increases the ability to as-
sess statistical significance.

2 Using limma to analyze microarray experiments

2.1 An example

The following data frame, constructed from the description of the experiment
(see the lab), summarizes important aspects:

> head(exptlDesign)

cellLine SFN HGF
1 34 Low Low
2 34 Low High
3 34 High High
4 34 High Low
5 32 Low Low
6 32 Low High

> table(exptlDesign[, -1])

HGF
SFN Low High
Low 5 5
High 5 5

We initially focus on the SFN and HGF treatments, glossing over cellLine
and spot replication on each chip.

2.2 The model

We are interested in a model with two main effects (SFN, HGF) and their
interaction. The linear model is

yijk = µ + αi + βj + γij + εijk (9)
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We can think of α as a way of encoding main effect of the SFN factor, β
the main effect for factor HGF, and γ the interaction. There are two possible
values of α, corresponding to Low and High levels of SFN. We encode these
as αLow = 0, αHigh = 1. Similar considerations apply to β and γ.

We can specify this model with an R formula. Formulas are written as

> Response ~ Dependent

Where Response enumerates (one or more) response variables, and Depen-
dent specifies the model. Here are two equivalent descriptions of our exper-
iment:

> ~1 + SFN + HGF + SFN:HGF

> ~SFN * HGF

The response is not (yet) specified in these formulas. In the first formula,
the 1 is a place-holder for the overall mean µ, each of the main effects are
listed, and then their interaction (with the : symbol). The second formula
relies on automatic expansion of *, which indicates that all main effects and
their interactions are to be included. Details about formula specification,
including how to remove the overall mean, are available with ?formula.

The model matrix is obtained by applying the general formula describing
the treatments in the experiment to the specific data collected:

> X <- model.matrix(~SFN * HGF, exptlDesign)

> head(X)

(Intercept) SFNHigh HGFHigh SFNHigh:HGFHigh
1 1 0 0 0
2 1 0 1 0
3 1 1 1 1
4 1 1 0 0
5 1 0 0 0
6 1 0 1 0

The model matrix has 20 rows (corresponding to each sample in the ex-
periment) and 4 columns. The column (Intercept) consists only of 1s,
indicating that all samples have a term corresponding to the standard µ.
The column SFNHigh summarizes whether deviations associated with the
High level of SFN are included. Can you interpret the rest of the terms in
the matrix?
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2.3 The data

The following ExpressionSet summarizes the data; it is created with com-
mands in the lab.

> M

ExpressionSet (storageMode: lockedEnvironment)
assayData: 14772 features, 20 samples
element names: exprs

phenoData
rowNames: PEC34_cntrl, PEC34_HGF, ..., PEC39_cntrl1 (20 total)
varLabels and varMetadata:
FileName: NA

featureData
rowNames: F:190753, F:190754, ..., F:206217 (14772 total)
varLabels and varMetadata: none

experimentData: use 'experimentData(object)'
Annotation character(0)

For reasons that will become clear below, initially we only want to analyse
the first half of the columns in M, i.e.,

> Mh <- M[1:(nrow(M)/2), ]

2.4 Model fit

There are two steps to model fit in limma: the actual fit of the model, and
an empirical Bayes step that assessess statistical significance of the fit
while attempting to correct for the large number of comparisons that are
being performed:

> fit <- lmFit(Mh, X)

> efit <- eBayes(fit)

The results in efit contain estimates of the coefficients (our β), intermediate
calculations relevant in other statistical analyses (e.q., qr),and measures
relevant to assessing statistical significance (e.g., t, p.value, lods, F,
F.p.value);

> names(efit)
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[1] "coefficients" "rank"
[3] "assign" "qr"
[5] "df.residual" "sigma"
[7] "cov.coefficients" "stdev.unscaled"
[9] "pivot" "genes"
[11] "Amean" "method"
[13] "design" "df.prior"
[15] "s2.prior" "var.prior"
[17] "proportion" "s2.post"
[19] "t" "p.value"
[21] "lods" "F"
[23] "F.p.value"

> head(efit[["coefficients"]])

(Intercept) SFNHigh HGFHigh SFNHigh:HGFHigh
F:190753 0.27810206 -0.13508752 0.15645506 -0.12258728
F:190754 1.01380493 -0.08379969 0.17706461 0.01436019
F:190755 0.39159498 -0.07912876 0.04372644 0.11018118
F:190756 0.02626411 -0.04883235 0.06043701 -0.04170700
F:190757 0.04954992 -0.02475607 0.06383627 -0.09174890
F:190758 0.26172803 -0.08856251 0.11831189 -0.06009859

As noted, the coefficients represent estimates of β, with each row corre-
sponding to a different unique identifier. We can combine these coefficients
with the experimental status of each individual to calculate the expected
(fitted) value of the expression expected for the unique ID:

> head(cbind(X, X %*% efit[["coefficients"]][1,

+ ]))

(Intercept) SFNHigh HGFHigh SFNHigh:HGFHigh
1 1 0 0 0 0.2781021
2 1 0 1 0 0.4345571
3 1 1 1 1 0.1768823
4 1 1 0 0 0.1430145
5 1 0 0 0 0.2781021
6 1 0 1 0 0.4345571

limma provides methods for calculating fitted values ?fitted.MArrayLM and
residuals ?residuals.MArrayLM.
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Once we have fit the model to our data, we can get an overview of
important genes for each coefficient in the model with decideTests. This
performs statistical assessment of model fits, identifiying which coefficients
are significant for each feature.

> decided <- decideTests(efit)

> summary(decided)

(Intercept) SFNHigh HGFHigh SFNHigh:HGFHigh
-1 2004 1 0 0
0 2778 7385 7386 7386
1 2604 0 0 0

Entries indicate the number of statistical tests falling into different cate-
gories. The row labeled 0 are statistical tests that are not significant. -1
indicates that individuals in groups with the low value of the corresponding
coefficient had higher expression values than individuals with the high value
of the coefficient, and vice versa for rows labeled 1.

Specific features with important effects (e.g., with respect to SFN) can
be identified using

> topTable(efit, coef = 2, n = sum(decided[, 2] !=

+ 0))

ID logFC AveExpr t P.Value
1430 F:192218 -1.193878 -0.2723395 -6.41404 3.064263e-06

adj.P.Val B
1430 0.02263264 3.458403

3 Technical replicates

Technical replication refers to a single biological sample measured in the
same assay two or more times. For instance, a chip might have replicate
spots for each gene, or a single biological sample might be applied to two
identical chips. The major goal of technical replication is to understand
variation due solely to imprecision in the technology. The idea is that this
variation can then be statistically removed, allowing underlying variation in
biologically interesting aspects to be more readily visible.

Technical replicates are much like an un-interesting factor:

� No information about the level of the factor, just that all members of
the technical replicate share some causal component.
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� No interest in the consequences of the technical replicate, only in us-
ing the information they provide to reduce unexplained variation and
hence increase power to make inferences about biological factors.

� No replication of the factor across different treatments, since the cir-
cumstance of each technical replicate is unique.

A classical statistical approach would interpret techincal replicates as
a repeated measure, and construct a linear model that includes the re-
peated measure as a factor. Subsequent statistical tests then incorporate
this information, in the form of a covariance or correlation between repeated
measures, as part of the hypothesis being evaluated.

The duplicateCorrelation function of limma takes a slightly different
approach. It is likely that technical variation has a modicum of consistency
across genes. It might therefore make sense to use the information from all
the genes to estimate an overall correlation due to technical replication. This
overall estimate can then be used to improve the estimate of the correlation
for individual genes.

Each chip in our data has two spots per gene. The layout is such that
all genes are represented once, and then all genes represented a second time.
The following code estimates and then summarizes the correlation between
techinical replicates:

> dupCor <- duplicateCorrelation(exprs(M), design = X,

+ ndups = 2, spacing = nrow(M)/2)

> summary(dupCor[["atanh.correlations"]])

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.8290 0.3245 0.5869 0.6384 0.9033 2.7360

> dupCor[["consensus"]]

[1] 0.5399939

All correlation coefficients are transoformed so that they lie on the atanh
scale (this is a common transformation for correlations, making their ex-
pected distribution more normal and hence the use of atanh-transformed
correlation coefficients less problematic in analyses that rely on paramet-
ric assumptions). The concensus element is the correlation averaged over
all genes; atanh.correlations is a vector of individual unique identifier
correlations.
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Including technical replication in our design should decrease the unex-
plained variation, and hence increase our ability to detect biologically inter-
esting differences:

> dupFit <- lmFit(M, design = X, ndups = 2, spacing = nrow(M)/2,

+ correlation = dupCor[["consensus.correlation"]])

> dupFitE <- eBayes(dupFit)

> dupDecided <- decideTests(dupFitE)

> summary(dupDecided)

(Intercept) SFNHigh HGFHigh SFNHigh:HGFHigh
-1 2196 28 0 0
0 2612 7357 7386 7386
1 2578 1 0 0

4 More complex models

Statistical linear models allow for complicated experimental designs, some
of which can be incorporated into analysis with limma.

4.1 Including cell lines

Our experimental design includes several different cell lines:

> levels(exptlDesign[["cellLine"]])

[1] "32" "34" "36" "39" "40"

The cell lines represent a kind of replication, but the replication is different
from technical replication. Specifically, we expect cell lines to show more
idiosyncratic differences than technical replicates (i.e., genes from different
cell lines are unlikley to shared a common correlation across spots). At the
same time, we might want to include cell lines in our model for the same
type of reason as we included technical replicates: cell lines could represent
a source of variation that we can account for, and hence improve power to
detect important differences in our model.

As a first approximation, we treat cell lines as a factor much like SFN
or HGF; they can be thought of as a series of distinct levels. There are two
important differences. The first is that there are not two but several levels
of cell line. Linear models have been designed to handle this possibility, by
constructing a model matrix that includes coefficients describing how each
cell line deviates from the expected value of the first cell line:
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> head(model.matrix(~cellLine, exptlDesign))

(Intercept) cellLine34 cellLine36 cellLine39 cellLine40
1 1 1 0 0 0
2 1 1 0 0 0
3 1 1 0 0 0
4 1 1 0 0 0
5 1 0 0 0 0
6 1 0 0 0 0

The second difference is that there is no sense in which one particular line
is ‘larger’ than another, in contrast to levels of SFN or HGF, which have a
natural ordering. The real impact of this is on the coding of SFN and HGF,
which if they had more than two levels (e.g., ‘High’, ‘Medium’, ‘Low’) would
have had to be coded as ordered factors using the ordered function.

NOTE that cell line is really a random effect representing samples
drawn from a population. We are not inherently interested in a particular
cell line, but would instead like to draw inferences about the population
from which the cell lines are drawn. For this reason, a more correct analysis
treats cell lines as random effects and performs an analysis using a package
like nlme to formulate a mixed effects model including both fixed (SFN,
HGF) and random (cellLine, technical replicates) effects. It is likely that,
in this particular case, treating cell line as fixed versus random effect likely
has limited consequence for the analysis.

Returning to our analysis in limma, the process for incorporating more
complicated designs into an analysis is to modify the model matrix. Again,
the expectation is that by accounting for relatively uninteresting (in the
present context) variation between cell lines, we get a more accurate por-
trayal of biologically interesting sources of variation

> X <- model.matrix(~cellLine + SFN * HGF, exptlDesign)

> dupCor <- duplicateCorrelation(exprs(M), design = X,

+ ndups = 2, spacing = nrow(M)/2)

> dupFit <- lmFit(M, design = X, ndups = 2, spacing = nrow(M)/2,

+ correlation = dupCor[["consensus.correlation"]])

> dupFitE <- eBayes(dupFit)

> dupDecided <- decideTests(dupFitE)

Highlights of this computation are:

> dupCor[["consensus.correlation"]]
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[1] 0.3987836

> summary(dupDecided)

(Intercept) cellLine34 cellLine36 cellLine39 cellLine40
-1 1829 52 548 306 705
0 3080 7256 6647 6921 6077
1 2477 78 191 159 604

SFNHigh HGFHigh SFNHigh:HGFHigh
-1 57 0 0
0 7301 7386 7386
1 28 0 0

As before, we can identify spots with important effect:

> topTable(dupFitE, coef = 6)

ID logFC AveExpr t P.Value
7144 F:198212 -1.1272666 -1.0048335 -7.673119 3.474078e-09
4719 F:195687 -1.2164112 -1.3040290 -7.594594 4.406089e-09
346 F:191098 -1.6656265 1.4291720 -7.591244 4.451050e-09
2259 F:193075 -2.1767644 -4.0267582 -7.410235 7.716038e-09
2307 F:193123 -2.2107254 -4.1050810 -7.140581 1.760874e-08
5939 F:196947 -1.9716221 -4.6211507 -7.017006 2.575268e-08
303 F:191055 -1.1387461 0.9491611 -6.859584 4.186602e-08
5987 F:196995 -2.0323852 -4.5237169 -6.687570 7.133514e-08
699 F:191455 -1.0130084 -0.3076729 -6.675975 7.394917e-08
4406 F:195338 -0.5501169 -0.4901482 -6.610026 9.076062e-08

adj.P.Val B
7144 1.095848e-05 10.798928
4719 1.095848e-05 10.580588
346 1.095848e-05 10.571257
2259 1.424766e-05 10.065120
2307 2.601163e-05 9.304381
5939 3.170154e-05 8.953263
303 4.417463e-05 8.503900
5987 6.068762e-05 8.010459
699 6.068762e-05 7.977113
4406 6.185010e-05 7.787260
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4.2 Assessing model performance

The results so far emphasize fitting a model and identifying features with
significant effect. How do we know we are on the right track?

To start addressing this question, look at the residuals of our fitted mod-
els. limma allows us to calculate a matrix of fitted values from our model

> fittedVals <- fitted(dupFitE)

> dim(fittedVals)

[1] 7386 20

There is one fitted value for each (duplicated) feature and sample. We can
ask how these fitted values compare to the actual values, and for convenience
we will calculate a single observed value by averaging the two duplicate spots:

> observedVals <- (exprs(M)[1:(nrow(M)/2), ] + exprs(M)[nrow(M)/2 +

+ 1:(nrow(M)/2), ])/2

> residualVals <- residuals(dupFitE, observedVals)

Each of the expression, fitted and residual values are formatted as a matrix,
but it is convenient to flatten them each into data frame columns, and to
add appropriate indicators of the experimental design

> df <- data.frame(sampleId = rep(1:20, each = nrow(observedVals)),

+ SFN = rep(exptlDesign[["SFN"]], each = nrow(observedVals)),

+ HGF = rep(exptlDesign[["HGF"]], each = nrow(observedVals)),

+ observed = as.vector(observedVals), fitted = as.vector(fittedVals),

+ residuals = as.vector(residualVals))

The residuals of each sample and feature should be independent of one an-
other, so that no sample should have only ‘large’ residuals. Here is a quick
check:

> library(lattice)

> print(bwplot(sampleId ~ residuals, df))
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Additional plots for exploration are hinted at in the lab.

5 Further directions

The following topics are covered by the limma manual, and provide a taste
of the advanced directions for analysis of complex experimental designs and
the tools available for their analysis.

Dye swap Section 8.1.2, p. 35.

Common reference Section 8.4, p. 40.

Several groups Section 8.6, p. 44.

Time series Section 8.8, p. 48.

The limma package provides great value-added benefits (e.g., constructing
contrasts, incorporating technical replicates, Bayesian assessment of signifi-
cance). All of this functionality is, however, implemented in R, so all these
techniques (and more) are directly accessible to the user. For instance, the R
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function lm fits linear models, and can be used to perform identical analyses
to those of lmFit (though in a less computationally efficient way).

Many alternatives to the analysis outlined here exist. For instance, a
priori knowledge might suggest a subset of genes for an analysis, a subset
of genes might be expected to show a correlated response, the linear model
might have random as well as fixed effects, etc. Package exist for some of
these problems (see the BiocViews web page), others represent formulations
of classical statistical problems that R is able to accomodate. Still others
remain areas for active research.
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