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1 Introduction

In this case study we will see how to use gene set enrichment analysis (?7). We will make use
of the data from an investigation into acute lymphoblastic leukemia (ALL) reported in ? for
our examples. We will primarily concentrate on the two sample problem, where the data can
be divided into two distinct groups, and we want to understand differences in gene expression
between the two groups. For the ALL data we will compare those samples with BCR/ABL to
those that have no observed cytogenetic abnormalities (NEG).

The basic idea behind gene set enrichment analysis is that we want to use predefined sets
of genes, perhaps based on function, in order to better interpret the observed gene expression
data. In some ways the ideas here are quite similar to those that the usual Hypergeomtric
testing is based on.

Preprocessing
We begin by loading up the appropriate libraries.

> library("Biobase")

> library("annotate")

> library("Category")

> library("hgu95av2")

> library("genefilter")

As for all analyses, we must first load the data and process it. In the code chunk below we
load the data and then select the subset we are interested in.

Exercise 1
How many samples are in our subset? How many are BCR/ABL and how many NEG?

Next, we remove from our data set those probes that have no mapping to EntrezGene,
since we will not be able to find any metadata for these probes.

> entrezlds <- mget(featureNames(eset), envir=hgu95av2ENTREZID)

> haveEntrezId <- names (entrezIds) [sapply(entrezIds, function(x) !is.na(x))]
> numNoEntrezId <- length(featureNames (eset)) - length(haveEntrezId)

> eset <- eset[haveEntrezId, ]



Next we do some basic prefiltering. My preference is to filter genes according to their
variability across samples. In the code below we compute the IQR (approximately) and then
select for our gene set those genes that have an IQR above the median value.

## Non-specific filtering based on I(R
low@ = rowQ(eset, floor(0.25 * numBN))
upQ = rowQ(eset, ceiling(0.75 * numBN))
igrs = upf] - lowQ

selected <- iqrs > median(iqrs)
nsFiltered <- eset[selected, ]
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In the next code chunk, we find all probes that map to a single gene. We want only one
probe set to represent each gene (otherwise we have to do a lot of downstream adjustments)
and our decision here is to chose the one that shows the most variation, as measured by the
IQR, across samples.

## Reduce to unique probe <--> gene mapping by keeping largest I(R

## This gives us "unique genes" in the non-specific filtered gene

## set which simplifies further calculations.

nsFilteredIqr <- iqrs[selected]

uniqGenes <- findLargest(featureNames (nsFiltered), nsFilteredIqr, "hgu95av2")
nsFiltered <- nsFiltered[uniqGenes, ]

## basic stats on our non-specific filter result

numSelected <- length(featureNames(nsFiltered))

numBcrAbl <- sum(nsFiltered$mol.biol == "BCR/ABL")

numNeg <- sum(nsFiltered$mol.biol == "NEG")
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Exercise 2
How many genes have been selected for our analysis?

Since we have done this selection without regard to phenotype, or the type of gene sets we
are going to use we will be able to use this same subset of the data in all examples.

Using KEGG

We now want to use KEGG to assign genes to pathways, and to then use those pathways for
our gene sets.

> ## Remove genes with no PATH mapping

> havePATH <- sapply(mget(featureNames (nsFiltered), hgu95av2PATH),

+ function(x) if (length(x) == 1 && is.na(x)) FALSE else TRUE)
> numNoPATH<- sum(!havePATH)

> nsF <- nsFiltered[havePATH, ]

Exercise 3
How many genes are we left with?



Now we must compute the incidence matrix, that is the matrix that maps between probes
and the pathways. This matrix has zero’s and ones in it. The last two commands rearrange
the rows of the A matrix so that they are in the same order as the genes in our exprSet object.

Am = PWAmat ("hgu95av2")

egN = unlist(mget (featureNames (nsF), hgu95av2ENTREZID))
subl = match(egN, row.names (Am))

Am = Am[subl,]

dim(Am)
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[1] 1661 181
> table(colSums (Am))

0 1 2 3 4 b 6 7 8 9 10 11 12 13 15 16 17 18 19 20

4 11 7T 6 6 6 11 8 7 &5 5 4 b 9 3 7 4 3 4 2
21 22 23 24 25 26 27 28 29 30 31 32 34 37 39 41 42 44 46 47

3 1 2 4 1 1 4 2 2 3 1 2 2 1 3 1 3 1 2 1
48 b51 52 54 55 56 59 65 68 69 70 T2 76 80 83 84 95 103 148

2 1 3 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1

Exercise 4
How many categories and how many genes are represented by the A matrix? How many
categories have fewer than 10 genes in them? What is the largest number of categories a gene
is in?

Next we will compute the per gene test statistics using the rowttests function from the
genefilter package. There are several other fast test statistic computations that you can do as
well (e.g. rowFtests).

> rtt = rowttests(nsF, "mol.biol")
> rttStat = rtt$statistic

Exercise 5
How many test statistics are positive? How many are negative? How many have a p-value less
than 0.017

Next we further reduce the A matrix, by removing all categories that have fewer than
10 genes in them. When carrying out your own analyses you should select a value you are
comfortable with.

Amat = t(Am)

rs = rowSums (Amat)
Amat2 = Amat[rs>10,]
rs2 = rsl[rs>10]
nCats = length(rs2)
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And now it is fairly easy to compute the per category test statistics and to produce a
qq-plot, Figure |1 We see that there is one pathway that has a remarkably low observed value
(less than —5) so we will take a closer look at this pathway.
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Figure 1: The per category qq-plot.

> tA = as.vector(Amat2 J*), rttStat)
tdadj = tA/sqrt(rs2)
names (tA) = names(tAadj) = row.names(Amat2)
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To find the pathway, we first find the value, and then use

> smPW = tAadj[tAadj < -5]
> pwName = KEGGPATHID2NAME[ [names (smPW)]]
> pwName

[1] "Ribosome"

Now we can produce some summary plots based on the genes annotated at this pathway.
The mean plot presents a comparison of the average expression value for each of our two groups,
for each gene in the specified pathway. That is, each point in Figure [2| represents one gene and
the value on the z-axis is the mean in the BCR/ABL samples while the value on the y-axis is
the mean value in the NEG samples.
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Figure 2: The mean plot for the Ribosome pathway.

Exercise 6
What do you notice in this plot?

And finally we can produce a heatmap, Figure [3| for the genes in the Ribosome pathway.
We use the KEGG2heatmap function to do most of the hard work.

Exercise 7

What sorts of things do you notice in the heatmap? The gene labeled 41214_at has a very
unusual pattern of expression. Can you guess what is happening? Hint: look at which chro-
mosome it is on.

Exercise 8
Repeat these plots for the pathway with the largest observed average t-statistic.



Figure 3: A heatmap for the Ribosome pathway.



Permutation testing

The analysis above was based on a presumption that the data are approximately Normally
distributed. However, this is sometimes viewed as a relatively strong assumption and there is
some interest in using another approach. For GSEA it is relatively straightforward to compute
a permutation ¢-test. The ttperm in the Category package can be used for this purpose.

In the next code chunk we compute the permutation distribution for this same problem.
The value returned by ttperm is a list, the first entry is the observed t-statistic (the return
value of a call to rowttests) while the second element is itself a list of length B, the number
of permutations.

In the code chunk below we compute the permutation distribution based on 100 permuta-
tions, in practice you would typically use a much larger value.

NPERM = 100
ttp = ttperm(exprs(nsF), nsF$mol.biol, NPERM)
permDm = do.call("cbind", lapply(ttp$perms, function(x) x$statistic))
permD = Amat2 7*}), permDm
pvals = matrix(NA, nr=nCats, ncol=2)
dimnames (pvals) = list(row.names (Amat2), c("Lower", "Upper"))
for(i in 1:nCats) {
pvals[i,1] = sum(permD[i,] < tA[i])/NPERM
pvals[i,2] = sum(permD[i,] > tA[i])/NPERM

}

ordl = order(pvals[,1])

lowC = (row.names(pvals) [ordl]) [pvals[ordl,1]< 0.05]
highC = row.names (pvals) [pvals[,2] < 0.05]
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In the next code chunk we print out the pathway names for all the ones that have low
values, but only a few of those that have high values, since there are 24 of them.

> getPathNames (1owC)

$°03010°
[1] "Ribosome"

$°03320°
[1] "PPAR signaling pathway"

$01030°
[1] "Glycan structures - biosynthesis 1"

$ 05030°
[1] "Amyotrophic lateral sclerosis (ALS)"

$°00260°
[1] "Glycine, serine and threonine metabolism"



> getPathNames (highC) [1:5]

$°04510°
[1] "Focal adhesion"

$ 04512°
[1] "ECM-receptor interaction"

$°04514°
[1] "Cell adhesion molecules (CAMs)"

$04520°
[1] "Adherens junction"

$°04670°
[1] "Leukocyte transendothelial migration"

> 1nhC = length(highC)

Exercise 9

How many pathways have low t-statistics (those where the observed t-statistic was lower than
that for the permutation distribution)? How many have high? How do you interpret these?
What p-value is the most extreme? What does the heatmap look like for this gene set?

Chromosome Bands

Another interesting application is to use chromosome band information as the gene set. In
doing this, you are studying whether there are anomolies in the pattern of gene expression
that relate to chromosomal location. Unfortunately this analysis is incomplete in the sense
that we have not adjusted for nesting of bands, but software for doing this will be available in
the 1.9 release of Bioconductor.

The chromosome band information is contained in the metadata variable with the suffix
MAP, so for us it is in hgu95av2MAP.

Exercise 10
What does the manual page say the interpretation of the MAP position 17p33.2 is?

A preliminary approach to finding relevant MAP positions is available in the MAPAmat
function from the Category package (note this function will be improved over the next few
months). Since we want to focus on relatively few categories we are going to restrict attention
to MAP locations with at least 10 genes.

> AmChr = MAPAmat ("hgu95av2", minCount=5)

Exercise 11
How many genes were selected? How many map positions?



Next we must reduce this matrix to those genes we have selected for analysis. So in the
next code chunk we repeat the steps performed above, for KEGG, to match row names to
those selected and then to reduce the incidence matrix accordingly.

> subC = row.names (AmChr) Jinj, egN
> AmChr = AmChr [subC,]
> dim(AmChr)

[1] 1147 564
> table(colSums (AmChr))

0 i 2 3 4 5 6 7 8 9 10 11 13 19 24 31
134 173 115 48 38 21 9 5 3 &6 &5 2 3 1 1 1

Exercise 12
Further reduce AmChr so that only bands with at least 5 genes are retained. Produce a qq-plot
and identify the interesting bands. Use Google, or some other search engine to determine
whether others have identified these bands as interesting.

Repeat the analysis performed on the KEGG pathways. Produce mean plots, heatmaps
etc. Try to identify a set of interesting bands.
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