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Outline
e Introduction to classification in microarray experiments.
e (Classification as statistical decision theory.

e Overview of classifiers
linear and quadratic discriminant analysis;

logistic discrimination;

nearest neighbor classifiers;

classification trees;

support vector machines.




Outline

General issues in classification
feature selection;
distance and standardization;
loss function;
class representation;
polychotomous classification;

missing data.

e Performance assessment
— estimation of error rates;

— bias—variance trade—off.

e Aggregating classifiers: bagging, boosting, random forests.

e Comparison of classifiers on tumor microarray data.




Classification

Classification is a prediction or learning problem in which the

variable to be predicted assumes one of K unordered values,

{c1,ca,...,cK}, arbitrarily relabeled as {1,2,..., K} or sometimes
0,1,..., K —1}.

The K values correspond to K predefined classes, e.g., tumor

class, bacteria type.




Classification

Associated with each object are

e a response or dependent variable (class label)
Y e{l1,2,...,K}, and

e a set of G measurements which form the feature vector or
vector of predictor variables X = (X1,..., X¢g).

The feature vector X belongs to a feature space X (e.g. the real
numbers R).

The task is to classify an object into one of the K classes on the

basis of an observed measurement X = x, i.e., predict Y from X.




Unsupervised vs. supervised learning

Unsupervised learning. The classes are unknown a priori and
need to be “discovered” from the data.

a.k.a. cluster analysis; class discovery; unsupervised pattern recognition.

Supervised learning. The classes are predefined and the task is
to understand the basis for the classification from a set of labeled

objects (training or learning set). This information is then used to

classify future observations.
a.k.a. discriminant analysis; class prediction; supervised pattern

recognition.




Classification in microarray experiments

e (lassification is an important question in microarray
experiments, for purposes of classifying biological samples and
predicting clinical or other outcomes using gene expression data

— tumor class: ALL vs. AML, classic vs. desmoplastic
medulloblastoma;

— response to treatment, survival;

— type of bacterial pathogen, etc.

e Although classification is by no means a new subject in the

statistical literature, the large and complex multivariate
datasets generated by microarray experiments raise new

methodological and computational challenges.




Tumor classification using gene expression data

A reliable and precise classification of tumors is essential for

successful diagnosis and treatment of cancer.

Current methods for classifying human malignancies rely on a
variety of morphological, clinical, and molecular variables.

In spite of recent progress, there are still uncertainties in diagnosis.

Also, it is likely that the existing classes are heterogeneous and

comprise diseases which are molecularly distinct and follow

different clinical courses.




Tumor classification using gene expression data

DNA microarrays may be used to characterize the molecular
variations among tumors by monitoring gene expression profiles on

a genomic scale.

This may lead to a finer and more reliable classification of tumors,

and to the identification of marker genes that distinguish among

these classes.

Eventual clinical implications include an improved ability to

understand and predict cancer survival.




Tumor classification using gene expression data

There are three main types of statistical problems associated with

tumor classification:

1.

the identification of new tumor classes using gene expression

profiles — unsupervised learning;

. the classification of malignancies into known classes —

supervised learning;

. the identification of marker genes that characterize the

different tumor classes — feature selection.




Gene expression data

Features correspond to the expression measures for different genes;
classes correspond to different biological outcomes (e.g. ALL vs.
AML, survivor vs. non—survivor) and are labeled by {1,2,..., K}.

Gene expression data on G genes (features) for n mRNA samples
(observations)

X (%‘1,%2, e 7%(;)

— gene expression profile / feature vector for sample ¢

Vi tumor class / response for sample 1,

1=1,...,n.

May have covariates such as age, sex.




Gene expression data

Gene expression data on G genes (features) for n mRNA samples
(observations)

mRNA samples
r11  X12

L21 L22

rTG1 Tg2 --- TGn

T 4; = expression measure for gene g in mRNA sample 3.

It is assumed that the arrays have already been conormalized.




Classifiers

A classifier or predictor C for K tumor classes is a map from the

space X of gene expression profiles into the integers {1,2,..., K}.

That is, a classifier partitions the space X of gene expression
profiles into K disjoint and exhaustive subsets, Aq,..., Ak, such
that for a sample with expression profile x = (x1,...,xg) € A the
predicted class is k.

C:X—1{1,2,...,K}.

Predicted class for an observation x € Ay, y = C(x) = k.




Classifiers

Classifiers are built from past experience, i.e., from observations
which are known to belong to certain classes. Such observations

comprise the learning (training) set, LS

L= {(leyl)v SRR (Xnayn)}°

n = # of class k observations.

Classifier built from a learning set £: C(; L) : X — {1,2,..., K}.

Predicted class for an observation x € Ay, 7 =C(x; L) = k.

The random nature of the learning set £ implies that the prediction
y = C(x; L) can also be viewed as random for a fixed value of x,
depending on whether one conditions on the learning set or not.




Decision theory

Classification can be viewed as a statistical decision theory

problem.

Assume observations are independently and identically distributed

(i.i.d.) from an unknown multivariate distribution.

The class k prior, or proportion of objects of class £ in the

population, is denoted as 7, = p(Y = k).

Objects in class k have feature vectors with class conditional

density pi(x) = p(x|Y = k).




Decision theory

When (unrealistically) both 7 and px(x) are known, the

classification problem has a solution — Bayes rule.

This situation also gives upper bounds on the performance of
classifiers in the more realistic setting where these quantities are
not known — Bayes risk.




Decision theory

It will be useful to introduce the notion of a loss function. The
loss function L(h,l) simply elaborates the loss incurred if a class h
case is erroneously classified as belonging to class .

The risk function for a classifier is the expected loss when using it
to classify, that is,

R(C) = E|[L( ZE XY = k|m,
S / L(k, C(x))pi (X)my
k

N.B. Here, the classifier is fixed, i.e., probabilities are conditional

on the learning set. In other circumstances, the classifier may be

viewed as random and x as fixed.




Decision theory

Typically L(h,h) =0, and in many cases the loss is symmetric,
with L(h,l) =1, h # | — making an error of one type is equivalent

to making an error of a different type.

Then, the risk is simply the misclassification rate

RE) =pC(X) #Y) = 3 /C oo

However, for some important examples such as diagnosis, the loss

function is not symmetric.




Bayes rule

In the unlikely situation that the class conditional densities

pr(x) = p(x|Y = k) and class priors 7 are known, let

TPk (X)
p(k | x) =

1 Tpi(X)
denote the posterior probability of class £ given feature vector

X.

The Bayes rule predicts the class of an observation x by that with
highest posterior probability

Cp(x) = argmax,, p(k | x).

The Bayes rule minimizes the total risk under a symmetric loss
function — Bayes risk.




Bayes rule

For a general loss function, the classification rule which minimizes
the total risk is

Cp(x) = argmin; » ~ L(h,D)p(h | x). (1)
h=1

Suitable adjustments can be made for specific loss functions and to
accommodate the doubt and outlier classes.




Classifiers as estimators of the Bayes rule

Many classifiers can be viewed as versions of this general rule with
particular parametric or non—parametric estimates of p(k | x).
There are two general paradigms (Friedman, 1996 ).

1. Direct function estimation approach. Class conditional

probabilities p(k | x) are estimated directly based on function

estimation methodology such as regression.
Logistic regression;
Neural networks;
Classification trees;
Projection pursuit;

Nearest neighbor classifiers.




Classifiers as estimators of the Bayes rule

2. Density estimation approach. Class conditional densities

pr(x) = p(x|Y = k) (and priors ) are estimated separately for

each class and Bayes’ Theorem is applied to obtain estimates of
p(k | x).

e (Gaussian maximum likelihood discriminant rules, a.k.a.

discriminant analysis;

Naive Bayes methods, which approximate class conditional
densities px(x) by the product of their marginal densities on each

feature variable;
Learning vector quantization;

Bayesian belief networks.




Maximum likelihood discriminant rule

The frequentist analogue of the Bayes rule is the maximum
likelihood (ML) discriminant rule. For known class
conditional densities pi(x) = p(x|Y = k), the ML rule predicts the
class of an observation x by that which gives the largest likelihood

to x: C(x) = argmax; pr(X).

In the case of equal class priors 7, this amounts to maximizing the

posterior class probabilities p(k|x), i.e., the Bayes rule.




Fisher linear discriminant analysis

First applied in 1935 by M. Barnard at the suggestion of R. A.
Fisher (1936), Fisher linear discriminant analysis (FLDA)

consists of

1. finding linear combinations x a of the gene expression profiles

x = (x1,...,xq) with large ratios of between—groups to

within—groups sums of squares — discriminant variables;

. predicting the class of an observation x by the class whose
mean vector is closest to x in terms of the discriminant

variables.




Linear and quadratic discriminant analysis

Linear and quadratic (in the features x) discriminant rules arise as
Bayes rules or maximum likelihood (ML) discriminant rules when
features have Gaussian distributions within each class.

For multivariate normal class densities, i.e., for
XY =k~ N(ug,2r), the Bayes rule is

C(x) = argming, {(x — ) ¥ " (x — )’ + log [Zx| — 2logmy. | -

In general, this is a quadratic rule — Quadratic discriminant
analysis — QDA..




Linear and quadratic discriminant analysis

The main quantity in the discriminant rule is

(x — pr)3; ' (x — pg)’, the squared Mahalanobis distance from the

observation x to the class £ mean vector .

Thus, intuitively, the predicted class for an observation x is the
class with closest mean vector g, for a suitably defined distance

function.

Interesting special cases are described below for homogeneous

priors, i.e., m constant in k.




Linear and quadratic discriminant analysis

1. Linear discriminant analysis — LDA. When the class
densities have the same covariance matrix, > = X, the
discriminant rule is based on the square of the Mahalanobis

distance and is linear in x and given by

C(x) = argmin, (x — )X 1 (x — pux)’.




Linear and quadratic discriminant analysis

2. Diagonal linear discriminant analysis — DLDA. When
the class densities have the same diagonal covariance matrix
Y = A = diag(o?,...,0%), the discriminant rule is linear and

given by

C(x) = argminy Z 'ukg

Naive Bayes rule for Gaussmn class conditional densities.

. Nearest centroid. In this simplest case, it is assumed that
Y. = I, the G X G identity matrix, and observations are
classified on the basis of their Euclidean distance from class

means k.




Linear and quadratic discriminant analysis

For the sample Bayes or ML discriminant rules, the population
mean vectors and covariance matrices are estimated from a learning

set L, by the sample mean vectors and covariance matrices,

respectively: [ = X and f]k = SL.

For the constant covariance matrix case, the pooled estimate of the

common covariance matrix is used:

»=8=3,(ng—1)Sk/(n — K).




Linear and quadratic discriminant analysis

The above simple rules may be modified easily to allow for unequal
class priors.

Estimates of the priors may, in some cases, be obtained from the

sample class proportions 7 = ng/n.

As with any classifier explicitly estimating the Bayes rule, class
posterior probabilities may be used to assess the confidence in the

predictions for individual observations.




Weighted gene voting of Golub et al. (1999)

This is a minor variant on DLDA for two classes, k =1, 2.

Sample DLDA classifies an observation x as 1 iff

G

5’319 5’329 (:13 B (Z1g + T2g)
g

g=1
The discriminant function can be rewritten as ), v,, where

Vg = ag(Tg —bg), ag = (T1g — 5729)/&37 and by = (T1g + T29)/2.

In Golub et al., ay = (Z14 — Z24)/(F14 + F24) ... (Wrong units).




Linear and quadratic discriminant analysis

The linear discriminant rules described above are classical and

widely used classification tools.

e Simple and intuitive: the predicted class of a test case is the

class with the closest mean (using the Mahalanobis metric).

e Estimated Bayes rule: LDA is based on the estimated Bayes
rule for Gaussian class conditional densities — optimality when

the model is true.
e Lasy to implement: the partition has linear boundaries.

e Good performance in practice: in spite of a possibly high bias,
the low variance of the LDA estimates of class posterior
probabilities often results in low classification error (see
discussion of bias—variance trade—off).




Linear and quadratic discriminant analysis

However, LDA has a number of obvious limitations which are due

in part to its simplicity.

e Linear or even quadratic discriminant boundaries may not be

flexible enough.
e Features may have mixture distributions within classes.

e In the case of too many features, performance may degrade

rapidly due to over—parameterization and high variance of

parameter estimates.




Extensions to LDA

Ripley (1996) and Hastie et al. (2001) discuss various extensions to
LDA to address these issues.

Flexible discriminant analysis, FDA. Viewing LDA as a
linear regression problem, suggests considering more general
non—parametric forms of regression for building a more flexible

classifier. FDA amounts to performing LDA on transformed

responses and/or features. See logistic discrimination.

Penalized discriminant analysis, PDA. A penalized
Mahalanobis distance is used to enforce smoothness of the
within—class covariance matrix of the features (possibly
transformed as in FDA).




Extensions to LDA

Mixture discriminant analysis, MDA. Class conditional
densities are modeled as mixtures of Gaussian densities, with
different mean vectors but the same covariance matrices. The
EM algorithm may be used for maximum likelihood estimation

of the parameters of the Gaussian components.

Automatic feature selection. Shrinkage methods can be
applied to perform automatic feature selection. For example,

the class mean vectors can be shrunken using matrices of

between—groups and within—groups sums of squares.

Parameters controlling the amount of shrinking can be selected

by cross—validation.




Logistic discrimination

For Gaussian class conditional densities with common covariance
matrix (and other models)

log p(k|x) —log p(1|x) = o + X[

This suggests modeling log p(k|x) — log p(1|x) more generally by
some parametric family of functions, say gr(x;60) (with

g1(x;60) = 0). Estimates of the class posterior probabilities are then
given by

exp g (x; 6)
>, exp gi(x;0)

plklx) =

Classification is done by the (estimated) Bayes rule, i.e.,
C(x; L) = argmax,;, p(k|x).




Logistic discrimination

In the machine learning literature the function expay/ ), expa; is

known as the softmax function, in the earlier statistical literature,

it is known as the multiple logit function.

In the linear case, one takes gr(x;60) = ay + x0%.

Logistic regression models are typically fit by maximum likelihood,
using a Newton—Raphson algorithm known as iteratively
reweighted least squares (IRLS).

Logistic discrimination provides a more direct way of estimating
posterior probabilities and is easier to generalize than classical
linear discriminant analysis (LDA and QDA), e.g. neural networks.




Nearest neighbor classifiers

Nearest neighbor methods are based on a measure of distance
between observations, such as the Euclidean distance or one minus

the correlation between two gene expression profiles.

The k—nearest neighbor rule, k—ININ, due to Fix and Hodges

(1951), classifies an observation x as follows

1. find the k£ observations in the learning set that are closest to x;

2. predict the class of x by majority vote, i.e., choose the class
that is most common among those k£ neighbors.




Nearest neighbor classifiers

Note that, for a large enough number of neighbors k, k—nearest
neighbor classifiers suggest simple estimates of the class posterior
probabilities: the proportion of votes for each class.

The class posterior probability estimates p(l|x) may be used to

measure confidence for individual predictions.

For k = 1, the nearest neighbor partition of the feature space X
corresponds to the Dirichlet tessellation of the learning set L.

Classifiers with £ = 1 are generally quite successful.




Nearest neighbor classifiers: which k7

In general, the number of neighbors k& can be chosen by
cross—validation.

Each observation in the learning set is treated in turn as if it were
in the test set: its distance to all of the other learning set cases

(except itself) is computed and it is classified by the nearest

neighbor rule.

The classification for each learning set observation is then
compared to the truth to produce the cross—validation error rate.

This is done for a number of k’s and the k for which the

cross—validation error rate is smallest is retained.




Nearest neighbor classifiers

Nearest neighbor classifiers were initially proposed by Fix and
Hodges (1951) as consistent non—parametric estimates of maximum
likelihood discriminant rules.

Non—parametric estimates of the class conditional densities pg(x)

are obtained by first reducing the dimension of the feature space X

from G to one using a distance function.

The proportions of neighbors in each class are then used in place of
the corresponding class conditional densities in the maximum

likelihood discriminant rule.




Extensions of nearest neighbor rule

The nearest neighbor rule can be refined to deal with issues of
unequal class priors, differential misclassification costs, and feature
selection. Many of these refinements involve some form of

weighted voting for the neighbors.

Class priors. Suppose the class prior probabilities m; are known
and the learning set class proportions 7; = n;/n are different from
the m [-

— Votes may be weighted according to neighbor class, w; = m;/n;.

— The distance to class [ cases may be weighted by (n; /7)< for a

G—dimensional feature space (Brown & Koplowitz, 1979).




Extensions of nearest neighbor rule

Distance weights. The standard k-nearest neighbor rule equally
weights all k£ neighbors, regardless of their distance from the test
case. A more sensitive rule may be obtained by assigning weights
to the neighbors that are inversely proportional to their distance

from the test sample — somewhat controversial.

Differential misclassification costs. The minimum vote
majority may be adjusted based on the class to be called. This
corresponds to weighted voting by the neighbors, where weights are

suggested by equation (1).

E.g. When L(h,l) = LyI(h # 1), the weights are given by w; = L.




Extensions of nearest neighbor rule

Feature selection. One of the most important issues in k—nearest
neighbor classification is the choice of a distance function and the
selection of relevant features.

For instance, in the context of gene expression data, a large number
of genes are constantly expressed across classes, thus resulting in a

large number of irrelevant or noise variables. Inclusion of features

with little or no relevance can substantially degrade the
performance of the classifier.

Feature selection may be implemented automatically, by modifying
the distance function used by the classifier, or by using
classification trees.




Extensions of nearest neighbor rule

Friedman (1994). Flexible metric nearest neighbor classification
approach in which the relevance of each feature (or linear
combination of features) is estimated locally for each test case. The
proposed procedure, the machette, is a hybrid between classical
nearest neighbor classifiers and tree—structured recursive

partitioning techniques.

Hastie & Tibshirani (1996). In the discriminant adaptive
nearest neighbor procedure, DANN, the distance function is

based on local discriminant information.




Extensions of nearest neighbor rule

Buttrey & Karo (2002). Hybrid or composite classifier,
k—NN-in—leaf, which partitions the feature space using a
classification tree and classifies test set cases using a standard
k—nearest neighbor rule using only training cases in the same leaf
as the test case.

Each k—NN classifier may have a different number of neighbors k, a

different set of feature variables, and a different choice of scaling.

The k—NN-in—leaf classifier differs from Friedman’s machette in

that only one tree is ever grown.




Classification trees

Binary tree structured classifiers are constructed by repeated
splits of subsets (nodes) of the measurement space X into two
descendant subsets, starting with X itself. Each terminal subset is
assigned a class label and the resulting partition of X’ corresponds
to the classifier.

Three main aspects of tree construction: (i) the selection of the
splits; (ii) the decision to declare a node terminal or to continue
splitting; (iii) the assignment of each terminal node to a class.

Different tree classifiers use different approaches to deal with these
three issues. Here, we use CART — Classification And

Regression Trees — of Breiman et al. (1984).




Classification trees

1. Splitting rule. At each node, choose the split that maximizes the
decrease in impurity.
E.g. of impurity functions:

Gini index ¢(p1,...,px) =2 4 PP = 1 — 3, Pk,
entropy, and twoing rule.

. Split—stopping rule. Grow a large tree, selectively prune the tree
upward, getting a decreasing sequence of subtrees. Use
cross—validation to identify the subtree having the lowest

estimated misclassification rate.

. Class assignment rule. For each terminal node, choose the class
that minimizes the resubstitution estimate of the misclassification

probability, given that a case falls into this node.

Refinements: class priors, loss function, splits based on linear

combinations of variables, missing values (surrogate splits).




Support vector machines

Support vector machines, SVM, were introduced by Vapnik
(1979, 1998).

For binary classification (-1 vs. 1), the main idea is to find the best

hyperplane w - x + b = 0 separating the classes in the learning set.

What is best? Maximize the margin, i.e., the sum of the distances
from the hyperplane to the closest positive and negative correctly
classified samples, while penalizing for the number of
misclassifications.

One can search for the hyperplane in the original space, linear
SV Ms, or in a higher—dimensional space, non—linear SV Ms.




Support vector machines

When the optimization problem is reformulated in terms of
Lagrangians, the feature vectors x only appear in the objective
function via dot products x; - x;.

For a cost parameter C, building the classifier involves maximizing
the dual

Lp = ZO@ — % Z@i@jyiiji - X
1 1,7

subject to 0 < a; < C and ) . a;y; = 0, Vi. The solution is given
by

where Ng is the number of support vectors.




Support vector machines

In many situations it is useful to consider non—linear (in x)
decision functions or class boundaries. Mapping the data into
higher dimensional spaces and then reducing the problem to the
linear case leads to a simple solution.

Suppose the data are mapped from RY to H using ®(-), then the

training algorithm depends on the data only through the dot
product ®(x;) - P(x;).

If there is a kernel function K such that
K(x3,%5) = ®(x;) - P(x;), then one does not even need to know
®d(-) explicitly.




Support vector machines

User—specified parameters for the SVM C—classification method:
the type of kernel K, i.e., non—linear transformation of the original
data, and the cost parameter C' for misclassifications when the
training data are non—separable in the transformed space.

Classifier Kernel

Polynomial of degree p Kx,y)=(x-y+1)?
Gaussian radial basis function (RBF) K(x,y) = exp(—||x — y||?/20°)

Two—layer sigmoidal neural network  K(x,y) = arctan(kx -y — d)

SVMs are designed for binary outcomes. They can be generalized
to multiclass problems by solving several binary problems

simultaneously (see below).




Classifier partitions

The following figures compare the partitions produced by different
classifiers: LDA, QDA, kNN, and CART.

The classifiers were applied to the brain tumor MD survival dataset

of Pomeroy et al. (2002) using only the two genes with the largest

absolute t—statistics.

Predicted responses “survivor” and “non—survivor” are indicated

by shades of red and blue, respectively.

The entire learning set of n = 60 samples was used to build the
classifiers, the resubstitution error rate is shown below the plots.




Example: Linear discriminant analysis

Resubsitution error = 0.22

Figure 1: Brain tumor MD survival dataset. LDA partition for the

two genes with the largest absolute t—statistics.




Example: Quadratic discriminant analysis

Resubsitution error = 0.22

Figure 2: Brain tumor MD survival dataset. QDA partition for the

two genes with the largest absolute t—statistics.




Example: Nearest neighbor classifier

-1.0 -05 0.0 0.5 1.0

-1.0 -05 0.0 0.5 1.0

Figure 3: Brain tumor MD survival dataset. k—NN partitions (k =

1, 3, 5, 11) for the two genes with the largest absolute t—statistics




Example: Classification tree

i

i+

ﬁ
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ﬁ
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1

Genel
Resubsitution error = 0.18

Figure 4: Brain tumor MD survival dataset. CART (10—fold CV)
partition for the two genes with the largest absolute t—statistics.




Example: Classification tree

Genel<c,

Figure 5: Brain tumor MD survival dataset. CART (10—fold CV)
partition for the two genes with the largest absolute t—statistics.




Other classifiers

Neural networks;

Learning vector quantization (LVQ);

Bayesian belief networks;

etc.




Feature selection

Feature selection is one of the most important issues in
classification; it is particularly relevant for microarray datasets
with thousands of features, most of which are unlikely to be useful

for classification purposes.

Some classifiers like trees perform automatic feature selection and

are relatively insensitive to the variable selection scheme.

In contrast, standard DA and nearest neighbor classifiers do not

perform feature selection; all variables, whether relevant or not, are

used in building the classifier.




Explicit feature selection

One—gene—at—a—time approaches. Genes are ranked based on
the value of a univariate test statistic such as: t— or F—statistic;
non—parametric Wilcoxon or Kruskal-Wallis statistic; p—value.

Possible meta—parameters include the number of genes GG or a

p—value cut—off. A formal choice of these parameters may be

achieved by cross—validation or bootstrap procedures.




Explicit feature selection

Multivariate approaches. More refined feature selection
procedures consider the joint distribution of the expression
measures, in order to detect genes with weak main effects but

possibly strong interactions.

Bo & Jonassen (2002): subset selection procedures for screening
gene pairs to be used in classification.

Breiman (1999): select genes according to importance statistics

which are defined in terms of prediction accuracy (see random

forests below).




Implicit feature selection

Feature selection may also be performed implicitly by the classification

rule itself.

In classification trees, features are selected at each step based on
reduction in impurity and the number of features used (or size of the
tree) is determined by pruning the tree using cross—validation. Thus,
feature selection is an inherent part of tree building and pruning deals

with the issue of over—fitting.

Shrinkage methods and adaptive distance functions may be used for

linear discriminant analysis and nearest neighbor classification.




Feature selection and performance assessment

The importance of taking feature selection into account when assessing

the performance of the classifier cannot be stressed enough.

Feature selection is an aspect of building the classifier, whether done

explicitly or implicitly.

Thus, when using for example cross—validation to estimate generalization
error, feature selection should be done not on the entire learning set, but

separately for each cross—validation sample used to build the classifier.

Leaving out feature selection from cross—validation or other
resampling—based performance assessment method results in overly

optimistic error rates.




Distance and standardization

See lecture “Distances and expression measures” for more detail.

Both the distance function and the scale the observations are
measured in can have a large impact on the performance of the
classifier, however, the effect varies depending on the classifier.

The choice of transformation and distance function should thus be

made jointly and in conjunction with the choice of classifier.




Distance and standardization

Classification trees. Trees are invariant under monotone
transformations of individual features (genes), e.g. standardization.

They are not invariant to standardization of the observations

(normalization in the microarray context).

Linear and quadratic discriminant analysis. Based on the
Mahalanobis distance of the observations from the class means. Thus,
the classifiers are invariant to standardization of the variables (genes),

but not the observations (arrays).

Nearest neighbor classifiers. One must explicitly decide on an
appropriate standardization and distance function for the problem under
consideration. These classifiers are in general affected by standardization

of both features and observations.




Loss function

In many diagnosis settings, the loss incurred from misclassifying a

diseased (d) person as healthy (h) far outweighs the loss incurred

by making the error of classifying a healthy person as diseased.

These differential misclassification costs should be reflected in the

loss function.

Suppose the loss from the first error is e > 1 times higher than that
from the second. In the case of the Bayes rule, one could modify
the posterior probability cut—offs and classify a patient as diseased
if p(d | x) > c=1/(1+ e). Such a classifier would minimize the
risk for the loss function L(d,h) = eL(h,d).




Unequal sample class representation

In many situations, such as medical diagnosis, the representation of
the classes in the learning set does not reflect their importance in
the problem.

For example, in a binary classification problem with a rare disease
class (d) and a common healthy class (h), a learning set obtained
by random sampling from the population would contain a vast
majority of healthy cases.

Unequal class sample sizes could possibly lead to serious biases in

the estimation of posterior probabilities p(d | x) and p(h | x).




Unequal sample class representation

Consider the case of linear discriminant analysis which assumes a
common covariance matrix estimated using both samples. The
pooled estimate of the covariance matrix will be dominated by the

more abundant sample.

This is fine if the covariance matrix is really the same for both

classes. However, in the case of unequal covariance matrices, the

bias in estimating class posterior probabilities p(k | x) is more

severe when the classes are unequally represented in the learning

set.




Biased sampling of classes

Approaches to alleviate estimation biases

e Subsample the abundant population so that both classes are on
an equal footing in the parameter estimation.

Problem: this would be wasteful of training data.

e Downweight cases from the abundant class so that the sum of
the weights is equal to the number of cases in the less abundant

class.

e Obtain less biased estimates of the class posterior probabilities,

either by theory (as can be done for LDA) or via bias reduction

techniques such as the jackknife.




Biased sampling of classes

Downweighting and subsampling are helpful in dealing with the
estimation bias for densities pi(x), however they effectively make
the sample proportions differ from the population proportions. This
leads to biased estimates of the class posterior probabilities p(k|x).

The plug—in estimators of class posterior probabilities are in fact

estimating quantities proportional to p(k | x)nk /7.

Adjustment is thus required to ensure that estimators of the class
posterior probabilities p(k | x) are approximately unbiased.

This can be done by specifying appropriate priors for DA and
CART, and by using weighted voting for nearest neighbors.




Polychotomous classification

It may be advantageous to convert a polychotomous or K—class
classification problem into a series of binary or two—class problems
(e.g. for a large number of classes with unequal representation in
the learning set).

e All pairwise binary classification problems. Consider all

(12{ ) binary classification problems; the final predicted class is

the class that is selected most often as the predicted class or

K

0 ) decisions.

winner in the (

e One—against—all binary classification problems.
Application of K binary rules to a test case x yields estimates
of class probabilities; the final K—class decision rule selects the

class with largest estimated posterior probability.




Missing data

Some classifiers are able to handle missing values by performing
automatic imputation (e.g. trees), while others either ignore

missing data or require imputed data (e.g. LDA).

Classification trees can readily handle missing values through the
use of surrogate splits, i.e., splits that are most similar to the

best split at a particular node.

For microarray data, simple weighted nearest neighbor
imputation was found to provide accurate and robust estimates of

missing values (Troyanskaya et al., 2001).




Performance assessment

Virtually every application of classification methods to microarray

data includes some discussion of the performance of the classifier(s).

The ability to predict biological outcomes using gene expression
measures is usually evaluated based on estimates of the
classification error.

The reported error rates are often biased downward and give an

overly optimistic view of the predictive power of expression data.

Obtaining accurate or honest estimates of classification error is a

very important and delicate problem.




Performance assessment

1. Resubstitution estimation. Error rate on the learning set.

Problem: can be severely biased downward.

. Test set estimation. In the absence of a genuine test set,
cases in the learning set £ may be repeatedly randomly divided
into two sets, £1 and Lo; the classifier is built using £; and the

error rate is computed for Lo.

Problem: reduces effective sample size; no widely accepted

guidelines for choosing the relative size of these artificial

learning sets and test sets.




Performance assessment

3. V—fold cross—validation (CV) estimation.

Cases in the learning set £ are randomly divided into V
subsets £,, v =1,...,V, of as nearly equal size as possible.
Classifiers are built on learning sets £ — L, test set error rates

are computed for £,, and averaged over v.

Bias—variance trade—off: small Vs typically give a larger bias,

but a smaller variance and mean squared error.




Performance assessment

4. Leave—one—out cross—validation (LOOCYV). Special case
for V =n.

— In general low bias but high variance.

— For stable (low variance) classifiers such as kNN, LOOCV
provides good estimates of generalization error rates.

— Computationally intensive for large n.

5. Out—of—bag estimation. See discussion of random forests
below.




Performance assessment

The use of cross—validation (or any other estimation method) is
intended to provide accurate estimates of classification error rates.

It is important to note that these estimates relate only to the

experiment that was (cross—) validated.

There is a common practice in microarray classification of doing
feature selection using all of the learning set and then using
cross—validation only on the classifier building portion of the
process.

In that case, inference can only be applied to the latter portion of
the process.




Performance assessment

However, in most cases, the important features are unknown and

the intended inference includes feature selection.

Then, CV estimates as above tend to suffer from a downward

bias and inference is not warranted.

Features should be selected only on the basis of the samples in
L — L, for CV estimation.




Performance assessment

The above remarks apply to other error rate estimation methods.
E.g. test set and out—of—bag estimation.

They also apply to other aspects of the classifier training process.

E.g. choice of the number of neighbors k for &~-NN, choice of kernel
K and cost parameter C' in SVMs.




Performance assessment

In the case of unequal representation of the classes, some form of
stratified sampling may be needed to ensure balance across
important classes in all subsamples.

In addition, for complex experimental designs, such as factorial or

time—course designs, the resampling mechanisms used for

computational inference should reflect the design of the experiment.




Bias, variance, and error rates

The random nature of the learning set £ implies that for any
realization x of the feature vector, the predicted class Y = C(x; £)

is a random variable.

Intuitively, for a fixed value of the feature vector x, as the learning

set varies, so will the predicted class Y = C(x; L£).

It is thus meaningful and instructive to consider distributional
properties (e.g. bias and variance) of classifiers when assessing and
comparing the performance of different classifiers.




Bias, variance, and error rates

For simplicity, consider binary classification, i.e., K = 2 and
Y € {—1,1}, and let f(x) = p(1|x) = p(Y = 1|X = x) denote the
posterior probability for class 1.

Consider predicted classes C(x; £) based on estimates f(x; L) of the
class posterior probabilities f(x).

Denote the mean and variance of the estimators f(x; L) by

Mx =




Bias and variance — Estimation error

The mean squared estimation error, averaged over learning

sets L, is

MSEy E[(f(x;£) = f(x))?]

Variance + Bias®.

Recall again that here x is fixed and the randomness comes from
the learning set L.




Bias and variance — Classification error

Now consider the effect of jx and o2 on classification error
(Friedman, 1996). The Bayes rule is fixed and independent of L,
and for binary classification problems it is given by

1, if f(x) >1/2
~1, if f(x)<1/2




Bias and variance — Classification error

The classification error is

p(VAY|X=x) = pf =—1X=x)p(Y =1]X = x)

+p(Y =1|X =x)p(Y = —1|X = x)

p(Y = —1|X = x)f(x) + p(Y = 1|X = x)(1 — f(x))
2f(x) — 1lp(Y # ys|X =x) + p(Y # y5|X = x)

Estimation error + Bayes error rate. (3)




Bias and variance — Classification error

Following Friedman (1996), use a normal approximation for the
distribution of f Then

1/2_"Mx>’

Ox

Y # ylX =) = @ (sign(7x) ~ 1/2)

where ®(-) is the standard normal cdf. Hence, the classification

error rate 1s

1/2 —

PV AYX=x) = [27(x) 1] @ (sign( /() ~ 1/2)

+p(Y # yp|X =x).




Bias, variance, and error rates

Comparlson of equations (2) and (4) shows that moments u, and

o2 of the distribution of f(x; £) have a very different impact on

estimation error (for f(x)) and on classification error.

The bias—variance trade—off is very different for these two types
of error: for estimation error, the dependence on bias and
variance is additive; for classification-error, there is an

interaction effect.

Variance tends to dominate bias for classification error. This
suggests that certain methods with high bias for function
estimation may nonetheless perform well for classification because

of their low variance. E.g. Naive Bayes (DLDA) and nearest neighbors.




Aggregating classifiers

Breiman (1996, 1998) found that gains in accuracy could be
obtained by aggregating predictors built from perturbed
versions of the learning set. In classification, the multiple versions
of the predictor are aggregated by voting.

Let C(+; Lp) denote the classifier built from the bth perturbed
learning set £ and let w;, denote the weight given to predictions
made by this classifier. The predicted class for an observation x is
given by

argmax,, Z wy I(C(x; Ly) = k).
b

Key to improved accuracy: instability of the classifier, i.e., variance.




Bagging

Standard bagging. In the simplest form of bagging — bootstrap
aggregating — perturbed learning sets are non—parametric
bootstrap replicates of the learning set, i.e., are drawn at random
with replacement from the learning set.

Predictors are built for each perturbed dataset and aggregated by

plurality voting (w, = 1).

Parametric bootstrap. Perturbed learning sets can be generated

according to a mixture of multivariate Gaussian distributions.

Convex pseudo—data. Breiman (1996).




Random forests

A random forest is a collection of tree classifiers, where each tree
depends on the value of a random vector, i.i.d. for all trees in the
forest (Breiman, 1999).

¢ Random learning set — bagging. Each tree is formed from
a bootstrap sample of the learning set — the random vector
consists of the outcomes of n draws at random with

replacement from {1,...,n}.

Random features. For a fixed parameter Gy << G (e.g.

V@G), Gy features are randomly selected at each node and only

these are searched through for the best split — the random
vector consists of the outcomes of Gy draws at random without

replacement from {1,...,G}.




Random forests

The above two sources of randomness are combined.

A maximal exploratory tree is grown (pure terminal nodes) for each

bootstrap learning set, and the forest obtains a classification by

plurality voting.

Note that the main ideas in random forests are applicable to other

types of classifiers than trees.




By—products of aggregation

I. Out—of—bag estimate of error rate. No need for CV or test
set estimation of error rate; an unbiased estimate is obtained as a

by—product of the bootstrap.

For each bootstrap sample, about 1/3 of the cases are left out and

not used in the construction of the tree = out—of—bag test set.

For the bth bootstrap sample, put the out—of-bag cases down the
bth tree to get a test set classification. Let the final test set
classification of the forest be the class having the most votes.
Compare this classification to the class labels of the learning set to

get the out—of-bag estimate of the error rate.




By—products of aggregation

II. Case—wise information.

e Prediction votes. The proportions of votes for each class can
be viewed as estimates of the class posterior probabilities
(e [0,1])
The prediction vote for the winning class gives a measure of
confidence for the prediction of individual observations.

Vote margins. Vote margins are defined as the proportion of
votes for the true class minus the maximum of the proportions

of votes for each of the other classes (€ [—1,1]). Low vote

margins may indicate that the corresponding samples are hard
to predict or, in some cases, they may reflect mislabeled

learning set cases.




By—products of aggregation

ITI. Variable importance statistics. Here, variable
importance is defined in terms of the contribution to prediction

accuracy, i.e., predictive power.

For each tree, randomly permute the values of the gth variable for

the out—of—bag cases, put these new covariates down the tree, and

get new classifications for the forest.




By—products of aggregation

The importance of the gth variable can be defined in a number of

ways.

Importance measure 1: the difference between the out—of-bag
error rate for randomly permuted gth variable and the original
out—of—-bag error rate.

Importance measure 2: the average across all cases of the

differences between the margins for the randomly permuted gth
variable and for the original data.

Importance measure 3: the number of lowered margins minus the

number of raised margins.

Importance measure 4: the sum of all decreases in impurity in the

forest due to the gth variable, normalized by number of trees.




By—products of aggregation

e IV. Intrinsic proximities between cases. Proportion of
trees for which cases ¢ and j are in the same terminal node.

— Clustering;

— Multidimensional scaling;

— Outlier detection: 1/(sum of squared proximities of cases in

same class).




Boosting

The data are resampled adaptively so that the weights in the
resampling are increased for those cases most often misclassified.

The aggregation of predictors is done by weighted voting.

AdaBoost — Freund and Schapire (1997), Breiman (1998).

LogitBoost — Friedman et al. (2000), Dettling & Buhlmann (2002).




AdaBoost

1. Inltlalizatlon The resampling probabilities
{p(o), ey P )} are initialized to p( ) = 1/n.

2. AdaBoost iterations. For 1 < b < B

(a) Using the current resampling probabilities
{p(b n =1

Pn }, sample with replacement
from L to get a learning set L; of size n.

Build a classifier C(-; £p) based on Ly.

Run the learning set £ through the classifier
C(-; Lp) and let d; = 1 if the ith case is classified
incorrectly and d; = 0 otherwise.

Define

&b =) p* Vd;  and B =(1- &)/,

and update the resampling probabilities for the
(b + 1)st step by
(b—1) d;
() _ !
v b—1
Y. p ( )51)
(e) In the event that €, > 1/2 or €, = 0, the

resampling probabilities are reset to be equal.

. Final classification. After B steps, the classifiers
C(;L1),...,C(-; L) are aggregated by weighted
voting, with C(-; L) having weight wy = log(0p)-
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Comparison study — classifiers

Linear and quadratic discriminant analysis
— Fisher linear discriminant analysis (FLDA);

— Diagonal linear discriminant analysis (DLDA)

— gene voting scheme of Golub et al. is a variant of DLDA;

— Diagonal quadratic discriminant analysis (DQDA).

Nearest neighbor classifiers.

Classification trees (CART).

SV Ms.
Bagging, boosting, random forests.

N.B. DLDA and DQDA are a.k.a. naive Bayes classifiers.

Ref. Dudoit & Fridlyand (2002), Dudoit et al. (2002).
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Comparison study — datasets

Lymphoma. Alizadeh et al. (2000) (cDNA arrays).
n = 81 samples, G = 4, 682 genes, 3 classes (B—CLL, FL, DLBCL).

Leukemia. Golub et al. (1999) (Affymetrix chips).
n = 72 samples, G = 3,571 genes, 3 classes (B—cell ALL, T—cell
ALL, AML).

INCI 60. Ross et al. (2000) (cDNA arrays).
n = 64 samples, G = 5, 244 genes, 8 classes.

Brain cancer. Pomeroy et al. (2002) (Affymetrix chips).
Classic vs. desmoplastic MD: n = 34 samples, G = 5, 893 genes.

Survivor vs. non—survivor: n = 60 samples, G = 4, 459 genes.

Breast cancer. West et al. (2001) (Affymetrix chips).
ER +ve vs. ER -ve: n = 49 samples, G = 7, 129 genes.
Nodal +ve vs. nodal -ve: n = 49 samples, G = 7, 129 genes.
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Comparison study — results

Simple classifiers such as naive Bayes (DLDA) and k—NN
performed remarkably well compared to more complex ones.

Aggregation improved the performance of unstable classifiers
such as CART.

The impact of gene screening varied depending on the dataset
and classifier. Some screening of the genes down to
G = 10 — 100 seems advisable.

It is essential to take into account gene screening and other

training decisions in error rate estimation procedures.
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Comparison study — discussion

“Diagonal” LDA vs. “correlated” LDA: ignoring

correlation between genes helped here.

Unlike classification trees and nearest neighbors,
LDA is unable to take into account gene

Interactions.

Although nearest neighbors are simple and
intuitive classifiers, their main limitation is that
they give very little insight into mechanisms

underlying the class distinctions.

Classification trees are capable of handling and

revealing interactions between features.

Useful by—product of aggregated classifiers: error
rates, prediction votes, variable importance

statistics.

With larger training sets, we expect an
improvement in the performance of aggregated
classifiers and to gain more insight into the
relationship between tumor class and gene

expression levels.
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Discussion

e As with multiple testing, the strong interest in classification in

microarray experiments has resulted in
— lots of papers;
— old methods with new names;
— new methods with inadequate or unknown properties;
— a lot of confusion!
e New proposals should be formulated precisely, within the

standard statistical framework, to allow a clear assessment of
the properties of different procedures.

e Honest performance assessment (see also West et al.(2001)).
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Discussion

There are two main goals

e Prediction. Predict biological outcomes for future samples
(tumor class, survival) using a collection of predictor variables

(gene expression measures).

e Information. Extract information about the underlying data
generating mechanism, i.e., on the relationship between

responses and predictor variables.
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Discussion

Data models: High—dimensional data, unknown distribution, many

models will provide similar predictive accuracy.

Accuracy vs. simplicity (interpretability): a predictor does not have
to be simple to provide accurate prediction or reliable information
about the relationship between responses and predictor variables

(e.g. random forests).

Dimensionality: newer classification procedures thrive on the

number of variables, the more the better.

Ref. Breiman (2001)

106



R classification software
class: knn and lvq functions.
e1071: svm function.

ipred: bagging, resampling based estimation of prediction

error:

Log%'Li:Boost: boosting for tree stumps.

MASS% lda, polr, and qda functions.

mlbiei'lch: Machine Learning Benchmark Problems.
Rani*“%)rests: http://oz.berkeley.edu/users/breiman/.

rpart: classification and regression trees.
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