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[ Statistical computing }

Everywhere ...

« Statistical design and analysis:

— Image analysis, normalization, estimation, testing,
clustering, prediction, etc.

* Integration of experimental data with
biological metadata from WWW-resources

— gene annotation (GenBank, LocusLink);
— literature (PubMed);
— graphical (pathways, chromosome maps).



Outline

Overview of the Bioconductor Project.
Introduction to R Programming.

Pre-processing two-color spotted microarray
data

— Image analysis,

— normalization.

Differential gene expression.

Clustering and classification.

Annotation.

Visualization.
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Overview of the
Bioconductor Project



Bioconductor

e Bioconductor is an open source and
open development software project for
the analysis and comprehension of
biomedical and genomic data.

e Software, data, and documentation are
available from



Bioconductor

The project was started in the Fall of 2001 by Robert
Gentleman, at the Biostatistics Unit of the Dana
Farber Cancer Institute.

R and the R package system are used to design and
distribute software ( ).

There are currently 22 core developers, at various
Institutions in the US and Europe.

Releases:

— v 1.0: May 2", 2002, 15 packages.
- v 1.1; November 18™, 2002, 20 packages.
- v 1.2 May 28™", 2003, 30 packages.

ArrayAnalyzer. Commercial port of Bioconductor
packages in S-Plus.



Bioconductor

Mechanisms for facilitating the design and deployment of
portable, extensible, and scalable software.

Support for interoperability with software written in other
languages.

Tools for integrating biological metadata from the WWW
In the analysis of experimental metadata.

Access to a broad range of statistical and numerical
methods.

High-quality visualization and graphics tools that support
Interactivity.

An effective, extensible user interface.

Tools for producing innovative, high-quality
documentation and training materials.

Methodology that supports the creation, testing, and
distribution of software and data modules.



Bioconductor

There are two main classes of packages

 End-user packages:

— aimed at users unfamiliar with R or computer
programming;

— polished and easy to use interfaces to a wide
variety of computational and statistical methods
for the analysis of genomic data.

 Developer packages: aimed at software
developers, in the sense that they provide
software to write software.



Bioconductor packages
Release 1.2, May 28th, 2003

General infrastructure:

Biobase, DynDoc, reposTools, rhdf5, ruuid, tkWidgets,
widgetTools,.

Annotation:

annotate, AnnBui lder - data packages.
Graphics:

geneplotter, hexbin.

Pre-processing for Affymetrix oligonucleotide chip data:
affy, affycomp, affydata, makecdfenv, vsn.

Pre-processing for spotted DNA microarray data:

I 1mma, marrayClasses, marraylnput, marrayNorm, marrayPlots,
marrayTools, vsn.

Differential gene expression:

edd, genefilter, Ilimma, multtest, ROC.
Graphs:

graph, RBGL, Rgraphviz.
SAGE: SAGElyzer.



Ongoing efforts

Variable (feature) selection;

Prediction; | Many methods
Cluster analysis; - already available
Cross-validation: InR.

Multiple testing;

Quality measures for mlcroarray data;

Interactions with MAGE-ML: new MAGEML
package (Durinck & Allemeersch);

Biological sequence analysis;
Etc.



Bioconductor

e Scenario:

— Pre-processing of spotted array data with
marrayNorm.

— List of differentially expressed genes from
multtest, Iimma, or genefilter.

— Use the annotate package

* to retrieve and search PubMed abstracts for these
genes;

* to generate an HTML report with links to LocusLink for
each gene.



Widgets

 Widgets. Small-scale graphical user
interfaces (GUI), providing point & click
access for specific tasks.

 Packages: tkWidgets, widgetTools.
e E.g. File browsing and selection for data
Input, basic analyses:

tkWidgets: dataViewer, fi1leBrowser,
fileWizard, importWizard,
objectBrowser.



Data

e |Ssues:
— complexity;
— Size;
— evolution.

* \We distinguish between biological
metadata and experimental metadata.



Experimental metadata

Gene expression measures
— scanned images, i.e., raw data;
— Image guantitation data, i.e., output from image analysis;

— normalized expression measures, i.e., log ratios M or Affy
measures.

Reliability information for the expression measures.
Information on the probe sequences printed on the
arrays (array layout).

Information on the target samples hybridized to the
arrays.

See Minimum Information About a Microarray
Experiment — MIAME - standards and new MAGEML

package.



Biological metadata

Biological attributes that can be applied to the
experimental data.

E.g. for genes

— chromosomal location;

— gene annotation (LocusLink, GO);

— relevant literature (PubMed).

Biological metadata sources are large,
complex, evolving rapidly, and typically
distributed via the WWW.

Cf. annotate and AnnBui lder packages.



Object-oriented
programming

The Bioconductor project has adopted the object-
oriented programming — OOP — paradigm presented
In J. M. Chambers (1998). Programming with Data.

This object-oriented class/method design allows
efficient representation and manipulation of large and
complex biological datasets of multiple types (cf.
MIAME standards).

Tools for programming using the class/method
mechanism are provided in the R methods

package.
Tutorial:



OOP

A class provides a software abstraction of a
real world object. It reflects how we think of
certain objects and what information these
objects should contain.

Classes are defined in terms of slots which
contain the relevant data.

An object is an instance of a class.

A class defines the structure, inheritance, and
Initialization of objects.



OOP

A method is a function that performs an action on data
(objects).

Methods define how a particular function should behave
depending on the class of its arguments.

Methods allow computations to be adapted to particular
data types, i.e., classes.

A generic function is a dispatcher, it examines its
arguments and determines the appropriate method to
Invoke.

Examples of generic functions include plot,
summary, print.



marrayRaw class

Pre-normalization intensity data for a batch of arrays

maRT maGt Matrix of red and green foreground intensities
maRb maGb Matrix of red and green background intensities
maw Matrix of spot quality weights

( maLayout\ Array layout parameters - marraylLayout

e — Description of spotted probe sequences

\ / - marraylnfo

maTargets Description of target samples - marrayInfo




AfftyBatch class

Probe-level intensity data for a batch of arrays (same CDF)

cdfName

Name of CDF file for arrays in the batch

Nnrow

ncol Dimensions of the array

exprs se.exprs | Matrices of probe-level intensities and SEs

annotation

description

notes

rows - probe cells, columns - arrays.

Sample level covariates, instance of class phenoData
Name of annotation data

MIAME information

Any notes



exprSet class

Matrix of expression measures, genes x samples

Matrix of SEs for expression measures, genes X
samples

Sample level covariates, instance of class phenoData

annotation Name of annotation data

description| . aME information

notes

Any notes




Reading in phenoData

EIEE

Cov 1 [treated

Covaniate Names Description
drug £

Cov 2|gender|

Pheno Data

Array 1 [filel
Array 2 |fileZ

Continue

tkSampTeNames

(=][=][x]
Sample Hames treated gender
TRUE |MA&LE

FALSE

Back Finish

tkphenoData

Experimenter's Mame:

Laboratory:

Contact Information:

Experiment Title:

Experiment Description:

URL:

Exit

tkMIAME



Documentation

Extensive documentation and training resources for R and
Bioconductor are available on the WWW.,

R manuals and tutorials are available from the R website.
R help system

— detailed on-line documentation, available in text, HTML,
PDF, and LaTeX formats:

— e.g. help(genefilter), ?pubmed.
R demo system

— user-friendly interface for running demonstrations of R
scripts;

— e.g. demo(marrayPlots), demo(affy).

Bioconductor short courses

— modular training segments on software and statistical
methodology;

— lectures and computer labs available on WWW for self-
Instruction.



Vignettes

Bioconductor has adopted a new
documentation paradigm, the vignette.

A vignette Is an executable document
consisting of a collection of documentation
text and code chunks.

Vignettes form dynamic, integrated, and
reproducible statistical documents that can be
automatically updated if either data or
analyses are changed.

Vignettes can be Tgenerated using the
Sweave function from the R tools package.



Vignettes

« Each Bioconductor package contains at least
one vignette, located in the doc subdirectory
of an installed package and accessible from
the help browser.

 Vignettes provide task-oriented descriptions
of the package's functionality and can be
used interactively.

* Vignettes are available separately from the
Bioconductor website or as part of the
packages.




Vignettes

e Tools are being developed for
managing and using this repository of
step-by-step tutorials

—Biobase: openVignette — Menu of
available vignettes and interface for
viewing vignettes (PDF).

—tkWirdgets: veExplorer — Interactive use
of vignettes.

—reposTools.



An Introduction to
Programming in the R
Language

adapted from

Course in Practical Microarray
Analysis
Heidelberg 23.-27.9.2002
Wolfgang Huber



R as a Calculator

> log2(32)
[1] 5

> sgrte(2)
[1] 1.414214

> seq(0, 5, length=6)
[1]1 01 2345



> plot(sin(seq(0, 2*p1,

100))

sin(seq(0, 2 * pi, length

10
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Variables

> a = 49
> sqrt(a)
[1] 7

numeric

> a = ""The dog ate my homework"
> sub(''dog","'cat",a) character
[1] "The cat ate my homework* string

> a = (1+1==3)

> a logical
[1] FALSE



Missing Values

Variables of each data type (hnumeric, character, logical)
can also take the value NA: not available.

0 NA is not the same as O

0 NA iIs not the same as “”

0 NA is not the same as FALSE

Any operations (calculations, comparisons) that involve
NA may or may not produce NA:

> NA==1

[1] NA > NA | TRUE
> 1+NA [1] TRUE
[1] NA > NA & TRUE
> max(c(NA, 4, 7)) [1] NA

[1] NA

> max(c(NA, 4, 7), na.rm=T)

[1] 7



Functions and Operators

Functions do things with data
“Input”: function arguments (0,1,2,...)
“Output”: function result (exactly one)

Example:

add = function(a,b) {
result = a+tb
return(result)

}

Operators: Short-cut writing for frequently
used functions of one or two arguments.
Eg..+-*/1&| %%



Vectors

vector: an ordered collection of data of the
same type

>a = c(1,2,3)

> a*2

[1] 2 4 6

Example: the mean spot intensities of all 15488
spots on a chip: a vector of 15488 numbers

In R, a single number is the special case of a
vector with 1 element.

Other vector types: character strings, logical



Matrices and Arrays

maitrix: a rectangular table of data of the same
type

Example: the expression values for 10000
genes for 30 tissue biopsies: a matrix with
10000 rows and 30 columns.

array: 3-,4-,..dimensional matrix

Example: the red and green foreground and
background values for 20000 spots on 120
chips: a4 x 20000 x 120 (3D) array.



Lists

list: an ordered collection of data of arbitrary
types.

Example:

> doe = list(hame=""john",age=28,married=F)
> doe$name

[1] ""john*

> doe$age

[1] 28

Typically, vector elements are accessed by their
Index (an integer), list elements by their name (a
character string). But both types support both
access methods.



Data Frames

data frame: is supposed to represent the typical data
table that researchers come up with — like a
spreadsheet.

It is a rectangular table with rows and columns; data
within each column has the same type (e.g. number,
text, logical), but different columns may have different

types.

Example:
> a

localisation tumorsize progress
XX348 proximal 6.3 FALSE
XX234 distal 8.0 TRUE

XX987 proximal 10.0 FALSE



Subsetting

Individual elements of a vector, matrix, array or data frame are
accessed with “[ ]” by specifying their index, or their name

> a

localisation tumorsize progress
XX348 proximal 6.3 0
XX234 distal 8.0 1
XX987 proximal 10.0 0
> a3, 2]
[1] 10

> a[""™XX987", "tumorsize']
[1] 10

> a[''xXx987",]
localisation tumorsize progress
XX987 proximal 10 0



Example:

subset rows by a
vector of indices

subset rows by a
logical vector

subset a column

comparison resulting

In logical vector

subset the
selected rows

> a

localisation tumorsize progress
XX348 proximal 6.3 0
XX234 distal 8.0 1
XX987 proximal 10.0 o)

> a[c(1,3),]

localisation tumorsize progress
XX348 proximal 6.3 o)
XX987 proximal 10.0 o)

> a[c(T,F,T).]

localisation tumorsize progress
XX348 proximal 6.3 o)
XX987 proximal 10.0 o)

> a$localisation
[1] "proximal'™ "distal™ "proximal™

> a$localisation=="proximal™
[1] TRUE FALSE TRUE

> a[ a$localisation=="proximal™, ]
localisation tumorsize progress

XX348 proximal 6.3 o)

XX987 proximal 10.0 0]



Branching

i1IT (logical expression) {
statements

L

else {
alternative statements

L

else branch is optional



Loops

When the same or similar tasks need to be
performed multiple times; for all elements of a
list; for all columns of an array; etc.

for(rn 1n 1:10) {
print(ir*n)

=1
while(i<=10) {
print(ir*n)
1I=1+sqrt(n)
}



Reqgular Expressions

A tool for text matching and replacement which is available in similar
forms in many programming languages (Perl, Unix shells, Java)

> a = c(""CENP-F","Ly-9", "MLN5O0", "ZNF191', "CLH-17")

> grep('L", a)
[1] 2 3 5

> grep(*'L", a, value=T)
[1] ""Ly-9" “"MLN50" *"‘CLH-17"

> grep("'ML", a, value=T)
[1] "Ly-9"

> grep("[0-9]", a, value=T)
[1] "Ly-9"  “MLN50" "“ZNF191" "CLH-17"

> gsub(C'[0-9]", "X, a)
[1] "CENP-F" "Ly-X" "MLNXX"  "ZNFXXX"™ "CLH-XX"'



Storing Data

Every R object can be stored into and restored
from a file with the commands
“save” and “load”.

This uses the XDR (external data
representation) standard of Sun Microsystems
and others, and is portable between MS-
Windows, Unix, Mac.

> save(x, Ffrle=*x_.Rdata’)
> load(“x.Rdata’)



Importing and Exporting Data

There are many ways to get data into R and out
of R.

Most programs (e.g. Excel), as well as humans,
know how to deal with rectangular tables in the
form of tab-delimited text files.

> X = read.delim(“filename.txt’)
also: read.table, read.csv

> write.table(x, frle="x.txt”,
sep="\t"")



Importing Data: caveats

Type conversions: by default, the read functions try to
guess and autoconvert the data types of the different
columns (e.g. number, factor, character). There are
options as.is and colClasses to control this —read the
online help

Special characters: the delimiter character (space,
comma, tabulator) and the end-of-line character cannot
be part of a data field. To circumvent this, text may be
“quoted”. However, if this option is used (the default),
then the quote characters themselves cannot be part of
a data field. Except if they themselves are within
guotes...

Understand the conventions your input files use and set
the quote options accordingly.



Getting Help

0 Detalls about a specific command whose name
you know (input arguments, options, algorithm,
results):

>7 t.test

>help(t.test)

o HTML search engine lets you search for topics
with regular expressions:

>help.search



Pre-processing Two-color
Spotted Microarray Data




Terminology

Target: DNA hybridized to the array, mobile
Ssubstrate.

Probe: DNA spotted on the array,

aka. spot, immobile substrate.

Sector: collection of spots printed using the same
print-tip (or pin),

aka. print-tip-group, pin-group, spot matrix, grid.
The terms slide and array are often used to refer to
the printed microarray.

Batch: collection of microarrays with the same
probe layout.

Cy5 = Cyanine 5 = red dye.



RGB overlay of Cy3 and Cy5 images

Probe

4 X 4 sectors
19 x 21 probes/sectol
6,384 probes/array

Sector




Raw data

« Pairs of 16-bit TIFFs, one for each dye.
 E.g. Human cDNA arrays:
— ~43K spots;
— ~ 20Mb per channel;
—~ 2,000 x 5,500 pixels per image;
— Spot separation: ~ 136um.
 For a “typical” array, the spot area has
— mean = 43 pixels,
— med = 32 pixels,
— SD = 26 pixels.



Image analysis




Image analysis

 The raw data from a cDNA microarray
experiment consist of pairs of image files, 16-
bit TIFFs, one for each of the dyes.

* Image analysis Is required to extract
measures of the red and green fluorescence
iIntensities, R and -, for each spot on the
array.



Image analysis A

1. Addressing. Estimate location
of spot centers.

2. Segmentation. Classify pixels as [[IeURANELENL S0 AN,
foreground (signal) or background.

TR | I B

3. Information extraction. For » B A T 3
each spot on the array and each
dye & - 8 &
 foreground intensities;
e background intensities; R and G for each

o quallty measures. I Spot on the array_



Segmentation

Adaptive segmentation, SRG Fixed circle segmentation

Spots usually vary in size and shape.



Seeded region growing

Adaptive segmentation method.

Requires the input of seeds, either individual
pixels or groups of pixels, which control the
formation of the regions into which the image will
be segmented.

Here, based on fitted foreground and background
grids from the addressing step.

The decision to add a pixel to a region is based on
the absolute gray-level difference of that pixel’'s
Intensity and the average of the pixel values in the
neighboring region.

Done on combined red and green images.

Ref. Adams & Bischof (1994)



Local background

---- GenePix

---- QuantArray

---- ScanAnalyze



Morphological opening

The image is probed with a structuring element,
here, a square with side length about twice the
spot-to-spot distance.

Erosion (Dilation): the eroded (dilated) value at a
pixel x is the minimum (maximum) value of the
Image in the window defined by the structuring
element when its origin Is at x.

Morphological opening: erosion followed by
dilation.

Done separately for the red and green images.

Produces an image of the estimated background
for the entire slide.



Background matters

Morphological opening Local background

|
0

M=logJR -log,G vs. A =(log,R +10g,G)/2



Quality measures

e Spot quality
— Brightness: foreground/background ratio;

— Uniformity: variation in pixel intensities and ratios of
Intensities within a spot;

— Morphology: area, perimeter, circularity.
e Slide quality

— Percentage of spots with no signal,

— Range of intensities;

— Distribution of spot signal area, etc.

 How to use quality measures in subsequent
analyses?



Spot iImage analysis software

Software package Spot, built on the R language and
environment for statistical computing and graphics.

Batch automatic addressing.

Segmentation. Seeded region growing (Adams &
Bischof 1994). adaptive segmentation method, no
restriction on the size or shape of the spots.

Information extraction
— Foreground. Mean of pixel intensities within a spot.

— Background. Morphological opening: non-linear filter
which generates an image of the estimated background
Intensity for the entire slide.

Spot quality measures.



Normalization




Normalization

 After image processing, we have measures of
the red and green fluorescence intensities, R
and -, for each spot on the array.

 Normalization is needed to ensure that
differences in intensities are indeed due to
differential expression, and not some printing,
hybridization, or scanning artifact.

 Normalization Is necessary before any analysis
which involves within or between slides
comparisons of intensities, e.g., clustering,
testing.



Normalization

 |dentify and remove the effects of systematic
variation in the measured fluorescence
Intensities, other than differential expression,

for example
— different labeling efficiencies of the dyes;
— different amounts of Cy3- and Cy5-labeled
MRNA;
— different scanning parameters;
— print-tip, spatial, time-of-printing, or plate
effects, etc.



Normalization

« Within-slide normalization: Correct for
systematic differences in intensities between
co-hybridized samples.

— Location normalization - additive on log-scale.

— Scale normalization - multiplicative on log-scale.

— Which spots to use?

— Paired-slides (dye-swap experiments): self-
normalization.

 Between-slides normalization: Correct for
systematic differences in intensities between
samples hybridized to different slides.



Normalization

 Two-channel normalization: normalization of
log-ratios.
— For analysis of relative expression levels, e.g.,

gene expressed at a higher level in target sample
A than in sample B.

o Single-channel normalization: normalization
of individual red and green log-intensities.

— For analysis of absolute expression levels, e.qg.,
testing for expression or lack thereof of certain
genes in a target sample A.

— Two-channel within-slide normalization followed
by between-slides normalization, cf. normalization
methods for Affymetrix data.



Normalization

 The need for normalization can be seen most
clearly in self-self hybridizations, where the
same mMRNA sample is labeled with the Cy3
and Cy5 dyes.

 The imbalance In the red and green
intensities is usually not constant across the
spots within and between arrays, and can
vary according to overall spot intensity,
location, plate origin, etc.

e These factors should be considered in the
normalization.



Single-slide data display

e Usually: Rvs. G
log,R vs. log,G.
e Preferred
M =log,R -109,G
vs. A =(log,R +10g,G)/2.

 An MA-plot amounts to a 45°
counterclockwise rotation of a

log,R vs. 10g,G plot followed by scaling.



log_2 R

Self-self hybridization

log, Rvs. log, G

log_2 R =lo0g_2 &

log_2 B = log_2 G + median of log_2(R/G)
— L Owwess it l0G_2 R vs log_2 G

Mvs. A

M =log,R

log_2 G

m— LOwess it b4 v A

M =0
k= median of M

-log,G, A =(log,R +10g,G)/2




Self-self hybridization

—_— (1,1] —- (1.2
_— (21)] = (2,2)
ol

Robust local regression
within sectors
(print-tip-groups)

of intensity log-ratio M
on average log-intensity
A.

5 10 12 14 M — Iong _ |ngG’
A = (log,R +109,G)/2



Diagnostic plots

« RGB overlay of Cy3 and Cy5 images.
e Diagnostics plots of spot statistics,

e.g. red and green log-intensities, intensity log-
ratios M, average log-intensities A, spot area
— Boxplots, dotplots;
— 2D spatial images;
— Scatter-plots, e.g., MA-plots;
— Histograms/density plots.

« Stratify plots according to layout
parameters, e.g., print-tip-group, plate,
time-of-printing.



Boxplots by print-tip-group

Swirl 93 array: pre—normalization log-ratio M
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Intensity

log-ratio, M

PrintTip

Print-tip effect



Boxplots by plate

Swirl 93 array: pre-normalization log-ratio M
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Boxplots by array

Intensity

:
L.
log-ratio, M _ l
-
T

IR
I?{

Array effect

a1 8l 93

Array



MA-plot by print-tip-group

Swirl 93 array: pre-normalization log ratio M
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2D spatial images

Swirl 93 array: Cy3 background
1 2 3 4
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Intensity
log-ratio, M

2D spatial images

Swirl 93 array: pre—normalization log-ratio M
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L ocation normalization

log,R/IG < log,R/G — L(intensity, sector, ...)

e Constant normalization. Normalization
function L Is constant across the spots.

E.g. mean or median of the log-ratios M, or
sum R/sum G.

o Adaptive normalization. Normalization
function L depends on a number of
explanatory variables, such as spot intensity
A, sector, plate origin.



L ocation normalization

 The normalization function can be obtained
by robust locally weighted regression of the
log-ratios M on explanatory variables.

E.g. regression of M on A within sector.

 E.g. lowess (LOcally WEighted Scatterplot
Smoothing) or loess (Cleveland, 1979; Cleveland
& Devlin, 1988).



L ocation normalization

Intensity-dependent normalization.

Regression of M on A (global loess).

Intensity and sector-dependent normalization.
Same as above, for each sector separately
(within-print-tip-group loess).

2D spatial normalization.

Regression of M on 2D-coordinates.

Other variables: time-of-printing, plate, etc.

Composite normalization. Weighted average of
several normalization functions.



2D Images of L values

Swirl 33 array: global median normalization value Swirl 93 array: global loess normalization value
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2D Images of normalized M-L

Swirl 93 array: global median normalization log-ratio M Swirl 93 array: global loess normalization log-ratio M
1 H 3 4 1 z 4

3

Global median
normalization

-2 Global loess
normalization

irl 93 array: within—print-tip—group loess normalization log-ra Swirl 93 array: 2D spatial loess normalization log-ratio M

1 H 3 4 1 z 3 4
]
- 24

2D spatial

— 1.3

Within-print-tip- : normalization

group loess
normalization

— 02z
— -0.33

— -0.43




Boxplots of normalized M-L

Swirl 93 array: global loess normalization log-ratio i

Swirl 93 array: global median normalization log-ratio kM
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Swirl 93 array: 2D spatial loess normalization log-ratio i

Swirl 93 array: within—print-tip—group loess normalization log-ratio
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MA-plots of normalized M-L

Swirl 93 array: global median normalization log-ratio kM Swirl 93 array: global loess normalization log-ratio i
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Scale normalization

 The log-ratios M from different sectors,

plates, or arrays may exhibit different spreads
and some scale adjustment may be
necessary.

log,R/IG & (log,R/G —-L)/S

e Can use a robust estimate of scale such as
the median absolute deviation (MAD)

MAD = median | M — median(M) |.



Scale normalization

* For print-tip-group scale normalization,
assume all print-tip-groups have the same
spread in M.

 Denote true and observed log-ratio by ;
and My, resp., where M; = a; ;, and 1 Indexes
print-tip-groups and | spots. Robust estimate
of & is 5 ___ MAD,

'\/Hi':1 MAD
where MAD;is MAD of M; in print-tip-group 1.

o Similarly for between-slides scale

normalization.




Which genes to use?

« All spots on the array:
— Problem when many genes are differentially expressed.

« Housekeeping genes: Genes that are thought to
pe constantly expressed across a wide range of
niological samples (e.qg. tubulin, GAPDH).
Problems:

— sample specific biases (genes are actually regulated),

— do not cover intensity range.
 Spiked controls: e.g. plant genes.




Which genes to use?

e Genomic DNA titration series:
— fine In yeast,

— but weak signal for higher organisms with
high intron/exon ratio (e.g.,mouse, human).

« Rank invariant set (Schadt et al., 1999;
Tseng et al., 2001): genes with same rank In
both channels. Problems: set can be small.



Microarray sample pool

Collaboration with Ngai Lab, UC Berkeley,
Ref. Yang et al. (2002).

Microarray Sample Pool, MSP: Control
sample for normalization, in particular, when
It IS not safe to assume most genes are
equally expressed in both channels.

MSP: pooled all 18,816 ESTs from RIKEN
release 1 cDNA mouse library.

Six-step dilution series of the MSP.

MSP samples were spotted in middle of first
and last row of each sector.



Microarray sample pool

MSP control spots

provide potential probes for every target
sequence,

are constantly expressed across a wide
range of biological samples;

cover the intensity range;

are similar to genomic DNA, but without intron
sequences - better signal than genomic
DNA in organisms with high intron/exon ratio;

can be used in composite normalization.



-3

Microarray sample pool

Tubulin, GAPDH




Dye-swap experiment

Probes

— 50 distinct clones thought to be
differentially expressed in apo Al knock-out
mice compared to inbred C57BI/6 control
mice (largest absolute t-statistics in a
previous experiment).

— 72 other clones.
Spot each clone 8 times .

Two hybridizations with dye-swap:
Slide 1: trt — red,
Slide 2: ctl — red.



Dye-swap experiment




Self-normalization
 Slide 1, M =log, (R/G) - L

Combine by subtracting the normalized log-ratios:
M —
= [(log, (R/G) - L) - 1/2
~ [ log, (R/G) + 1/2
~ [log, (RG'/GR’)]/2
provided L= L".

Assumption: the normalization functions are the
same for the two slides.



-1

ecking the assumption

MA-plot for slides 1 and 2




Result of self-normalization

(M-M)/2vs. (A+A")2
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Pre-processing software

e afty: Affymetrix oligonucleotide chips.
e marray, Iimma: Spotted DNA microarrays.

e vsn: Variance stabilization for both types of
arrays.

— Reading In intensity data, diagnostic plots,
normalization, computation of expression
measures.

— The packages start with very different data

types, but produce similar objects of class
exprSet.

— One can then use other Bioconductor
packages, e.g., genefilter,
geneplotter.



marray packages

Image

guantitation —> Class marrayRaw
data, ¢

e.g. .gpr, .Spot, .gal

maNorm
maNormMain
maNormScale

'

Class marrayNorm

i as(swirl_norm, "exprSet')

Class exprSet

Save data to file using write.exprs or continue
analysis using other Bioconductor packages



aftfty package

CEL and CODF =P Class AffyBatch

files i

rma
expresso
express

'

Class exprSet

Save data to file using write.exprs or continue
analysis using other Bioconductor packages



marray:. Pre-processing
spotted DNA microarray data

marrayClasses:

— class definitions for spotted DNA microarray data (cf. MIAME);

— basic methods for manipulating microarray objects: printing,
plotting, subsetting, class conversions, etc.

marray Input:

— reading in intensity data and textual data describing probes and
targets;

— automatic generation of microarray data objects;
— widgets for point & click interface.

marrayP lots: diagnostic plots.

marrayNorm: robust adaptive location and scale normalization
procedures.

marrayTools: miscellaneous tools for functional genomics
cores facilities at UCB and UCSF.



marraylLayout class

Array layout parameters

maNspots Total number of spots
maNgr | | maNgc Dimensions of grid matrix
maNsr | | maNsc Dimensions of spot matrices
maSub Current subset of spots
maP late

Plate IDs for each spot

maControls Control status labels for each spot

maNotes Any notes




marrayRaw class

Pre-normalization intensity data for a batch of arrays

maRT maGt Matrix of red and green foreground intensities
maRb maGb Matrix of red and green background intensities
maw Matrix of spot quality weights

( maLayout\ Array layout parameters - marraylLayout

e — Description of spotted probe sequences

\ / - marraylnfo

maTargets Description of target samples - marrayInfo




marrayNorm class

Post-normalization intensity data for a batch of arrays

maA

maM

maMloc

maMscale

maW

Va

S

~N

maLayout

Ve

G

~N

maGnames

J/

maTargets

maNormCall

maNotes

Matrix of average log intensities, A

Matrix of normalized intensity log ratios, M
Matrix of location and scale normalization values
Matrix of spot quality weights

Array layout parameters - marraylLayout

Description of spotted probe sequences
- marraylnfo
Description of target samples - marrayInfo

Function call

Any notes



marraylnput package

e marraylnput provides functions for reading

microarray data into R and creating microarray
objects of class marraylLayout, marraylInfo, and

marrayRaw.
Input

— Image gquantitation data, i.e., output files from
Image analysis software.

E.g. .gpr for GeneP1i1Xx, .spot for Spot.

— Textual description of probe sequences and target
samples.

E.g. gal files, god lists.



marraylnput package

1ol
* Widgets for graphical user

i nte rface Mame of the marrapRaw objeck:

Iswir|

Foreground and background intensities

W I d g et - ma r rayLayO Ut1 Green Fareground | Grean Green Background | morphiG
- Fed Foreground |Rmean Fed Background |morphBA
widget.marraylnfo, weights
= Layowit;
widget.marrayRaw.
Iswirl.la_l,lnut Browze
T arget |nfarmatiorn:
Iswirl.samples Browge
Gene |nfarmation;
Iswirl.gnames Browge

Motes:

Layout | Target | Genes | Build | Cluit




marrayPlots package

« See demo(marrayPlots).

« Diagnostic plots of spot statistics.

E.g. red and green log intensities, intensity log
ratios M, average log intensities A, spot area.

— malmage: 2D spatial color images.

— maBoxplot: boxplots.

— maP lot: scatter-plots with fitted curves and
text highlighted.

« Stratify plots according to layout
parameters such as print-tip-group, plate.

E.g. MA-plots with loess fits by print-tip-
group.



2D spatial images
malmage
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Boxplots by print-tip-group
maBoxplot

Swirl 93 array: pre—normalization log-ratio M
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MA-plot by print-tip-group

maPlot
M=log,R -log,Gvs. A =(log,R +10g,G)/2

Swirl 93 array: pre—normalization log-ratio M Swirl 93 array: pre-normalization log ratio M
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marrayNorm package

e maNormMain: main normalization function,
allows robust adaptive location and scale
normalization for a batch of arrays

— Intensity or A-dependent location normalization
(maNormLoess);

— 2D spatial location normalization (maNorm2D);
— median location normalization (maNormMed);
— scale normalization using MAD (maNormMAD);
— composite normalization;
— your own normalization function.

e maNorm: simple wrapper function.
maNormScale: simple wrapper function
for scale normalization.



marraylTools package

« The marrayTools package provides
additional functions for handling two-color
spotted microarray data (see devel. version).

« The spotTools and gpTools functions start
from Spot and GenePix image analysis
output files, respectively, and automatically
— read in these data into R,

— perform standard normalization (within print-tip-
group loess),

— create a directory with a standard set of diagnostic
plots (jpeg format), excel files of quality measures,
and tab delimited files of normalized log ratios M
and average log intensities A.



swirl dataset

« Microrrays:
— 8,448 probes (768 controls);
— 4 x 4 grid matrix;
— 22 X 24 spot matrices.

* 4 hybridizations: swirl mutant and wild type mRNA.
« Data stored in object of class marrayRaw: data(swirl).

> malnfo(maTargets(swirl))[,3:4]
experiment Cy3 experiment Cy5

1 swirl wild type
2 wild type swirl
3 swirl wild type
4 wild type swirl



Differential Gene Expression



Combining data across arrays

Data on G genes for n arrays
—> (G X n genes-by-arrays data matrix

Genel
Gene2
Genes  Gene3
Gene4d
Geneb

M=

Arrays
Arrayl Array2 Array3  Array4 ArrayS ...
0.46 0.30 0.80 1.51 0.90
-0.10 0.49 0.24 0.06 0.46
0.15 0.74 0.04 0.10 0.20
-045 -1.03 -0./79 -0.56 -0.32
-0.06 1.06 1.35 1.09 -1.09

log2( Red intensity / Green intensity)

expression measure, e.g. RMA.



Combining data across arrays

... but the columns have structure,
determined by the experimental design.
p  —p B

/

F

C

Z



Combining data across arrays

 CcDNA array factorial experiment. Each
column corresponds to a pair of mRNA
samples with different drug x dose x time
combinations.

 Clinical trial. Each column corresponds to a
patient, with associated clinical outcome,
such as survival and response to treatment.

 Linear models and extensions thereof can
be used to effectively combine data across
arrays for complex experimental designs.



Gene filtering

e A very common task in microarray data
analysis Is gene-by-gene selection.

 Filter genes based on

— data quality criteria, e.g. absolute intensity or
variance,

— subject matter knowledge;
— their ability to differentiate cases from controls;
— their spatial or temporal expression pattern.

e Depending on the experimental design, some
highly specialized filters may be required and
applied sequentially.



Gene filtering

e Clinical trial. Filter genes based on
association with survival, e.g. using a Cox
model.

e Factorial experiment. Filter genes based on
Interaction between two treatments, e.g.
using 2-way ANOVA.

e Time-course experiment. Filter genes based
on periodicity of expression pattern, e.g.
using Fourier transform.



genefi lter package

« The genefTilter package provides tools to

sequentially apply filters to the rows (genes)
of a matrix or of an instance of the exprSet

class.

e There are two main functions, filterfun
and genefilter, for assembling and
applying the filters, respectively.

« Any number of functions for specific filtering

tasks can be defined and supplied to
filterfun.

E.g. Cox model p-values, coefficient of variation.



genefilter: separation of
tasks

Select/define functions for specific filtering
tasks.

Assemble the filters using the filterfun
function.

Apply the filters using the genefilter
function - a logical vector, TRUE indicates
genes that are retained.

Apply that vector to the exprSet to obtain a

microarray object for the subset of interesting
genes.



genefilter: supplied filters

Filters supplied in the package

e kOverA — select genes for which k samples
have expression measures larger than A.

e gapFilter — select genes with a large IQR

or gap (Jump) in expression measures across
samples.

e ttest - select genes according to t-test
nominal p-values.

e Anova — select genes according to ANOVA
nominal p-values.

e coxTilter — select genes according to Cox
model nominal p-values.



genefilter: writing filters

 ItIs very simple to write your own filters.

* You can use the supplied filtering
functions as templates.

 The basic idea Is to rely on lexical
scope to provide values (bindings) for
the variables that are needed to do the
filtering.



genefilter: How to?

First, build the filters
Tl <- anyNA
2 <- kOverA(5, 100)

Next, assemble them in a filtering function
ff <- Ffilterfun(fl,f2)

Finally, apply the filter
wh <- genefilter(marrayDat, ff)
Use wh to obtain the relevant subset of the

data
mySub <- marrayDat[wh, ]



Differential gene expression

* Identify genes whose expression levels are
associated with a response or covariate of
interest

— clinical outcome such as survival, response to
treatment, tumor class;

— covariate such as treatment, dose, time.

e Estimation: estimate effects of interest and
variability of these estimates.
E.g. slope, interaction, or difference in means in a
linear model.

e Testing: assess the statistical significance of
the observed associations.



I imma: Linear models for
microarray data

 Fitting of gene-wise linear models to estimate

log-ratios between two or more target
samples simultaneously: Im.series,
rim._series, gln.series (handles

replicate spots).
e ebayes. moderated t-statistics and log-odds

of differential expression by empirical Bayes
shrinkage of the standard errors towards a
common value.



Multiple hypothesis testing

 Large multiplicity problem: thousands of
hypotheses are tested simultaneously!
— Increased chance of false positives.

— E.g. chance of at least one p- value <aforG
independent tests is 1-(1-a)°®

and converges toone as G Increases.

For G=1,000 and o =0.01, this chance is
0.9999568!

— Individual p-values of 0.01 no longer correspond
to significant findings.

* Need to adjust for multiple testing when
assessing the statistical significance of the
observed associations.



Multiple Hypothesis Testing

Define an appropriate Type | error or false
positive rate.

Develop multiple testing procedures that
— provide strong control of this error rate,
— are powerful (few false negatives),

— take into account the joint distribution of the
test statistics.

Report adjusted p-values for each gene which
reflect the overall Type | error rate for the
experiment.

Resampling methods are useful tools to deal
with the unknown joint distribution of the test
statistics.




multtest package

Multiple testing procedures for controlling

— Family-Wise Error Rate - FWER: Bonferroni, Holm (1979),
Hochberg (1986), Westfall & Young (1993) maxT and minP;

— False Discovery Rate - FDR: Benjamini & Hochberg (1995),
Benjamini & Yekutieli (2001).

Tests based on t- or F-statistics for one- and two-factor
designs.

Permutation procedures for estimating the null
distribution (used to calculate adjusted p-values).

Similar bootstrap procedures coming soon!
Fast permutation algorithm for minP adjusted p-values.
Documentation: tutorial on multiple testing.



Clustering and Classification



Clustering vs. classification

e Cluster analysis (a.k.a. unsupersived
learning)

— the classes are unknown a priori;
— the goal is to discover these classes from the data.
o Classification (a.k.a. class prediction,
supervised learning)
— the classes are predefined,

— the goal is to understand the basis for the
classification from a set of labeled objects and
build a predictor for future unlabeled observations.



Distances

« Microarray data analysis often involves
— clustering genes or samples;
— classifying genes or samples.

e Both types of analyses are based on a

measure of distance (or similarity) between
genes or samples.

R has a number of functions for computing
and plotting distance and similarity matrices.



Distances

e Distance functions
— dist (mva): Euclidean, Manhattan, Canberra,
binary;
— dairsy (cluster).
e Correlation functions
— cor, cov.wt.

 Plotting functions
— 1mage;
— plotcorr (el lipse);
— plot.cor, plot.mat (sma).



e e e Q0 e Q0 e e e e e e e e e e D e

a1 o s e e 1

Correlation matrices

Correlation matrix for ALL AML data
G=3.051 genes
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Correlation matrices

Correlation matrix for ALL ARL data
5=3,091 genes
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Multidimensional scaling

e Given any n x n dissimilarity matrix D,
multidimensional scaling (MDS) Is concerned
with identifying n points in Euclidean space
with a similar distance structure D'.

e The purpose Is to provide a lower
dimensional representation of the distances
which conveys information on the
relationships between the n objects, such as
the existence of clusters or one-dimensional
structure in the data (e.g., seriation).



MDS

« There are different approaches for reducing
dimensionality, depending on how we define
similarity between the old and new dissimilarity
matrices for the n objects, i.e., depending on the
objective or stress function S that we seek to
minimize.

— Least-squares scaling S(D,D'") = (Z(dii —d"i)z)uz

_ Sammon mapping ~ S(D,D") =) (di—d"s)*/dj

places more emphasis on smaller dissimilarities
(and hence should be preferred for clustering
methods).

— Shepard-Kruskal non-metric scaling is based on
ranks, I.e., the order of the distances is more
Important than their actual values.



MDS and PCA

» When the distance matrix D Is the Euclidean distance
matrix between the rows of an n x m matrix X, there

IS a duality between principal component analysis
(PCA) and MDS.

 The k-dimensional classical solution to the MDS
problem is given by the centered scores of the n
objects on the first k principal components.

* The classical solution of MDS in k-dimensional space
minimizes the sum of squared differences between
the entries of the new and old dissimilarity matrices,
l.e., Is optimal for least-squares scaling.



MDS

o As with PCA, the quality of the
representation will depend on the
magnitude of the first k eigenvalues.

 The data analyst should choose a value
for k that iIs small enough for ease
representation but also corresponds to

a substantial “proportion of the distance
matrix explained”.



MDS

« N.B. The MDS solution reflects not only the
choice of a distance function, but also the
features selected.

 |f features (genes) were selected to separate
the data into two groups (e.g., on the basis of
two-sample t-statistics), it should come as no
surprise that an MDS plot has two groups. In
this instance MDS is not a confirmatory
approach.



R MDS software

e cmdscale: Classical solution to MDS,
In package mva.

e sammon: Sammon mapping, in package
MASS.

e 1SOMDS: Kruskal's non-metric MDS, In
package MASS.



MDS for ALL AML data, correlation matrix, G=3,051 genes, k=2
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Classical MDS

MD3S for ALL AML data, correlation matrix, G=3,051 genes, k=3
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Cluster analysis packages

class: self organizing maps (SOM).
cluster:

— AGglomerative NESting (agnhes),

— Clustering LARe Applications (clara),
— Dlvisive ANAlysis (di1ana),

— Fuzzy Analysis (fanny),

— MONothetic Analysis (mona),

— Partitioning Around Medoids (pam),
— HOPACH (coming soon!).
el07/1.

— fuzzy C-means clustering (cmeans),
— bagged clustering (bclust).
mva:

— hierarchical clustering (hclust),

— k-means (kmeans).

Specialized summary, plot, and print methods for clustering
results.
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Dendrogram

 N.B. While dendrograms are quite appealing
because of their apparent ease of
Interpretation, they can be misleading.

* First, the dendrogram corresponding to a
given hierarchical clustering Is not unique,
since for each merge one needs to specify
which subtree should go on the left and which
on the right --- there are 2”(n-1) choices.

e The default in the R function hclust isto

order the subtrees so that the tighter cluster is
on the left.



Dendrogram

e Second, they impose structure on the
data, instead of revealing structure In
these data.

e Such a representation will be valid only
to the extent that the pairwise
dissimilarities possess the hierarchical
structure imposed by the clustering
algorithm.



Dendrogram

 The cophenetic correlation coefficient can be
used to measure how well the hierarchical
structure from the dendrogram represents the
actual distances.

* This measure Is defined as the correlation
between the n(n-1)/2 pairwise dissimilarities
between observations and their cophenetic
dissimilarities from the dendrogram, I.e., the
between cluster dissimilarities at which two
observations are first joined together in the
same cluster.

 Function cophenetic in mva package.



Dendrogram

Randomized data
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coph corr = 0.57

Original data,
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Classification

* Predict a biological outcome on the basis of
observable features.

Features —» Classifier » Qutcome

e Outcome: tumor class, type of bacterial
Infection, survival, response to treatment.

« Features: gene expression measures,
covariates such as age, sex.



Classification

Old and extensive literature on classification,
In statistics and machine learning.

Examples of classifiers

— nearest neighbor classifiers (k-NN);

— discriminant analysis: linear, quadratic, logistic;
— neural networks;

— classification trees;

— support vector machines.

Aggregated classifiers: bagging and boosting.
Comparison on microarray data:

simple classifiers like k-NN and naive Bayes
perform remarkably well.



Performance assessment

e Classification error rates, or related
measures, are usually reported

— to compare the performance of different
classifiers;

— to support statements such as

“clinical outcome X for cancer Y can be predicted
accurately based on gene expression measures”.

» Classification error rates can be estimated by
resampling, e.q., bootstrap or cross-
validation.



Performance assessment

e |t IS essential to take into account
feature selection and other training
decisions in the error rate estimation
pProcess.

E.g. number of neighbors in k-NN, kernel in SVMs.

e Otherwise, error estimates can be
severely biased downward, I.e., overly
optimistic.



Important iIssues

Standardization;

Distance function;

—eature selection;

| oss function;

Class priors;

Binary vs. polychotomous classification.




Classification packages

class:

— k-nearest neighbor (knn),

— learning vector quantization (Ivq).
el071: support vector machines (svm).

1pred: bagging, resampling based estimation of prediction
error.

LogitBoost: boosting for tree stumps.
MASS: linear and quadratic discriminant analysis (Ida, qda).
mlbench: machine learning benchmark problems.

nnet: feed-forward neural networks and multinomial log-linear
models.

ranForest, RanForests: random forests.
rpart: classification and regression trees.

sma: diagonal linear and quadratic discriminant analysis, naive
Bayes (stat.diag.da).



Annotation



Annotation

* One of the largest challenges in analyzing
genomic data Is associating the experimental
data with the available biological metadata,
e.g., sequence, gene annotation,
chromosomal maps, literature.

e Bioconductor provides two main packages for
this purpose:
— annotate (end-user);
— AnnBui Ider (developer).



WWW resources

Nucleotide databases: e.g. GenBank.
Gene databases: e.g. LocusLink, UniGene.

Protein sequence and structure databases: e.g.
SwissProt, Protein DataBank (PDB).

Literature databases: e.g. PubMed, OMIM.
Chromosome maps: e.g. NCBI Map Viewer.
Pathways: e.g. KEGG.

Entrez is a search and retrieval system that
Integrates information from databases at NCBI
(National Center for Biotechnology Information).



annotate: matching IDs

Important tasks

« Associate manufacturers or in-house probe identifiers
to other available identifiers.

E.Q.
Affymetrix IDs = LocusLink LocusID

Affymetrix IDs = GenBank accession number.

e Associate probes with biological data such as
chromosomal position, pathways.

e Associate probes with published literature data via
PubMed (need PMID).



annotate: matching IDs

Affymetrix identifier “41046_ s at”
HGU95A chips

LocusLink, LocusID “9203”

GenBank accession # | ““X95808”

Gene symbol “ZNF261”

PubMed, PMID “10486218”
“9205841”
“8817323”

Chromosomal location | “ X, “Xq13.1"




Annotation data packages

The Bioconductor project provides annotation data
packages, that contain many different mappings to
Interesting data

— Mappings between Affy IDs and other probe IDs:
hgu95av?2 for HGU95Av2 GeneChip series, also,

hgul33a, hu6800, mgu74a, rgu34a, YC.
— Affy CDF data packages.
— Probe sequence data packages.

These packages are updated and expanded
regularly as new data become available.

They can be downloaded from the Bioconductor
website and also using 1nstal IDataPackage.

DPExplorer: a widget for interacting with data
packages.

AnnBui lder: tools for building annotation data
packages.



annotate: matching IDs

Much of what annotate does relies on matching
symbols.

This is basically the role of a hash table in most
programming languages.

In R, we rely on environments.

The annotation data packages provide R
environment objects containing key and value pairs

for the mappings between two sets of probe
identifiers.

Keys can be accessed using the R Is function.

Matching values in different environments can be
accessed using the get or multiget functions.



annotate: matching IDs

> li1brary(hgu95a)

> get("'41046_ s at",

[1] ''X95808”

> get(''41046_s at",

[1] 9203~

> get(''41046_s at'',

[1] "ZNF261"
> get(''41046_s at',

env

env

env

env

hgu95aACCNUM)
hgu95alL.0OCUSID)
hgu95aSYMBOL)

= hgu95aGENENAME)

[1] "zinc finger protein 261"

> get(''41046_s at"',

env

hgu95aSUMFUNC)

[1] ""Contalns a putative zinc-binding
motit (MYM)|Proteome™

> get(''41046_s at',

[1] '"Hs.9568"

env

hgu95aUNIGENE)



annotate: matching IDs

> get(''41046_s at', env = hgu95aCHR)
[1] "X"

> get(''41046_s at", env = hgu95aCHRLOC)
[1] "'66457019@X""

> get(''41046_s at'', env

hgu95aCHRORI)

[1] "-ex"
> get(''41046_s at', env = hgu95aMAP)
[1] "Xql3.1”

> get(''41046_s at", env = hgu95aPMID)
[1] '"10486218" ''9205841' ''8817323"

> get(''41046_s at', env = hgu95aG0)
[1] "GO:0003677" '"GO-0007275"



annotate: matching IDs

* Instead of relying on the general R
functions for environments, new user-
friendly functions have been written for

accessing and working with specific
identifiers.

 E.g. getGO, getGOdesc, getLL,
getPMID, getSYMBOL.



annotate: matching IDs

> getSYMBOL(''41046 s at' ,data=""hgu95a'’)
41046 s at
"ZNF261"
> gg<- getG0('"41046_s at',data=""hgu95a')
> getGOdesc(gg, "‘MF™)
$"'c("'GO:-0003677', "GO:-0007275")"
[1] "DNA binding"
> getLL("'41046_s at'",data=""hgu95a'’)
41046 s at
9203
> getPMID("41046 s at'',data='"hgu95a')
$''41046_ s at™
[1] 10486218 9205841 8817323



annotate: querying
databases

The annotate package provides tools for

« Searching and processing information from
various WWW biological databases
— GenBank,

— LocusLink,
— PubMed.

 Regular expression searching of PubMed
abstracts.

e Generating nice HTML reports of analyses,
with links to biological databases.



annotate: WWW queries

e Functions for querying WWW databases from
R rely on the browseURL function

browseURL("'www.r-project.org")

Other tools: HTMLPage class, getTDRows,
getQueryLink, getQuery4UG, getQuery4LL,
makeAnchor .

« The XML package is used to parse query

results.



annotate: querying GenBank

e Glven a vector of GenBank accession
numbers or NCBI UIDs, the genbank

function

— opens a browser at the URLSs for the
corresponding GenBank queries;

— returns an XMLdoc object with the same data.

genbank(“X95808” ,disp="browser’)

genbank(1430782,disp="“data”,
type=“uird”)



annotate: guerying LocusLink

e locuslinkBylID: given one or more LocuslIDs, the

browser is opened at the URL corresponding to the
first gene.

locuslinkByI1D(**9203)

e locuslinkQuery: given a search string, the results
of the LocusLink query are displayed in the browser.

locuslinkQuery(““zinc finger™)

e getQuery4lLL.



annotate: guerying PubMed

 For any gene there Is often a large
amount of data available from PubMed.

 The annotate package provides the
following tools for interacting with

PubMed

- pubMedAbst: a class structure for
PubMed abstracts in R.

- pubmed: the basic engine for talking to
PubMed (pmidQuery).




annotate: pubMedAbst class

Class structure for storing and processing
PubMed abstracts in R

e pmid

e authors

e abstText

 articleTitle

e journal

e pubDate

e abstUrl



annotate: high-level tools for
guerying PubMed

e pm.getabst: download the specified
PubMed abstracts (stored in XML) and
create a list of pubMedAbst objects.

e pm.titles: extract the titles from a list
of PubMed abstracts.

e pm.abstGrep: regular expression
matching on the abstracts.



annotate: PubMed example

pmid <-get(''41046 s at', env=hgu95aPMID)
pubmed(pmid, disp=“browser’)

absts <- pm.getabst(“41046 s at”,
base=*“hgu95a’)

pm.titles(absts)
pm.abstGrep('retardation”,absts[[1]])



annotate: PubMed example

| RGui - [R Console] =] =]
R File Edit Misc Packages ‘Windows Help 18] =l

EECIBEE

s
Slot "articleTitcle™: _I
[1] "Prediction of the coding secquences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones frow brain which cang

Flot "journal'™:
[1] "DMNL Res"

Slot "pubDate'™:
[1] ™ipr 1997T

Slot "abhstlUrl™:
[1] "Mo URL Prowvided™

[[31]

An object of class "pubMedibhst™

Slot "authors'"™:

[1] "3 M 3M wan der Maarel™ "I H IH Scholten®™ "I I Huber™ "C C Philippe"® "R F RF Suijkerbuijk"”
[6] "3 5 Gilgenkrantz™ "I J Eere™ "F P FFP Cremers" "H H HH Ropers"™

Slot "abhstText™:
[1] "In zewveral families with non-specific X-linked mental retardation (XLMR) linkage analyses have assigned the underlying gene defect to ©F

Slot "articleTitle™:
[1] "Cloning and characterization of DESGETIE, & candidate gene for E-linked mental retardation in Hgli.l.™

Slot "journal'™:
[1] "Humm Mol Genet"

Slot "pubDate™:
[1] ™Jul 159&"

Slot "abhstlUrl™:

[1] "MNo URL Provided"”

> pm.titles(shsts)
[[111

[1] "Cloning and wapping of mewbers of the MYM family.™ 3
[2] "Prediction of the coding sequences of unidentified human genes. WII. The complete sequences of 100 new cDNL clones from brain which cang
[3] "Cloning and characterization of DX36673E, a candidate gene for X-linked mental retardation in Egli.1."” §

> pm.abstGrep ("retardation, abhst=s[[1]])

[1] TRUE FALSE TRUE

> 1

4 | »
R 1.5.1 - A Languade and Environment




annotate: PubMed HTML
report

e The new function pmAbst2HTML takes a
list of pubMedAbst objects and generates
an HTML report with the titles of the

abstracts and links to their full page on
PubMed.

pmAbst2HTML(absts|[[1]1],filename="pm.html"")
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annotate: analysis reports

A simple interface, Il _.htmlpage, can

be used to generate an HTML report of
analysis results.

 The page consists of a table with one
row per gene, with links to LocusLink.

e Entries can include various gene
identifiers and statistics.



11_htmlpage

function from
annotate

package




annotate: chromLoc class

Location information for one gene

e chrom: chromosome name.

e position: starting position of the gene
in bp.

e strand: chromosome strand +/-.




annotate: chromLocation
class

Location information for a set of genes

e species: species that the genes correspond to.

e datSource: source of the gene location data.

e NnChrom: number of chromosomes for the species.
e chromNames: chromosome names.

e chromLocs: starting position of the genes in bp.

e chromLengths: length of each chromosome in bp.

e geneToChrom: hash table translating gene IDs to
location.

Function buit IdChromClass.



Visualization



geneplotter: cPlot

_hromosomes
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geneplotter

Expression levels by genes in chromosome 1

Cumulative expression levels by genes in chromosome 1
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. alongChrom

geneplotter

Expression levels by genes in chromosome 1
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mva: heatmap

Golub et al. ALL AML dataset, random 50 genes
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