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Everywhere …

• Statistical design and analysis: 
– image analysis, normalization, estimation, testing, 

clustering, prediction, etc.

• Integration of experimental data with 
biological metadata from WWW-resources
– gene annotation (GenBank, LocusLink);
– literature (PubMed);
– graphical (pathways, chromosome maps).

Statistical computing



Outline
• Overview of the Bioconductor Project.
• Introduction to R Programming.
• Pre-processing two-color spotted microarray

data
– image analysis,
– normalization.

• Differential gene expression.
• Clustering and classification.
• Annotation.
• Visualization.



References

• Bioconductor www.bioconductor.org
– software, data, and documentation 

(vignettes); 
– training materials from short courses; 
– mailing list.

• R www.r-project.org
– software; documentation; RNews.



Overview of the 
Bioconductor Project



Bioconductor

• Bioconductor is an open source and 
open development software project for 
the analysis and comprehension of 
biomedical and genomic data.

• Software, data, and documentation are 
available from www.bioconductor.org.



Bioconductor
• The project was started in the Fall of 2001 by Robert 

Gentleman, at the Biostatistics Unit of the Dana 
Farber Cancer Institute.

• R and the R package system are used to design and 
distribute software (www.r-project.org).

• There are currently 22 core developers, at various 
institutions in the US and Europe.

• Releases:
– v 1.0: May 2nd, 2002, 15 packages.
– v 1.1: November 18th, 2002, 20 packages.
– v 1.2: May 28th, 2003, 30 packages.

• ArrayAnalyzer: Commercial port of Bioconductor
packages in S-Plus.



Bioconductor
• Mechanisms for facilitating the design and deployment of 

portable, extensible, and scalable software.
• Support for interoperability with software written in other 

languages.
• Tools for integrating biological metadata from the WWW

in the analysis of experimental metadata.
• Access to a broad range of statistical and numerical 

methods.
• High-quality visualization and graphics tools that support 

interactivity.
• An effective, extensible user interface.
• Tools for producing innovative, high-quality 

documentation and training materials.
• Methodology that supports the creation, testing, and 

distribution of software and data modules.



Bioconductor
There are two main classes of packages
• End-user packages: 

– aimed at users unfamiliar with R or computer 
programming; 

– polished and easy to use interfaces to a wide 
variety of computational and statistical methods 
for the analysis of genomic data.

• Developer packages: aimed at software 
developers, in the sense that they provide  
software to write software. 



Bioconductor packages
Release 1.2, May 28th, 2003

• General infrastructure:
Biobase, DynDoc, reposTools, rhdf5, ruuid, tkWidgets,
widgetTools,.

• Annotation:
annotate, AnnBuilder data packages.

• Graphics: 
geneplotter, hexbin.

• Pre-processing for Affymetrix oligonucleotide chip data: 
affy, affycomp, affydata, makecdfenv, vsn.

• Pre-processing for spotted DNA microarray data: 
limma, marrayClasses, marrayInput, marrayNorm, marrayPlots,
marrayTools, vsn.

• Differential gene expression: 
edd, genefilter, limma, multtest, ROC.

• Graphs:
graph, RBGL, Rgraphviz. 

• SAGE: SAGElyzer. 



Ongoing efforts
• Variable (feature) selection;
• Prediction;
• Cluster analysis;
• Cross-validation;
• Multiple testing;
• Quality measures for microarray data;
• Interactions with MAGE-ML: new MAGEML

package (Durinck & Allemeersch);
• Biological sequence analysis;
• Etc.

Many methods
already available
in R.



Bioconductor

• Scenario:
– Pre-processing of spotted array data with 
marrayNorm.

– List of differentially expressed genes from 
multtest, limma, or genefilter. 

– Use the annotate package
• to retrieve and search PubMed abstracts for these 

genes;
• to generate an HTML report with links to LocusLink for 

each gene.



Widgets
• Widgets. Small-scale graphical user 

interfaces (GUI), providing point & click 
access for specific tasks.

• Packages: tkWidgets, widgetTools.
• E.g. File browsing and selection for data 

input, basic analyses:
tkWidgets: dataViewer, fileBrowser, 
fileWizard, importWizard, 
objectBrowser.



Data

• Issues:
– complexity;
– size;
– evolution.

• We distinguish between biological 
metadata and experimental metadata.



Experimental metadata
• Gene expression measures

– scanned images, i.e., raw data;
– image quantitation data, i.e., output from image analysis;
– normalized expression measures, i.e., log ratios M or Affy

measures.
• Reliability information for the expression measures.
• Information on the probe sequences printed on the 

arrays (array layout).
• Information on the target samples hybridized to the 

arrays.
• See Minimum Information About a Microarray

Experiment – MIAME – standards and new MAGEML
package.



Biological metadata
• Biological attributes that can be applied to the 

experimental data. 
• E.g. for genes

– chromosomal location;
– gene annotation (LocusLink, GO);
– relevant literature (PubMed).

• Biological metadata sources are large, 
complex, evolving rapidly, and typically 
distributed via the WWW.

• Cf. annotate and AnnBuilder packages.



Object-oriented 
programming

• The Bioconductor project has adopted the object-
oriented programming – OOP – paradigm presented 
in J. M. Chambers (1998). Programming with Data.

• This object-oriented class/method design allows 
efficient representation and manipulation of large and 
complex biological datasets of multiple types (cf. 
MIAME standards).

• Tools for programming using the class/method 
mechanism are provided in the R methods
package.

• Tutorial: www.omegahat.org/RSMethods/index.html



OOP
• A class provides a software abstraction of a 

real world object.  It reflects how we think of 
certain objects and what information these 
objects should contain. 

• Classes are defined in terms of slots which 
contain the relevant data. 

• An object is an instance of a class.
• A class defines the structure, inheritance, and 

initialization of objects.



OOP
• A method is a function that performs an action on data 

(objects). 
• Methods define how a particular function should behave 

depending on the class of its arguments.
• Methods allow computations to be adapted to particular 

data types, i.e., classes.
• A generic function is a dispatcher, it examines its 

arguments and determines the appropriate method to 
invoke.

• Examples of generic functions include plot, 
summary, print.



marrayRaw class

maRf

maW

maRb maGb

maGf

Pre-normalization intensity data for a batch of arrays

Matrix of red and green foreground intensities

Matrix of red and green background intensities

Matrix of spot quality weights

maNotes

maGnames

maTargets

maLayout Array layout parameters - marrayLayout

Description of spotted probe sequences
- marrayInfo
Description of target samples - marrayInfo

Any notes



AffyBatch class

cdfName

exprs

nrow ncol

Probe-level intensity data for a batch of arrays (same CDF)

Dimensions of the array 

Matrices of probe-level intensities and SEs
rows probe cells, columns arrays.

Name of CDF file for arrays in the batch

se.exprs

description

annotation

phenoData

Any notes

Sample level covariates, instance of class phenoData 

Name of annotation data 

MIAME information

notes



exprSet class

description

annotation

phenoData

Any notes

Matrix of expression measures, genes x samples

Matrix of SEs for expression measures, genes x 
samples

Sample level covariates, instance of class phenoData 

Name of annotation data 

MIAME information

se.exprs

exprs

notes



Reading in phenoData

tkMIAME
tkphenoData

tkSampleNames



Documentation
Extensive documentation and training resources for R and 
Bioconductor are available on the WWW. 

• R manuals and tutorials are available from the R website.
• R help system

– detailed on-line documentation, available in text, HTML, 
PDF, and LaTeX formats;

– e.g. help(genefilter), ?pubmed.
• R demo system

– user-friendly interface for running demonstrations of R 
scripts;

– e.g. demo(marrayPlots), demo(affy).
• Bioconductor short courses

– modular training segments on software and statistical 
methodology;

– lectures and computer labs available on WWW for self-
instruction.



Vignettes
• Bioconductor has adopted a new 

documentation paradigm, the vignette.
• A vignette is an executable document

consisting of a collection of documentation 
text and code chunks. 

• Vignettes form dynamic, integrated, and 
reproducible statistical documents that can be 
automatically updated if either data or 
analyses are changed.

• Vignettes can be generated using the 
Sweave function from the R tools package.



Vignettes
• Each Bioconductor package contains at least 

one vignette, located in the doc subdirectory 
of an installed package and accessible from 
the help browser.

• Vignettes provide task-oriented descriptions 
of the package's functionality and can be 
used interactively.

• Vignettes are available separately from the 
Bioconductor website or as part of the 
packages.



Vignettes

• Tools are being developed for 
managing and using this repository of 
step-by-step tutorials
– Biobase: openVignette – Menu of 

available vignettes and interface for 
viewing vignettes (PDF).

– tkWidgets: vExplorer – Interactive use 
of vignettes.

– reposTools.



An Introduction to 
Programming in the R 

Language
adapted from

Course in Practical Microarray
Analysis

Heidelberg 23.-27.9.2002
Wolfgang Huber



R as a Calculator

> log2(32)

[1] 5

> sqrt(2)

[1] 1.414214

> seq(0, 5, length=6)

[1] 0 1 2 3 4 5



R as a Graphics Tool

> plot(sin(seq(0, 2*pi, length=100)))
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> a = 49
> sqrt(a)
[1] 7

> a = "The dog ate my homework"
> sub("dog","cat",a)
[1] "The cat ate my homework“

> a = (1+1==3)
> a
[1] FALSE

numeric

character 
string

logical

Variables



Missing Values
Variables of each data type (numeric, character, logical) 
can also take the value NA: not available. 
o NA is not the same as 0
o NA is not the same as “”
o NA is not the same as FALSE

Any operations (calculations, comparisons) that involve 
NA may or may not produce NA:
> NA==1
[1] NA
> 1+NA
[1] NA
> max(c(NA, 4, 7))
[1] NA
> max(c(NA, 4, 7), na.rm=T)
[1] 7

> NA | TRUE
[1] TRUE
> NA & TRUE
[1] NA



Functions and Operators
Functions do things with data
“Input”: function arguments (0,1,2,…)
“Output”: function result (exactly one)

Example:
add = function(a,b) { 

result = a+b
return(result) 

}

Operators: Short-cut writing for frequently 
used functions of one or two arguments. 
E.g.: + - * / ! & | %%



Vectors
vector: an ordered collection of data of the 
same type
> a = c(1,2,3)
> a*2
[1] 2 4 6

Example: the mean spot intensities of all 15488 
spots on a chip: a vector of 15488 numbers

In R, a single number is the special case of a 
vector with 1 element.

Other vector types: character strings, logical



Matrices and Arrays

matrix: a rectangular table of data of the same 
type

Example: the expression values for 10000 
genes for 30 tissue biopsies: a matrix with 
10000 rows and 30 columns.

array: 3-,4-,..dimensional matrix

Example: the red and green foreground and 
background values for 20000 spots on 120 
chips: a 4 x 20000 x 120 (3D) array.



Lists
list: an ordered collection of data of arbitrary 
types. 

Example:
> doe = list(name="john",age=28,married=F)
> doe$name
[1] "john“
> doe$age
[1] 28

Typically, vector elements are accessed by their 
index (an integer), list elements by their name (a 
character string). But both types support both 
access methods.



Data Frames
data frame: is supposed to represent the typical data 
table that researchers come up with – like a 
spreadsheet.

It is a rectangular table with rows and columns; data 
within each column has the same type (e.g. number, 
text, logical), but different columns may have different 
types.

Example:
> a

localisation tumorsize progress
XX348     proximal       6.3    FALSE
XX234       distal       8.0     TRUE
XX987     proximal      10.0    FALSE



Subsetting
Individual elements of a vector, matrix, array or data frame are
accessed with “[ ]” by specifying their index, or their name

> a
localisation tumorsize progress

XX348     proximal       6.3        0
XX234       distal       8.0        1
XX987     proximal      10.0        0

> a[3, 2]
[1] 10

> a["XX987", "tumorsize"]
[1] 10

> a["XX987",]
localisation tumorsize progress

XX987     proximal        10        0



> a

localisation tumorsize progress

XX348     proximal       6.3        0

XX234       distal       8.0        1

XX987     proximal      10.0        0

> a[c(1,3),]
localisation tumorsize progress

XX348     proximal       6.3        0
XX987     proximal      10.0        0

> a[c(T,F,T),]
localisation tumorsize progress

XX348     proximal       6.3        0
XX987     proximal      10.0        0

> a$localisation
[1] "proximal" "distal"   "proximal"

>  a$localisation=="proximal"
[1]  TRUE FALSE  TRUE

> a[ a$localisation=="proximal", ]
localisation tumorsize progress

XX348     proximal       6.3        0
XX987     proximal      10.0        0

subset rows by a 
vector of indices

subset rows by a 
logical vector

subset a column

comparison resulting 
in logical vector 

subset the 
selected rows

Example:



Branching

if (logical expression) {
statements

} 
else {
alternative statements

}

else branch is optional



Loops
When the same or similar tasks need to be 
performed multiple times; for all elements of a 
list; for all columns of an array; etc.

for(i in 1:10) {
print(i*i)

}

i=1
while(i<=10) {

print(i*i)
i=i+sqrt(i)

}



Regular Expressions
A tool for text matching and replacement which is available in similar 
forms in many programming languages (Perl, Unix shells, Java)

> a = c("CENP-F","Ly-9", "MLN50", "ZNF191", "CLH-17")

> grep("L", a)
[1] 2 3 5

> grep("L", a, value=T)
[1] "Ly-9"   "MLN50"  "CLH-17"

> grep("^L", a, value=T)
[1] "Ly-9"

> grep("[0-9]", a, value=T)
[1] "Ly-9"   "MLN50"  "ZNF191" "CLH-17"

> gsub("[0-9]", "X", a)
[1] "CENP-F" "Ly-X"   "MLNXX"  "ZNFXXX" "CLH-XX"



Storing Data

Every R object can be stored into and restored 
from a file with the commands
“save” and “load”.

This uses the XDR (external data 
representation) standard of Sun Microsystems 
and others, and is portable between MS-
Windows, Unix, Mac.

> save(x, file=“x.Rdata”)
> load(“x.Rdata”)



Importing and Exporting Data

There are many ways to get data into R and out 
of R. 

Most programs (e.g. Excel), as well as humans, 
know how to deal with rectangular tables in the 
form of tab-delimited text files.

> x = read.delim(“filename.txt”) 
also: read.table, read.csv

> write.table(x, file=“x.txt”, 
sep=“\t”)



Importing Data: caveats
Type conversions: by default, the read functions try to 
guess and autoconvert the data types of the different 
columns (e.g. number, factor, character). There are 
options as.is and colClasses to control this – read the 
online help

Special characters: the delimiter character (space, 
comma, tabulator) and the end-of-line character cannot 
be part of a data field. To circumvent this, text may be 
“quoted”. However, if this option is used (the default), 
then the quote characters themselves cannot be part of 
a data field. Except if they themselves are within 
quotes…
Understand the conventions your input files use and set 
the quote options accordingly.



Getting Help

o Details about a specific command whose name 
you know (input arguments, options, algorithm, 
results):

>? t.test 

>help(t.test)

o HTML search engine lets you search for topics 
with regular expressions:

>help.search



Pre-processing Two-color 
Spotted Microarray Data



Terminology
• Target: DNA hybridized to the array, mobile 

substrate.
• Probe: DNA spotted on the array, 

aka. spot, immobile substrate.
• Sector: collection of spots printed using the same 

print-tip (or pin),
aka. print-tip-group, pin-group, spot matrix, grid.

• The terms slide and array are often used to refer to 
the printed microarray.

• Batch: collection of microarrays with the same 
probe layout.

• Cy3 = Cyanine 3 = green dye. 
• Cy5 = Cyanine 5 = red dye.



4 x 4 sectors
19 x 21 probes/sector
6,384 probes/array

Sector

RGB overlay of Cy3 and Cy5 images

Probe



Raw data
• Pairs of 16–bit TIFFs, one for each dye.
• E.g. Human cDNA arrays:

– ~43K spots;
– ~ 20Mb per channel;
– ~ 2,000 x 5,500 pixels per image;
– spot separation: ~ 136um.

• For a “typical” array, the spot area has
– mean = 43 pixels, 
– med = 32 pixels, 
– SD = 26 pixels.



Image analysis



Image analysis

• The raw data from a cDNA microarray
experiment consist of pairs of image files, 16-
bit TIFFs, one for each of the dyes.

• Image analysis is required to extract 
measures of the red and green fluorescence 
intensities, R and G, for each spot on the 
array.



Image analysis

1. Addressing. Estimate location 
of spot centers.

2. Segmentation. Classify pixels as 
foreground (signal) or background.
3. Information extraction. For 
each spot on the array and each 
dye

• foreground intensities;
• background intensities; 
• quality measures.

R and G for each 
spot on the array.



Segmentation

Adaptive segmentation, SRG Fixed circle segmentation

Spots usually vary in size and shape.



Seeded region growing
• Adaptive segmentation method.
• Requires the input of seeds, either individual 

pixels or groups of pixels, which control the 
formation of the regions into which the image will 
be segmented. 
Here, based on fitted foreground and background 
grids from the addressing step.

• The decision to add a pixel to a region is based on 
the absolute gray-level difference of that pixel’s 
intensity and the average of the pixel values in the 
neighboring region.

• Done on combined red and green images.
• Ref. Adams & Bischof (1994)



Local background

---- GenePix

---- QuantArray

---- ScanAnalyze



Morphological opening
• The image is probed with a structuring element, 

here, a square with side length about twice the 
spot-to-spot distance.

• Erosion (Dilation): the eroded (dilated) value at a 
pixel x is the minimum (maximum) value of the 
image in the window defined by the structuring 
element when its origin is at x.

• Morphological opening: erosion followed by 
dilation.

• Done separately for the red and green images.
• Produces an image of the estimated background 

for the entire slide.



Background matters
Morphological opening Local background

M = log2R - log2G   vs.  A = (log2R + log2G)/2



Quality measures
• Spot quality

– Brightness: foreground/background ratio;
– Uniformity: variation in pixel intensities and ratios of 

intensities within a spot;
– Morphology: area, perimeter, circularity.

• Slide quality
– Percentage of spots with no signal;
– Range of intensities;
– Distribution of spot signal area, etc.

• How to use quality measures in subsequent 
analyses?



Spot image analysis software
• Software package Spot, built on the R language and 

environment for statistical computing and graphics.
• Batch automatic addressing.
• Segmentation. Seeded region growing (Adams & 

Bischof 1994): adaptive segmentation method, no 
restriction on the size or shape of the spots.

• Information extraction
– Foreground. Mean of pixel intensities within a spot.
– Background. Morphological opening: non-linear filter 

which generates an image of the estimated background 
intensity for the entire slide.

• Spot quality measures.



Normalization



Normalization
• After image processing, we have measures of 

the red and green fluorescence intensities, R
and G, for each spot on the array.

• Normalization is needed to ensure that 
differences in intensities are indeed due to 
differential expression, and not some printing, 
hybridization, or scanning artifact.

• Normalization is necessary before any analysis 
which involves within or between slides 
comparisons of intensities, e.g., clustering, 
testing.



Normalization
• Identify and remove the effects of systematic 

variation in the measured fluorescence 
intensities, other than differential expression, 
for example 
– different labeling efficiencies of the dyes;
– different amounts of Cy3- and Cy5-labeled

mRNA;
– different scanning parameters;
– print-tip, spatial, time-of-printing, or plate 

effects, etc.



Normalization
• Within-slide normalization: Correct for 

systematic differences in intensities between 
co-hybridized samples.
– Location normalization - additive on log-scale.
– Scale normalization - multiplicative on log-scale.
– Which spots to use?
– Paired-slides (dye-swap experiments): self-

normalization.
• Between-slides normalization: Correct for 

systematic differences in intensities between 
samples hybridized to different slides.



Normalization
• Two-channel normalization: normalization of 

log-ratios.
– For analysis of relative expression levels, e.g., 

gene expressed at a higher level in target sample 
A than in sample B.

• Single-channel normalization: normalization 
of individual red and green log-intensities.
– For analysis of absolute expression levels, e.g., 

testing for expression or lack thereof of certain 
genes in a target sample A.

– Two-channel within-slide normalization followed 
by between-slides normalization, cf. normalization 
methods for Affymetrix data.



Normalization
• The need for normalization can be seen most 

clearly in self-self hybridizations, where the 
same mRNA sample is labeled with the Cy3 
and Cy5 dyes.

• The imbalance in the red and green 
intensities is usually not constant across the 
spots within and between arrays, and can 
vary according to overall spot intensity, 
location, plate origin, etc.

• These factors should be considered in the 
normalization.



Single-slide data display

• Usually:  R vs. G
log2R vs. log2G.

• Preferred 
M  = log2R - log2G

vs.   A  = (log2R + log2G)/2.
• An MA-plot amounts to a 45o

counterclockwise rotation of a 
log2R vs. log2G plot followed by scaling.



Self-self hybridization
log2 R vs. log2 G

M = log2R - log2G,   A = (log2R + log2G)/2

M vs. A



Self-self hybridization

Robust local regression
within sectors 
(print-tip-groups)
of intensity log-ratio M
on average log-intensity 
A.

M = log2R - log2G,   
A = (log2R + log2G)/2

M vs. A



Diagnostic plots
• RGB overlay of Cy3 and Cy5 images.
• Diagnostics plots of spot statistics,

e.g. red and green log-intensities, intensity log-
ratios M, average log-intensities A, spot area
– Boxplots, dotplots;
– 2D spatial images;
– Scatter-plots, e.g., MA-plots;
– Histograms/density plots.

• Stratify plots according to layout 
parameters, e.g., print-tip-group, plate, 
time-of-printing.



Boxplots by print-tip-group

Intensity 
log-ratio, M

Print-tip effect



Boxplots by plate

Intensity 
log-ratio, M

384-well
plate effect

Control plate



Boxplots by array

Intensity 
log-ratio, M

Array effect



MA-plot by print-tip-group

Intensity 
log-ratio, M

Average 
log-intensity, A

M = log2R - log2G,
A = (log2R + log2G)/2



2D spatial images

Cy3 background intensity Cy5 background intensity



2D spatial images

Intensity 
log-ratio, M



Location normalization

log2R/G  log2R/G – L(intensity, sector, …)

• Constant normalization. Normalization 
function L is constant across the spots.
E.g. mean or median of the log-ratios M, or 
sum R/sum G.

• Adaptive normalization. Normalization 
function L depends on a  number of 
explanatory variables, such as spot intensity 
A, sector, plate origin.



Location normalization

• The normalization function can be obtained 
by robust locally weighted regression of the 
log-ratios M on explanatory variables.
E.g. regression of M on A within sector.

• E.g. lowess (LOcally WEighted Scatterplot
Smoothing) or loess (Cleveland, 1979; Cleveland 
& Devlin, 1988).



Location normalization
• Intensity-dependent normalization.

Regression of M on A (global loess).
• Intensity and sector-dependent normalization.

Same as above, for each sector separately 
(within-print-tip-group loess).

• 2D spatial normalization. 
Regression of M on 2D-coordinates. 

• Other variables: time-of-printing, plate, etc.
• Composite normalization. Weighted average of 

several normalization functions.



2D images of L values

Global median
normalization

Global loess
normalization

Within-print-tip-
group loess
normalization

2D spatial
normalization



2D images of normalized M-L

Global median
normalization

Global loess
normalization

Within-print-tip-
group loess
normalization

2D spatial
normalization



Boxplots of normalized M-L

Global median
normalization

Global loess
normalization

Within-print-tip-
group loess
normalization

2D spatial
normalization



MA-plots of normalized M-L

Global median
normalization

Global loess
normalization

Within-print-tip-
group loess
normalization

2D spatial
normalization



Scale normalization
• The log-ratios M from different sectors, 

plates, or arrays may exhibit different spreads 
and some scale adjustment may be 
necessary.

log2R/G  (log2R/G –L)/S

• Can use a robust estimate of scale such as 
the median absolute deviation (MAD)
MAD = median | M – median(M) |.



Scale normalization
• For print-tip-group scale normalization, 

assume all print-tip-groups have the same 
spread in M.

• Denote true and observed log-ratio by µij
and Mij, resp., where Mij = ai µij, and i indexes 
print-tip-groups and j spots. Robust estimate 
of ai is

where MADi is MAD of Mij in print-tip-group i.
• Similarly for between-slides scale 

normalization.

I
I

i i

i
i

MAD

MADa
∏ =

=

1

ˆ



Which genes to use?

• All spots on the array: 
– Problem when many genes are differentially expressed.

• Housekeeping genes: Genes that are thought to 
be constantly expressed across a wide range of 
biological samples (e.g. tubulin, GAPDH). 
Problems:
– sample specific biases (genes are actually regulated),
– do not cover intensity range.

• Spiked controls: e.g. plant genes.



Which genes to use?

• Genomic DNA titration series:  
– fine in yeast,
– but weak signal for higher organisms with 

high intron/exon ratio (e.g.,mouse, human).

• Rank invariant set (Schadt et al., 1999; 
Tseng et al., 2001): genes with same rank in 
both channels. Problems: set can be small.



Microarray sample pool
• Collaboration with Ngai Lab, UC Berkeley, 

Ref. Yang et al. (2002).
• Microarray Sample Pool, MSP: Control 

sample for normalization, in particular, when 
it is not safe to assume most genes are 
equally expressed in both channels.

• MSP: pooled all 18,816 ESTs from RIKEN 
release 1 cDNA mouse library.

• Six-step dilution series of the MSP.
• MSP samples were spotted in middle of first 

and last row of each sector.



Microarray sample pool
MSP control spots 
• provide potential probes for every target 

sequence;
• are constantly expressed across a wide 

range of biological samples;
• cover the intensity range;
• are similar to genomic DNA, but without intron

sequences better signal than genomic 
DNA in organisms with high intron/exon ratio;

• can be used in composite normalization.



Microarray sample pool

MSP
Rank invariant
Housekeeping

Tubulin, GAPDH



Dye-swap experiment
• Probes

– 50 distinct clones thought to be 
differentially expressed in apo AI knock-out 
mice compared to inbred C57Bl/6 control 
mice (largest absolute t-statistics in a 
previous experiment).

– 72 other clones.
• Spot each clone 8 times .

• Two hybridizations with dye-swap: 
Slide 1:  trt → red, ctl → green.
Slide 2:  trt → green, ctl → red.



Dye-swap experiment



Self-normalization
• Slide 1, M = log2 (R/G) - L
• Slide 2, M’ = log2 (R’/G’) - L’
Combine by subtracting the normalized log-ratios:

M – M’ 
= [ (log2 (R/G) - L) - (log2 (R’/G’) - L’) ] / 2
≈ [ log2 (R/G) + log2 (G’/R’) ] / 2
≈ [ log2 (RG’/GR’) ] / 2

provided L= L’.

Assumption: the normalization functions are the 
same for the two slides.



Checking the assumption

MA-plot for slides 1 and 2



Result of self-normalization

(M - M’)/2 vs. (A + A’)/2



Pre-processing software
• affy: Affymetrix oligonucleotide chips.
• marray, limma: Spotted DNA microarrays.
• vsn: Variance stabilization for both types of 

arrays.
– Reading in intensity data, diagnostic plots, 

normalization, computation of expression 
measures. 

– The packages start with very different data 
types, but produce similar objects of class 
exprSet.

– One can then use other Bioconductor
packages, e.g., genefilter, 
geneplotter.



marray packages

maNorm
maNormMain
maNormScale

Class marrayRaw

Class marrayNorm

Class exprSet

as(swirl.norm, "exprSet")

Save data to file using write.exprs or continue 
analysis using other Bioconductor packages 

Image
quantitation
data,
e.g. .gpr, .Spot, .gal



affy package

rma
expresso
express

Class AffyBatch

Class exprSet

Save data to file using write.exprs or continue 
analysis using other Bioconductor packages 

CEL and CDF
files



marray: Pre-processing 
spotted DNA microarray data

• marrayClasses: 
– class definitions for spotted DNA microarray data (cf. MIAME);
– basic methods for manipulating microarray objects: printing, 

plotting, subsetting, class conversions, etc.
• marrayInput: 

– reading in intensity data and textual data describing probes and
targets;

– automatic generation of microarray data objects;
– widgets for point & click interface.

• marrayPlots: diagnostic plots.
• marrayNorm: robust adaptive location and scale normalization 

procedures.
• marrayTools: miscellaneous tools for functional genomics 

cores facilities at UCB and UCSF.



marrayLayout class

maNspots

maNgr maNgc

maNsr maNsc

maSub

maPlate

maControls

maNotes

Array layout parameters

Total number of spots

Dimensions of spot matrices

Dimensions of grid matrix

Current subset of spots

Plate IDs for each spot

Control status labels for each spot

Any notes



marrayRaw class

maRf

maW

maRb maGb

maGf

Pre-normalization intensity data for a batch of arrays

Matrix of red and green foreground intensities

Matrix of red and green background intensities

Matrix of spot quality weights

maNotes

maGnames

maTargets

maLayout Array layout parameters - marrayLayout

Description of spotted probe sequences
- marrayInfo
Description of target samples - marrayInfo

Any notes



marrayNorm class

maA

maW

maMloc maMscale

maM

Post-normalization intensity data for a batch of arrays

Matrix of normalized intensity log ratios, M

Matrix of location and scale normalization values

Matrix of spot quality weights

maNotes

maGnames

maTargets

maLayout Array layout parameters - marrayLayout

Description of spotted probe sequences 
- marrayInfo
Description of target samples - marrayInfo

Any notes

Matrix of average log intensities, A

maNormCall Function call



marrayInput package
• marrayInput provides functions for reading  

microarray data into R and creating microarray
objects of class marrayLayout, marrayInfo, and 
marrayRaw.

• Input
– Image quantitation data, i.e., output files from 

image analysis software.
E.g. .gpr for GenePix, .spot for Spot. 

– Textual description of probe sequences and target 
samples.
E.g. gal files, god lists.



marrayInput package
• Widgets for graphical user 

interface
widget.marrayLayout,
widget.marrayInfo,
widget.marrayRaw.



marrayPlots package
• See demo(marrayPlots).
• Diagnostic plots of spot statistics. 

E.g. red and green log intensities, intensity log 
ratios M, average log intensities A, spot area.
– maImage: 2D spatial color images. 
– maBoxplot: boxplots.
– maPlot: scatter-plots with fitted curves and 

text highlighted. 
• Stratify plots according to layout 

parameters such as print-tip-group, plate.
E.g. MA-plots with loess fits by print-tip-
group.



2D spatial images
maImage

Cy3 background intensity Cy5 background intensity



Boxplots by print-tip-group
maBoxplot

Intensity 
log ratio, M



MA-plot by print-tip-group
maPlot

M = log2R - log2G vs.  A = (log2R + log2G)/2

hexbin



marrayNorm package
• maNormMain: main normalization function, 

allows robust adaptive location and scale 
normalization for a batch of arrays
– intensity or A-dependent location normalization 

(maNormLoess);
– 2D spatial location normalization (maNorm2D);
– median location normalization (maNormMed);
– scale normalization using MAD (maNormMAD);
– composite normalization;
– your own normalization function.

• maNorm: simple wrapper function. 
maNormScale: simple wrapper function 
for scale normalization.



marrayTools package
• The marrayTools package provides 

additional functions for handling two-color 
spotted microarray data (see devel. version).

• The spotTools and gpTools functions start 
from Spot  and GenePix image analysis 
output files, respectively, and automatically 
– read in these data into R, 
– perform standard normalization (within print-tip-

group loess), 
– create a directory with a standard set of diagnostic 

plots (jpeg format), excel files of quality measures, 
and tab delimited files of normalized log ratios M 
and average log intensities A. 



swirl dataset
• Microrrays: 

– 8,448 probes (768 controls);
– 4 x 4 grid matrix; 
– 22 x 24 spot matrices.

• 4 hybridizations: swirl mutant and wild type mRNA.
• Data stored in object of class marrayRaw: data(swirl).

> maInfo(maTargets(swirl))[,3:4]
experiment Cy3 experiment Cy5
1          swirl      wild type
2      wild type          swirl
3          swirl      wild type
4      wild type          swirl



Differential Gene Expression



Combining data across arrays

Genes

Arrays

M = log2( Red intensity / Green intensity)
expression measure, e.g. RMA.

0.46 0.30 0.80 1.51 0.90 ...
-0.10 0.49 0.24 0.06 0.46 ...
0.15 0.74 0.04 0.10 0.20 ...
-0.45 -1.03 -0.79 -0.56 -0.32 ...
-0.06 1.06 1.35 1.09 -1.09 ...
…           …           …           …           …

Data on G genes for n arrays

Array1   Array2     Array3      Array4 Array5 …

Gene2
Gene1

Gene3

Gene5
Gene4

G x n genes-by-arrays data matrix

…



Combining data across arrays

… but the columns have structure, 
determined by the experimental design.

E
D

F

BA

C

E



Combining data across arrays

• cDNA array factorial experiment. Each 
column corresponds to a pair of mRNA 
samples with different drug x dose x time 
combinations.

• Clinical trial. Each column corresponds to a 
patient, with associated clinical outcome, 
such as survival and response to treatment.

• Linear models and extensions thereof can 
be used to effectively combine data across 
arrays for complex experimental designs.



Gene filtering
• A very common task in microarray data 

analysis is gene-by-gene selection. 
• Filter genes based on

– data quality criteria, e.g. absolute intensity or 
variance;

– subject matter knowledge;
– their ability to differentiate cases from controls;
– their spatial or temporal expression pattern.

• Depending on the experimental design, some 
highly specialized filters may be required and 
applied sequentially.



Gene filtering

• Clinical trial. Filter genes based on 
association with survival, e.g. using a Cox 
model.

• Factorial experiment. Filter genes based on 
interaction between two treatments, e.g. 
using 2-way ANOVA.

• Time-course experiment. Filter genes based 
on periodicity of expression pattern, e.g. 
using Fourier transform.



• The genefilter package provides tools to 
sequentially apply filters to the rows (genes) 
of a matrix or of an instance of the exprSet
class.

• There are two main functions, filterfun
and genefilter, for assembling and 
applying the filters, respectively.

• Any number of functions for specific filtering 
tasks can be defined and supplied to 
filterfun. 
E.g. Cox model p-values, coefficient of variation.

genefilter package



genefilter: separation of 
tasks

1. Select/define functions for specific filtering 
tasks.

2. Assemble the filters using the filterfun
function.

3. Apply the filters using the genefilter
function a logical vector, TRUE indicates 
genes that are retained.

4. Apply that vector to the exprSet to obtain a 
microarray object for the subset of interesting 
genes.



genefilter: supplied filters
Filters supplied in the package
• kOverA – select genes for which k samples 

have expression measures larger than A.
• gapFilter – select genes with a large IQR 

or gap (jump) in expression measures across 
samples.

• ttest – select genes according to t-test 
nominal p-values.

• Anova – select genes according to ANOVA 
nominal p-values.

• coxfilter – select genes according to Cox 
model nominal p-values.



• It is very simple to write your own filters.
• You can use the supplied filtering 

functions as templates.
• The basic idea is to rely on lexical

scope to provide values (bindings) for 
the variables that are needed to do the 
filtering. 

genefilter: writing filters



1. First, build the filters
f1 <- anyNA
f2 <- kOverA(5, 100)

2. Next, assemble them in a filtering function
ff <- filterfun(f1,f2)

3. Finally, apply the filter
wh <- genefilter(marrayDat, ff)

4. Use wh to obtain the relevant subset of the 
data

mySub <- marrayDat[wh,]

genefilter: How to?



Differential gene expression
• Identify genes whose expression levels are 

associated with a response or covariate of 
interest
– clinical outcome such as survival, response to 

treatment, tumor class;
– covariate such as treatment, dose, time.

• Estimation: estimate effects of interest and 
variability of these estimates. 
E.g. slope, interaction, or difference in means in a 
linear model.

• Testing: assess the statistical significance of 
the observed associations.



limma: Linear models for 
microarray data

• Fitting of gene-wise linear models to estimate 
log-ratios between two or more target 
samples simultaneously: lm.series, 
rlm.series, glm.series (handles 
replicate spots).

• ebayes:  moderated t-statistics and log-odds 
of differential expression by empirical Bayes
shrinkage of the standard errors towards a 
common value.



Multiple hypothesis testing
• Large multiplicity problem: thousands of 

hypotheses are tested simultaneously!
– Increased chance of false positives. 
– E.g. chance of at least one p-value < α for G 

independent tests is   
and converges to one as G increases. 
For G=1,000 and α = 0.01, this chance is 
0.9999568!

– Individual p-values of 0.01 no longer correspond 
to significant findings.

• Need to adjust for multiple testing when 
assessing the statistical significance of the 
observed associations.

G)−− α1(1



Multiple Hypothesis Testing 
• Define an appropriate Type I error or false 

positive rate.
• Develop multiple testing procedures that 

– provide strong control of this error rate,
– are powerful (few false negatives),
– take into account the joint distribution of the 

test statistics.
• Report adjusted p-values for each gene which 

reflect the overall Type I error rate for the 
experiment.

• Resampling methods are useful tools to deal 
with the unknown joint distribution of the test 
statistics.



multtest package
• Multiple testing procedures for controlling

– Family-Wise Error Rate - FWER: Bonferroni, Holm (1979), 
Hochberg (1986), Westfall & Young (1993) maxT and minP;

– False Discovery Rate - FDR: Benjamini & Hochberg (1995), 
Benjamini & Yekutieli (2001).

• Tests based on t- or F-statistics for one- and two-factor 
designs.

• Permutation procedures for estimating the null 
distribution (used to calculate adjusted p-values). 

• Similar bootstrap procedures coming soon!
• Fast permutation algorithm for minP adjusted p-values.
• Documentation: tutorial on multiple testing.



Clustering and Classification 



Clustering vs. classification
• Cluster analysis (a.k.a. unsupersived

learning)
– the classes are unknown a priori; 
– the goal is to discover these classes from the data.

• Classification (a.k.a. class prediction, 
supervised learning)
– the classes are predefined;
– the goal is to understand the basis for the 

classification from a set of labeled objects and 
build a predictor for future unlabeled observations.



Distances

• Microarray data analysis often involves
– clustering genes or samples;
– classifying genes or samples.

• Both types of analyses are based on a 
measure of distance (or similarity) between 
genes or samples.

• R has a number of functions for computing 
and plotting distance and similarity matrices.



Distances
• Distance functions

– dist (mva): Euclidean, Manhattan, Canberra, 
binary;

– daisy (cluster).
• Correlation functions

– cor, cov.wt.
• Plotting functions

– image;
– plotcorr (ellipse);
– plot.cor, plot.mat (sma).



Correlation matrices

plotcorr function from ellipse package



Correlation matrices

plot.cor function from sma package



Multidimensional scaling
• Given any n x n dissimilarity matrix D, 

multidimensional scaling (MDS) is concerned 
with identifying n points in Euclidean space 
with a similar distance structure D'.    

• The purpose is to provide a lower 
dimensional representation of the distances 
which conveys information on the 
relationships between the n objects, such as 
the existence of clusters or one-dimensional 
structure in the data (e.g., seriation). 



MDS
• There are different approaches for reducing 

dimensionality, depending on how we define 
similarity between the old and new dissimilarity 
matrices for the n objects, i.e., depending on the 
objective or stress function S that we seek to 
minimize.
– Least-squares scaling

– Sammon mapping
places more emphasis on smaller dissimilarities 
(and hence should be preferred for clustering 
methods).

– Shepard-Kruskal non-metric scaling is based on 
ranks, i.e., the order of the distances is more 
important than their actual values.

( ) 2/12)'()',( ∑ −= ijij ddDDS
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MDS and PCA
• When the distance matrix D is the Euclidean distance 

matrix between the rows of an n x m matrix X, there 
is a duality between principal component analysis
(PCA) and MDS.

• The k-dimensional classical solution to the MDS 
problem is given by the centered scores of the n 
objects on the first k principal components.

• The classical solution of MDS in k-dimensional space 
minimizes the sum of squared differences between 
the entries of the new and old dissimilarity matrices, 
i.e., is optimal for least-squares scaling.



MDS

• As with PCA, the quality of the 
representation will depend on the 
magnitude of the first k eigenvalues.

• The data analyst should choose a value 
for k that is small enough for ease 
representation but also corresponds to 
a substantial “proportion of the distance 
matrix explained”.



MDS

• N.B. The MDS solution reflects not only the 
choice of a distance function, but also the 
features selected. 

• If features (genes) were selected to separate 
the data into two groups (e.g., on the basis of 
two-sample t-statistics), it should come as no 
surprise that an MDS plot has two groups. In 
this instance MDS is not a confirmatory 
approach.



R MDS software

• cmdscale: Classical solution to MDS, 
in package mva.

• sammon: Sammon mapping, in package 
MASS.

• isoMDS: Kruskal's non-metric MDS, in 
package MASS.



Classical MDS



Classical MDS
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Cluster analysis packages
• class: self organizing maps (SOM).
• cluster: 

– AGglomerative NESting (agnes), 
– Clustering LARe Applications (clara), 
– DIvisive ANAlysis (diana), 
– Fuzzy Analysis (fanny),  
– MONothetic Analysis (mona), 
– Partitioning Around Medoids (pam),
– HOPACH (coming soon!).

• e1071: 
– fuzzy C-means clustering (cmeans), 
– bagged clustering (bclust).

• mva: 
– hierarchical clustering (hclust), 
– k-means (kmeans).

• Specialized summary, plot, and print methods for clustering 
results. 



pam and clusplot functions from cluster package

pam
K=2 K=3



pam and plot functions from cluster package

pam
K=2 K=3



hclust function from 
mva package

hclust



Dendrogram
• N.B. While dendrograms are quite appealing 

because of their apparent ease of 
interpretation, they can be misleading.

• First, the dendrogram corresponding to a 
given hierarchical clustering is not unique, 
since for each merge one needs to specify 
which subtree should go on the left and which 
on the right --- there are 2^(n-1) choices.

• The default in the R function hclust is to 
order the subtrees so that the tighter cluster is 
on the left.



Dendrogram

• Second, they impose structure on the 
data, instead of revealing structure in 
these data.

• Such a representation will be valid only 
to the extent that the pairwise
dissimilarities possess the hierarchical 
structure imposed by the clustering 
algorithm. 



Dendrogram
• The cophenetic correlation coefficient can be 

used to measure how well the hierarchical 
structure from the dendrogram represents the 
actual distances. 

• This measure is defined as the correlation 
between the n(n-1)/2 pairwise dissimilarities 
between observations and their cophenetic
dissimilarities from the dendrogram, i.e., the 
between cluster dissimilarities at which two 
observations are first joined together in the 
same cluster.

• Function cophenetic in  mva package.



Dendrogram
Original data, 
coph corr = 0.74

Randomized data 
(perm. wi features),
coph corr = 0.57



Classification
• Predict a biological outcome on the basis of 

observable features.

• Outcome: tumor class, type of bacterial 
infection, survival, response to treatment.

• Features: gene expression measures, 
covariates such as age, sex.

Classifier OutcomeFeatures



Classification
• Old and extensive literature on classification, 

in statistics and machine learning.
• Examples of classifiers

– nearest neighbor classifiers (k-NN);
– discriminant analysis: linear, quadratic, logistic;
– neural networks;
– classification trees;
– support vector machines.

• Aggregated classifiers: bagging and boosting.
• Comparison on microarray data: 

simple classifiers like k-NN and naïve Bayes
perform remarkably well.



Performance assessment
• Classification error rates, or related 

measures, are usually reported
– to compare the performance of different 

classifiers; 
– to support statements such as 

“clinical outcome X for cancer Y can be predicted 
accurately based on gene expression measures”. 

• Classification error rates can be estimated by 
resampling, e.g., bootstrap or cross-
validation.



Performance assessment

• It is essential to take into account 
feature selection and other training 
decisions in the error rate estimation 
process.
E.g. number of neighbors in k-NN, kernel in SVMs.

• Otherwise, error estimates can be 
severely biased downward, i.e., overly 
optimistic.



Important issues

• Standardization;
• Distance function;
• Feature selection;
• Loss function;
• Class priors;
• Binary vs. polychotomous classification.



Classification packages
• class: 

– k-nearest neighbor (knn), 
– learning vector quantization (lvq).

• e1071: support vector machines (svm).
• ipred: bagging, resampling based estimation of prediction 

error.
• LogitBoost: boosting for tree stumps.
• MASS: linear and quadratic discriminant analysis (lda, qda). 
• mlbench: machine learning benchmark problems.
• nnet: feed-forward neural networks and multinomial log-linear 

models.
• ranForest, RanForests: random forests.
• rpart: classification and regression trees.
• sma: diagonal linear and quadratic discriminant analysis, naïve 

Bayes (stat.diag.da).



Annotation



Annotation
• One of the largest challenges in analyzing 

genomic data is associating the experimental 
data with the available biological metadata, 
e.g., sequence, gene annotation, 
chromosomal maps, literature.

• Bioconductor provides two main packages for 
this purpose:
– annotate (end-user);
– AnnBuilder (developer).



WWW resources
• Nucleotide databases: e.g. GenBank.
• Gene databases: e.g. LocusLink, UniGene. 
• Protein sequence and structure databases: e.g. 

SwissProt, Protein DataBank (PDB). 
• Literature databases: e.g. PubMed, OMIM.
• Chromosome maps: e.g. NCBI Map Viewer.
• Pathways: e.g. KEGG.
• Entrez is a search and retrieval system that 

integrates information from databases at NCBI 
(National Center for Biotechnology Information).



annotate: matching IDs
Important tasks
• Associate manufacturers or in-house probe identifiers 

to other available identifiers.
E.g. 

Affymetrix IDs LocusLink LocusID
Affymetrix IDs GenBank accession number.

• Associate probes with biological data such as 
chromosomal position, pathways.

• Associate probes with published literature data via 
PubMed (need PMID).



annotate: matching IDs

“X”, “Xq13.1”Chromosomal location

“10486218” 
“9205841” 
“8817323”

PubMed, PMID

“ZNF261”Gene symbol

“X95808”GenBank accession #

“9203”LocusLink, LocusID

“41046_s_at”Affymetrix identifier
HGU95A chips



Annotation data packages
• The Bioconductor project provides annotation data 

packages, that contain many different mappings to 
interesting data
– Mappings between Affy IDs and other probe IDs: 

hgu95av2 for HGU95Av2 GeneChip series, also, 
hgu133a, hu6800, mgu74a, rgu34a, YG. 

– Affy CDF data packages.
– Probe sequence data packages.

• These packages are updated and expanded 
regularly as new data become available.

• They can be downloaded from the Bioconductor
website and also using installDataPackage.

• DPExplorer:  a widget for interacting with data 
packages.

• AnnBuilder: tools for building annotation data 
packages. 



annotate: matching IDs
• Much of what annotate does relies on matching 

symbols.
• This is basically the role of a hash table in most 

programming languages.
• In R, we rely on environments.
• The annotation data packages provide R 

environment objects containing key and value pairs 
for the mappings between two sets of probe 
identifiers. 

• Keys can be accessed using the R ls function.
• Matching values in different environments can be 

accessed using the get or multiget functions. 



annotate: matching IDs 
> library(hgu95a)
> get("41046_s_at", env = hgu95aACCNUM)
[1] "X95808”
> get("41046_s_at", env = hgu95aLOCUSID)
[1] "9203”
> get("41046_s_at", env = hgu95aSYMBOL)
[1] "ZNF261"
> get("41046_s_at", env = hgu95aGENENAME)
[1] "zinc finger protein 261"
> get("41046_s_at", env = hgu95aSUMFUNC)
[1] "Contains a putative zinc-binding 
motif (MYM)|Proteome"

> get("41046_s_at", env = hgu95aUNIGENE)
[1] "Hs.9568"



annotate: matching IDs
> get("41046_s_at", env = hgu95aCHR)
[1] "X"
> get("41046_s_at", env = hgu95aCHRLOC)
[1] "66457019@X"
> get("41046_s_at", env = hgu95aCHRORI)
[1] "-@X"
> get("41046_s_at", env = hgu95aMAP)
[1] "Xq13.1”
> get("41046_s_at", env = hgu95aPMID)
[1] "10486218" "9205841"  "8817323" 
> get("41046_s_at", env = hgu95aGO)
[1] "GO:0003677" "GO:0007275"



• Instead of relying on the general R 
functions for environments, new user-
friendly functions have been written for 
accessing and working with specific 
identifiers. 

• E.g. getGO, getGOdesc, getLL, 
getPMID, getSYMBOL.

annotate: matching IDs



annotate: matching IDs
> getSYMBOL("41046_s_at",data="hgu95a")
41046_s_at
"ZNF261"

> gg<- getGO("41046_s_at",data="hgu95a")
> getGOdesc(gg, "MF")
$"c("GO:0003677", "GO:0007275")"
[1] "DNA binding"

> getLL("41046_s_at",data="hgu95a")
41046_s_at

9203
> getPMID("41046_s_at",data="hgu95a")
$"41046_s_at"
[1] 10486218  9205841  8817323



The annotate package provides tools for 
• Searching and processing information from 

various WWW biological databases
– GenBank,
– LocusLink,
– PubMed.

• Regular expression searching of PubMed
abstracts.

• Generating nice HTML reports of analyses, 
with links to biological databases.

annotate: querying 
databases



annotate: WWW queries

• Functions for querying WWW databases from 
R rely on the browseURL function
browseURL("www.r-project.org")

Other tools: HTMLPage class, getTDRows, 
getQueryLink, getQuery4UG, getQuery4LL, 
makeAnchor .

• The XML package is used to parse query 
results.



annotate: querying GenBank
www.ncbi.nlm.nih.gov/Genbank/index.html

• Given a vector of GenBank accession 
numbers or NCBI UIDs, the genbank
function 
– opens a browser at the URLs for the 

corresponding GenBank queries;
– returns an XMLdoc object with the same data.

genbank(“X95808”,disp=“browser”)
http://www.ncbi.nih.gov/entrez/query.fcgi?tool=bioconductor&cmd=Search&db=Nucleotide&term=X95808

genbank(1430782,disp=“data”,
type=“uid”)



annotate: querying LocusLink
www.ncbi.nlm.nih.gov/LocusLink/

• locuslinkByID: given one or more LocusIDs, the 
browser is opened at the URL corresponding to the 
first gene.

locuslinkByID(“9203”)
http://www.ncbi.nih.gov/LocusLink/LocRpt.cgi?l=9203

• locuslinkQuery: given a search string, the results 
of the LocusLink query are displayed in the browser.

locuslinkQuery(“zinc finger”)
http://www.ncbi.nih.gov/LocusLink/list.cgi?Q=zinc finger&ORG=Hs&V=0

• getQuery4LL.



annotate: querying PubMed
www.ncbi.nlm.nih.gov

• For any gene there is often a large 
amount of data available from PubMed.

• The annotate package provides the 
following tools for interacting with 
PubMed
- pubMedAbst: a class structure for 

PubMed abstracts in R.
- pubmed: the basic engine for talking to 

PubMed (pmidQuery).



annotate: pubMedAbst class

Class structure for storing and processing
PubMed abstracts in R

• pmid
• authors
• abstText
• articleTitle
• journal
• pubDate
• abstUrl



annotate: high-level tools for 
querying PubMed

• pm.getabst: download the specified 
PubMed abstracts (stored in XML) and 
create a list of pubMedAbst objects.

• pm.titles: extract the titles from a list 
of PubMed abstracts.

• pm.abstGrep: regular expression 
matching on the abstracts.



annotate: PubMed example
pmid <-get("41046_s_at", env=hgu95aPMID)
pubmed(pmid, disp=“browser”)

http://www.ncbi.nih.gov/entrez/query.fcgi?tool=bioconductor&cmd=Retrie
ve&db=PubMed&list_uids=10486218%2c9205841%2c8817323

absts <- pm.getabst(“41046_s_at”, 
base=“hgu95a”)

pm.titles(absts)
pm.abstGrep("retardation",absts[[1]])



annotate: PubMed example



annotate: PubMed HTML 
report

• The new function pmAbst2HTML takes a 
list of pubMedAbst objects and generates 
an HTML report with the titles of the 
abstracts and links to their full page on 
PubMed.

pmAbst2HTML(absts[[1]],filename="pm.html")



pmAbst2html
function from
annotate package

pm.html



annotate: analysis reports

• A simple interface, ll.htmlpage, can 
be used to generate an HTML report of 
analysis results.

• The page consists of a table with one 
row per gene, with links to LocusLink. 

• Entries can include various gene 
identifiers and statistics.



genelist.html

ll.htmlpage 
function from
annotate 
package



annotate: chromLoc class

Location information for one gene
• chrom: chromosome name.
• position: starting position of the gene 

in bp.
• strand: chromosome strand +/-.



annotate: chromLocation
class

Location information for a set of genes
• species: species that the genes correspond to.
• datSource: source of the gene location data.
• nChrom: number of chromosomes for the species.
• chromNames: chromosome names.
• chromLocs: starting position of the genes in bp.
• chromLengths: length of each chromosome in bp.
• geneToChrom: hash table translating gene IDs to 

location.

Function buildChromClass.



Visualization



geneplotter: cPlot



geneplotter: alongChrom



geneplotter: alongChrom



mva: heatmap


