
Bioconductor Tutorial

Statistical Methods and Software for the
Analysis of DNA Microarray Data

Katie Pollard & Todd Lowe
University of California, Santa Cruz

Sandrine Dudoit
University of California, Berkeley

August 15, 2003

© Copyright 2003, all rights reserved

Course materials developed with
• Robert Gentleman, Biostatistics, Harvard.

• Yee Hwa (Jean) Yang, Biostatistics, UCSF.

• Wolfgang Huber, Department of Molecular
Genome Analysis, German Cancer Research
Center.

Acknowledgments

Acknowledgments
Bioconductor Core Team
• Vince Carey, Biostatistics, Harvard.
• Yongchao Ge, Statistics, UC Berkeley.
• Robert Gentleman, Biostatistics, Harvard.
• Jeff Gentry, Dana-Farber Cancer Institute.
• Rafael Irizarry, Biostatistics, Johns Hopkins.
• Yee Hwa (Jean) Yang, Biostatistics, UCSF.
• Jianhua (John) Zhang, Dana-Farber Cancer

Institute.

Biological question

Testing

Biological verification
and interpretation

Microarray experiment

Estimation

Experimental design

Image analysis

Normalization

Clustering Prediction

Expression quantification Pre-processing

A
n
a
l
y
s
i
s

Everywhere …

• Statistical design and analysis:
– image analysis, normalization, estimation, testing,

clustering, prediction, etc.

• Integration of experimental data with
biological metadata from WWW-resources
– gene annotation (GenBank, LocusLink);
– literature (PubMed);
– graphical (pathways, chromosome maps).

Statistical computing

Outline
• Overview of the Bioconductor Project.
• Introduction to R Programming.
• Pre-processing two-color spotted microarray

data
– image analysis,
– normalization.

• Differential gene expression.
• Clustering and classification.
• Annotation.
• Visualization.

References

• Bioconductor www.bioconductor.org
– software, data, and documentation

(vignettes);
– training materials from short courses;
– mailing list.

• R www.r-project.org
– software; documentation; RNews.

Overview of the
Bioconductor Project

Bioconductor

• Bioconductor is an open source and
open development software project for
the analysis and comprehension of
biomedical and genomic data.

• Software, data, and documentation are
available from www.bioconductor.org.

Bioconductor
• The project was started in the Fall of 2001 by Robert

Gentleman, at the Biostatistics Unit of the Dana
Farber Cancer Institute.

• R and the R package system are used to design and
distribute software (www.r-project.org).

• There are currently 22 core developers, at various
institutions in the US and Europe.

• Releases:
– v 1.0: May 2nd, 2002, 15 packages.
– v 1.1: November 18th, 2002, 20 packages.
– v 1.2: May 28th, 2003, 30 packages.

• ArrayAnalyzer: Commercial port of Bioconductor
packages in S-Plus.

Bioconductor
• Mechanisms for facilitating the design and deployment of

portable, extensible, and scalable software.
• Support for interoperability with software written in other

languages.
• Tools for integrating biological metadata from the WWW

in the analysis of experimental metadata.
• Access to a broad range of statistical and numerical

methods.
• High-quality visualization and graphics tools that support

interactivity.
• An effective, extensible user interface.
• Tools for producing innovative, high-quality

documentation and training materials.
• Methodology that supports the creation, testing, and

distribution of software and data modules.

Bioconductor
There are two main classes of packages
• End-user packages:

– aimed at users unfamiliar with R or computer
programming;

– polished and easy to use interfaces to a wide
variety of computational and statistical methods
for the analysis of genomic data.

• Developer packages: aimed at software
developers, in the sense that they provide
software to write software.

Bioconductor packages
Release 1.2, May 28th, 2003

• General infrastructure:
Biobase, DynDoc, reposTools, rhdf5, ruuid, tkWidgets,
widgetTools,.

• Annotation:
annotate, AnnBuilder data packages.

• Graphics:
geneplotter, hexbin.

• Pre-processing for Affymetrix oligonucleotide chip data:
affy, affycomp, affydata, makecdfenv, vsn.

• Pre-processing for spotted DNA microarray data:
limma, marrayClasses, marrayInput, marrayNorm, marrayPlots,
marrayTools, vsn.

• Differential gene expression:
edd, genefilter, limma, multtest, ROC.

• Graphs:
graph, RBGL, Rgraphviz.

• SAGE: SAGElyzer.

Ongoing efforts
• Variable (feature) selection;
• Prediction;
• Cluster analysis;
• Cross-validation;
• Multiple testing;
• Quality measures for microarray data;
• Interactions with MAGE-ML: new MAGEML

package (Durinck & Allemeersch);
• Biological sequence analysis;
• Etc.

Many methods
already available
in R.

Bioconductor

• Scenario:
– Pre-processing of spotted array data with
marrayNorm.

– List of differentially expressed genes from
multtest, limma, or genefilter.

– Use the annotate package
• to retrieve and search PubMed abstracts for these

genes;
• to generate an HTML report with links to LocusLink for

each gene.

Widgets
• Widgets. Small-scale graphical user

interfaces (GUI), providing point & click
access for specific tasks.

• Packages: tkWidgets, widgetTools.
• E.g. File browsing and selection for data

input, basic analyses:
tkWidgets: dataViewer, fileBrowser,
fileWizard, importWizard,
objectBrowser.

Data

• Issues:
– complexity;
– size;
– evolution.

• We distinguish between biological
metadata and experimental metadata.

Experimental metadata
• Gene expression measures

– scanned images, i.e., raw data;
– image quantitation data, i.e., output from image analysis;
– normalized expression measures, i.e., log ratios M or Affy

measures.
• Reliability information for the expression measures.
• Information on the probe sequences printed on the

arrays (array layout).
• Information on the target samples hybridized to the

arrays.
• See Minimum Information About a Microarray

Experiment – MIAME – standards and new MAGEML
package.

Biological metadata
• Biological attributes that can be applied to the

experimental data.
• E.g. for genes

– chromosomal location;
– gene annotation (LocusLink, GO);
– relevant literature (PubMed).

• Biological metadata sources are large,
complex, evolving rapidly, and typically
distributed via the WWW.

• Cf. annotate and AnnBuilder packages.

Object-oriented
programming

• The Bioconductor project has adopted the object-
oriented programming – OOP – paradigm presented
in J. M. Chambers (1998). Programming with Data.

• This object-oriented class/method design allows
efficient representation and manipulation of large and
complex biological datasets of multiple types (cf.
MIAME standards).

• Tools for programming using the class/method
mechanism are provided in the R methods
package.

• Tutorial: www.omegahat.org/RSMethods/index.html

OOP
• A class provides a software abstraction of a

real world object. It reflects how we think of
certain objects and what information these
objects should contain.

• Classes are defined in terms of slots which
contain the relevant data.

• An object is an instance of a class.
• A class defines the structure, inheritance, and

initialization of objects.

OOP
• A method is a function that performs an action on data

(objects).
• Methods define how a particular function should behave

depending on the class of its arguments.
• Methods allow computations to be adapted to particular

data types, i.e., classes.
• A generic function is a dispatcher, it examines its

arguments and determines the appropriate method to
invoke.

• Examples of generic functions include plot,
summary, print.

marrayRaw class

maRf

maW

maRb maGb

maGf

Pre-normalization intensity data for a batch of arrays

Matrix of red and green foreground intensities

Matrix of red and green background intensities

Matrix of spot quality weights

maNotes

maGnames

maTargets

maLayout Array layout parameters - marrayLayout

Description of spotted probe sequences
- marrayInfo
Description of target samples - marrayInfo

Any notes

AffyBatch class

cdfName

exprs

nrow ncol

Probe-level intensity data for a batch of arrays (same CDF)

Dimensions of the array

Matrices of probe-level intensities and SEs
rows probe cells, columns arrays.

Name of CDF file for arrays in the batch

se.exprs

description

annotation

phenoData

Any notes

Sample level covariates, instance of class phenoData

Name of annotation data

MIAME information

notes

exprSet class

description

annotation

phenoData

Any notes

Matrix of expression measures, genes x samples

Matrix of SEs for expression measures, genes x
samples

Sample level covariates, instance of class phenoData

Name of annotation data

MIAME information

se.exprs

exprs

notes

Reading in phenoData

tkMIAME
tkphenoData

tkSampleNames

Documentation
Extensive documentation and training resources for R and
Bioconductor are available on the WWW.

• R manuals and tutorials are available from the R website.
• R help system

– detailed on-line documentation, available in text, HTML,
PDF, and LaTeX formats;

– e.g. help(genefilter), ?pubmed.
• R demo system

– user-friendly interface for running demonstrations of R
scripts;

– e.g. demo(marrayPlots), demo(affy).
• Bioconductor short courses

– modular training segments on software and statistical
methodology;

– lectures and computer labs available on WWW for self-
instruction.

Vignettes
• Bioconductor has adopted a new

documentation paradigm, the vignette.
• A vignette is an executable document

consisting of a collection of documentation
text and code chunks.

• Vignettes form dynamic, integrated, and
reproducible statistical documents that can be
automatically updated if either data or
analyses are changed.

• Vignettes can be generated using the
Sweave function from the R tools package.

Vignettes
• Each Bioconductor package contains at least

one vignette, located in the doc subdirectory
of an installed package and accessible from
the help browser.

• Vignettes provide task-oriented descriptions
of the package's functionality and can be
used interactively.

• Vignettes are available separately from the
Bioconductor website or as part of the
packages.

Vignettes

• Tools are being developed for
managing and using this repository of
step-by-step tutorials
– Biobase: openVignette – Menu of

available vignettes and interface for
viewing vignettes (PDF).

– tkWidgets: vExplorer – Interactive use
of vignettes.

– reposTools.

An Introduction to
Programming in the R

Language
adapted from

Course in Practical Microarray
Analysis

Heidelberg 23.-27.9.2002
Wolfgang Huber

R as a Calculator

> log2(32)

[1] 5

> sqrt(2)

[1] 1.414214

> seq(0, 5, length=6)

[1] 0 1 2 3 4 5

R as a Graphics Tool

> plot(sin(seq(0, 2*pi, length=100)))

0 20 40 60 80 100

-1
.0

-0
.5

0.
0

0.
5

1.
0

Index

si
n(

se
q(

0,
 2

 *
pi

, l
en

gt
h

=
10

0)
)

> a = 49
> sqrt(a)
[1] 7

> a = "The dog ate my homework"
> sub("dog","cat",a)
[1] "The cat ate my homework“

> a = (1+1==3)
> a
[1] FALSE

numeric

character
string

logical

Variables

Missing Values
Variables of each data type (numeric, character, logical)
can also take the value NA: not available.
o NA is not the same as 0
o NA is not the same as “”
o NA is not the same as FALSE

Any operations (calculations, comparisons) that involve
NA may or may not produce NA:
> NA==1
[1] NA
> 1+NA
[1] NA
> max(c(NA, 4, 7))
[1] NA
> max(c(NA, 4, 7), na.rm=T)
[1] 7

> NA | TRUE
[1] TRUE
> NA & TRUE
[1] NA

Functions and Operators
Functions do things with data
“Input”: function arguments (0,1,2,…)
“Output”: function result (exactly one)

Example:
add = function(a,b) {

result = a+b
return(result)

}

Operators: Short-cut writing for frequently
used functions of one or two arguments.
E.g.: + - * / ! & | %%

Vectors
vector: an ordered collection of data of the
same type
> a = c(1,2,3)
> a*2
[1] 2 4 6

Example: the mean spot intensities of all 15488
spots on a chip: a vector of 15488 numbers

In R, a single number is the special case of a
vector with 1 element.

Other vector types: character strings, logical

Matrices and Arrays

matrix: a rectangular table of data of the same
type

Example: the expression values for 10000
genes for 30 tissue biopsies: a matrix with
10000 rows and 30 columns.

array: 3-,4-,..dimensional matrix

Example: the red and green foreground and
background values for 20000 spots on 120
chips: a 4 x 20000 x 120 (3D) array.

Lists
list: an ordered collection of data of arbitrary
types.

Example:
> doe = list(name="john",age=28,married=F)
> doe$name
[1] "john“
> doe$age
[1] 28

Typically, vector elements are accessed by their
index (an integer), list elements by their name (a
character string). But both types support both
access methods.

Data Frames
data frame: is supposed to represent the typical data
table that researchers come up with – like a
spreadsheet.

It is a rectangular table with rows and columns; data
within each column has the same type (e.g. number,
text, logical), but different columns may have different
types.

Example:
> a

localisation tumorsize progress
XX348 proximal 6.3 FALSE
XX234 distal 8.0 TRUE
XX987 proximal 10.0 FALSE

Subsetting
Individual elements of a vector, matrix, array or data frame are
accessed with “[]” by specifying their index, or their name

> a
localisation tumorsize progress

XX348 proximal 6.3 0
XX234 distal 8.0 1
XX987 proximal 10.0 0

> a[3, 2]
[1] 10

> a["XX987", "tumorsize"]
[1] 10

> a["XX987",]
localisation tumorsize progress

XX987 proximal 10 0

> a

localisation tumorsize progress

XX348 proximal 6.3 0

XX234 distal 8.0 1

XX987 proximal 10.0 0

> a[c(1,3),]
localisation tumorsize progress

XX348 proximal 6.3 0
XX987 proximal 10.0 0

> a[c(T,F,T),]
localisation tumorsize progress

XX348 proximal 6.3 0
XX987 proximal 10.0 0

> a$localisation
[1] "proximal" "distal" "proximal"

> a$localisation=="proximal"
[1] TRUE FALSE TRUE

> a[a$localisation=="proximal",]
localisation tumorsize progress

XX348 proximal 6.3 0
XX987 proximal 10.0 0

subset rows by a
vector of indices

subset rows by a
logical vector

subset a column

comparison resulting
in logical vector

subset the
selected rows

Example:

Branching

if (logical expression) {
statements

}
else {
alternative statements

}

else branch is optional

Loops
When the same or similar tasks need to be
performed multiple times; for all elements of a
list; for all columns of an array; etc.

for(i in 1:10) {
print(i*i)

}

i=1
while(i<=10) {

print(i*i)
i=i+sqrt(i)

}

Regular Expressions
A tool for text matching and replacement which is available in similar
forms in many programming languages (Perl, Unix shells, Java)

> a = c("CENP-F","Ly-9", "MLN50", "ZNF191", "CLH-17")

> grep("L", a)
[1] 2 3 5

> grep("L", a, value=T)
[1] "Ly-9" "MLN50" "CLH-17"

> grep("^L", a, value=T)
[1] "Ly-9"

> grep("[0-9]", a, value=T)
[1] "Ly-9" "MLN50" "ZNF191" "CLH-17"

> gsub("[0-9]", "X", a)
[1] "CENP-F" "Ly-X" "MLNXX" "ZNFXXX" "CLH-XX"

Storing Data

Every R object can be stored into and restored
from a file with the commands
“save” and “load”.

This uses the XDR (external data
representation) standard of Sun Microsystems
and others, and is portable between MS-
Windows, Unix, Mac.

> save(x, file=“x.Rdata”)
> load(“x.Rdata”)

Importing and Exporting Data

There are many ways to get data into R and out
of R.

Most programs (e.g. Excel), as well as humans,
know how to deal with rectangular tables in the
form of tab-delimited text files.

> x = read.delim(“filename.txt”)
also: read.table, read.csv

> write.table(x, file=“x.txt”,
sep=“\t”)

Importing Data: caveats
Type conversions: by default, the read functions try to
guess and autoconvert the data types of the different
columns (e.g. number, factor, character). There are
options as.is and colClasses to control this – read the
online help

Special characters: the delimiter character (space,
comma, tabulator) and the end-of-line character cannot
be part of a data field. To circumvent this, text may be
“quoted”. However, if this option is used (the default),
then the quote characters themselves cannot be part of
a data field. Except if they themselves are within
quotes…
Understand the conventions your input files use and set
the quote options accordingly.

Getting Help

o Details about a specific command whose name
you know (input arguments, options, algorithm,
results):

>? t.test

>help(t.test)

o HTML search engine lets you search for topics
with regular expressions:

>help.search

Pre-processing Two-color
Spotted Microarray Data

Terminology
• Target: DNA hybridized to the array, mobile

substrate.
• Probe: DNA spotted on the array,

aka. spot, immobile substrate.
• Sector: collection of spots printed using the same

print-tip (or pin),
aka. print-tip-group, pin-group, spot matrix, grid.

• The terms slide and array are often used to refer to
the printed microarray.

• Batch: collection of microarrays with the same
probe layout.

• Cy3 = Cyanine 3 = green dye.
• Cy5 = Cyanine 5 = red dye.

4 x 4 sectors
19 x 21 probes/sector
6,384 probes/array

Sector

RGB overlay of Cy3 and Cy5 images

Probe

Raw data
• Pairs of 16–bit TIFFs, one for each dye.
• E.g. Human cDNA arrays:

– ~43K spots;
– ~ 20Mb per channel;
– ~ 2,000 x 5,500 pixels per image;
– spot separation: ~ 136um.

• For a “typical” array, the spot area has
– mean = 43 pixels,
– med = 32 pixels,
– SD = 26 pixels.

Image analysis

Image analysis

• The raw data from a cDNA microarray
experiment consist of pairs of image files, 16-
bit TIFFs, one for each of the dyes.

• Image analysis is required to extract
measures of the red and green fluorescence
intensities, R and G, for each spot on the
array.

Image analysis

1. Addressing. Estimate location
of spot centers.

2. Segmentation. Classify pixels as
foreground (signal) or background.
3. Information extraction. For
each spot on the array and each
dye

• foreground intensities;
• background intensities;
• quality measures.

R and G for each
spot on the array.

Segmentation

Adaptive segmentation, SRG Fixed circle segmentation

Spots usually vary in size and shape.

Seeded region growing
• Adaptive segmentation method.
• Requires the input of seeds, either individual

pixels or groups of pixels, which control the
formation of the regions into which the image will
be segmented.
Here, based on fitted foreground and background
grids from the addressing step.

• The decision to add a pixel to a region is based on
the absolute gray-level difference of that pixel’s
intensity and the average of the pixel values in the
neighboring region.

• Done on combined red and green images.
• Ref. Adams & Bischof (1994)

Local background

---- GenePix

---- QuantArray

---- ScanAnalyze

Morphological opening
• The image is probed with a structuring element,

here, a square with side length about twice the
spot-to-spot distance.

• Erosion (Dilation): the eroded (dilated) value at a
pixel x is the minimum (maximum) value of the
image in the window defined by the structuring
element when its origin is at x.

• Morphological opening: erosion followed by
dilation.

• Done separately for the red and green images.
• Produces an image of the estimated background

for the entire slide.

Background matters
Morphological opening Local background

M = log2R - log2G vs. A = (log2R + log2G)/2

Quality measures
• Spot quality

– Brightness: foreground/background ratio;
– Uniformity: variation in pixel intensities and ratios of

intensities within a spot;
– Morphology: area, perimeter, circularity.

• Slide quality
– Percentage of spots with no signal;
– Range of intensities;
– Distribution of spot signal area, etc.

• How to use quality measures in subsequent
analyses?

Spot image analysis software
• Software package Spot, built on the R language and

environment for statistical computing and graphics.
• Batch automatic addressing.
• Segmentation. Seeded region growing (Adams &

Bischof 1994): adaptive segmentation method, no
restriction on the size or shape of the spots.

• Information extraction
– Foreground. Mean of pixel intensities within a spot.
– Background. Morphological opening: non-linear filter

which generates an image of the estimated background
intensity for the entire slide.

• Spot quality measures.

Normalization

Normalization
• After image processing, we have measures of

the red and green fluorescence intensities, R
and G, for each spot on the array.

• Normalization is needed to ensure that
differences in intensities are indeed due to
differential expression, and not some printing,
hybridization, or scanning artifact.

• Normalization is necessary before any analysis
which involves within or between slides
comparisons of intensities, e.g., clustering,
testing.

Normalization
• Identify and remove the effects of systematic

variation in the measured fluorescence
intensities, other than differential expression,
for example
– different labeling efficiencies of the dyes;
– different amounts of Cy3- and Cy5-labeled

mRNA;
– different scanning parameters;
– print-tip, spatial, time-of-printing, or plate

effects, etc.

Normalization
• Within-slide normalization: Correct for

systematic differences in intensities between
co-hybridized samples.
– Location normalization - additive on log-scale.
– Scale normalization - multiplicative on log-scale.
– Which spots to use?
– Paired-slides (dye-swap experiments): self-

normalization.
• Between-slides normalization: Correct for

systematic differences in intensities between
samples hybridized to different slides.

Normalization
• Two-channel normalization: normalization of

log-ratios.
– For analysis of relative expression levels, e.g.,

gene expressed at a higher level in target sample
A than in sample B.

• Single-channel normalization: normalization
of individual red and green log-intensities.
– For analysis of absolute expression levels, e.g.,

testing for expression or lack thereof of certain
genes in a target sample A.

– Two-channel within-slide normalization followed
by between-slides normalization, cf. normalization
methods for Affymetrix data.

Normalization
• The need for normalization can be seen most

clearly in self-self hybridizations, where the
same mRNA sample is labeled with the Cy3
and Cy5 dyes.

• The imbalance in the red and green
intensities is usually not constant across the
spots within and between arrays, and can
vary according to overall spot intensity,
location, plate origin, etc.

• These factors should be considered in the
normalization.

Single-slide data display

• Usually: R vs. G
log2R vs. log2G.

• Preferred
M = log2R - log2G

vs. A = (log2R + log2G)/2.
• An MA-plot amounts to a 45o

counterclockwise rotation of a
log2R vs. log2G plot followed by scaling.

Self-self hybridization
log2 R vs. log2 G

M = log2R - log2G, A = (log2R + log2G)/2

M vs. A

Self-self hybridization

Robust local regression
within sectors
(print-tip-groups)
of intensity log-ratio M
on average log-intensity
A.

M = log2R - log2G,
A = (log2R + log2G)/2

M vs. A

Diagnostic plots
• RGB overlay of Cy3 and Cy5 images.
• Diagnostics plots of spot statistics,

e.g. red and green log-intensities, intensity log-
ratios M, average log-intensities A, spot area
– Boxplots, dotplots;
– 2D spatial images;
– Scatter-plots, e.g., MA-plots;
– Histograms/density plots.

• Stratify plots according to layout
parameters, e.g., print-tip-group, plate,
time-of-printing.

Boxplots by print-tip-group

Intensity
log-ratio, M

Print-tip effect

Boxplots by plate

Intensity
log-ratio, M

384-well
plate effect

Control plate

Boxplots by array

Intensity
log-ratio, M

Array effect

MA-plot by print-tip-group

Intensity
log-ratio, M

Average
log-intensity, A

M = log2R - log2G,
A = (log2R + log2G)/2

2D spatial images

Cy3 background intensity Cy5 background intensity

2D spatial images

Intensity
log-ratio, M

Location normalization

log2R/G log2R/G – L(intensity, sector, …)

• Constant normalization. Normalization
function L is constant across the spots.
E.g. mean or median of the log-ratios M, or
sum R/sum G.

• Adaptive normalization. Normalization
function L depends on a number of
explanatory variables, such as spot intensity
A, sector, plate origin.

Location normalization

• The normalization function can be obtained
by robust locally weighted regression of the
log-ratios M on explanatory variables.
E.g. regression of M on A within sector.

• E.g. lowess (LOcally WEighted Scatterplot
Smoothing) or loess (Cleveland, 1979; Cleveland
& Devlin, 1988).

Location normalization
• Intensity-dependent normalization.

Regression of M on A (global loess).
• Intensity and sector-dependent normalization.

Same as above, for each sector separately
(within-print-tip-group loess).

• 2D spatial normalization.
Regression of M on 2D-coordinates.

• Other variables: time-of-printing, plate, etc.
• Composite normalization. Weighted average of

several normalization functions.

2D images of L values

Global median
normalization

Global loess
normalization

Within-print-tip-
group loess
normalization

2D spatial
normalization

2D images of normalized M-L

Global median
normalization

Global loess
normalization

Within-print-tip-
group loess
normalization

2D spatial
normalization

Boxplots of normalized M-L

Global median
normalization

Global loess
normalization

Within-print-tip-
group loess
normalization

2D spatial
normalization

MA-plots of normalized M-L

Global median
normalization

Global loess
normalization

Within-print-tip-
group loess
normalization

2D spatial
normalization

Scale normalization
• The log-ratios M from different sectors,

plates, or arrays may exhibit different spreads
and some scale adjustment may be
necessary.

log2R/G (log2R/G –L)/S

• Can use a robust estimate of scale such as
the median absolute deviation (MAD)
MAD = median | M – median(M) |.

Scale normalization
• For print-tip-group scale normalization,

assume all print-tip-groups have the same
spread in M.

• Denote true and observed log-ratio by µij
and Mij, resp., where Mij = ai µij, and i indexes
print-tip-groups and j spots. Robust estimate
of ai is

where MADi is MAD of Mij in print-tip-group i.
• Similarly for between-slides scale

normalization.

I
I

i i

i
i

MAD

MADa
∏ =

=

1

ˆ

Which genes to use?

• All spots on the array:
– Problem when many genes are differentially expressed.

• Housekeeping genes: Genes that are thought to
be constantly expressed across a wide range of
biological samples (e.g. tubulin, GAPDH).
Problems:
– sample specific biases (genes are actually regulated),
– do not cover intensity range.

• Spiked controls: e.g. plant genes.

Which genes to use?

• Genomic DNA titration series:
– fine in yeast,
– but weak signal for higher organisms with

high intron/exon ratio (e.g.,mouse, human).

• Rank invariant set (Schadt et al., 1999;
Tseng et al., 2001): genes with same rank in
both channels. Problems: set can be small.

Microarray sample pool
• Collaboration with Ngai Lab, UC Berkeley,

Ref. Yang et al. (2002).
• Microarray Sample Pool, MSP: Control

sample for normalization, in particular, when
it is not safe to assume most genes are
equally expressed in both channels.

• MSP: pooled all 18,816 ESTs from RIKEN
release 1 cDNA mouse library.

• Six-step dilution series of the MSP.
• MSP samples were spotted in middle of first

and last row of each sector.

Microarray sample pool
MSP control spots
• provide potential probes for every target

sequence;
• are constantly expressed across a wide

range of biological samples;
• cover the intensity range;
• are similar to genomic DNA, but without intron

sequences better signal than genomic
DNA in organisms with high intron/exon ratio;

• can be used in composite normalization.

Microarray sample pool

MSP
Rank invariant
Housekeeping

Tubulin, GAPDH

Dye-swap experiment
• Probes

– 50 distinct clones thought to be
differentially expressed in apo AI knock-out
mice compared to inbred C57Bl/6 control
mice (largest absolute t-statistics in a
previous experiment).

– 72 other clones.
• Spot each clone 8 times .

• Two hybridizations with dye-swap:
Slide 1: trt → red, ctl → green.
Slide 2: trt → green, ctl → red.

Dye-swap experiment

Self-normalization
• Slide 1, M = log2 (R/G) - L
• Slide 2, M’ = log2 (R’/G’) - L’
Combine by subtracting the normalized log-ratios:

M – M’
= [(log2 (R/G) - L) - (log2 (R’/G’) - L’)] / 2
≈ [log2 (R/G) + log2 (G’/R’)] / 2
≈ [log2 (RG’/GR’)] / 2

provided L= L’.

Assumption: the normalization functions are the
same for the two slides.

Checking the assumption

MA-plot for slides 1 and 2

Result of self-normalization

(M - M’)/2 vs. (A + A’)/2

Pre-processing software
• affy: Affymetrix oligonucleotide chips.
• marray, limma: Spotted DNA microarrays.
• vsn: Variance stabilization for both types of

arrays.
– Reading in intensity data, diagnostic plots,

normalization, computation of expression
measures.

– The packages start with very different data
types, but produce similar objects of class
exprSet.

– One can then use other Bioconductor
packages, e.g., genefilter,
geneplotter.

marray packages

maNorm
maNormMain
maNormScale

Class marrayRaw

Class marrayNorm

Class exprSet

as(swirl.norm, "exprSet")

Save data to file using write.exprs or continue
analysis using other Bioconductor packages

Image
quantitation
data,
e.g. .gpr, .Spot, .gal

affy package

rma
expresso
express

Class AffyBatch

Class exprSet

Save data to file using write.exprs or continue
analysis using other Bioconductor packages

CEL and CDF
files

marray: Pre-processing
spotted DNA microarray data

• marrayClasses:
– class definitions for spotted DNA microarray data (cf. MIAME);
– basic methods for manipulating microarray objects: printing,

plotting, subsetting, class conversions, etc.
• marrayInput:

– reading in intensity data and textual data describing probes and
targets;

– automatic generation of microarray data objects;
– widgets for point & click interface.

• marrayPlots: diagnostic plots.
• marrayNorm: robust adaptive location and scale normalization

procedures.
• marrayTools: miscellaneous tools for functional genomics

cores facilities at UCB and UCSF.

marrayLayout class

maNspots

maNgr maNgc

maNsr maNsc

maSub

maPlate

maControls

maNotes

Array layout parameters

Total number of spots

Dimensions of spot matrices

Dimensions of grid matrix

Current subset of spots

Plate IDs for each spot

Control status labels for each spot

Any notes

marrayRaw class

maRf

maW

maRb maGb

maGf

Pre-normalization intensity data for a batch of arrays

Matrix of red and green foreground intensities

Matrix of red and green background intensities

Matrix of spot quality weights

maNotes

maGnames

maTargets

maLayout Array layout parameters - marrayLayout

Description of spotted probe sequences
- marrayInfo
Description of target samples - marrayInfo

Any notes

marrayNorm class

maA

maW

maMloc maMscale

maM

Post-normalization intensity data for a batch of arrays

Matrix of normalized intensity log ratios, M

Matrix of location and scale normalization values

Matrix of spot quality weights

maNotes

maGnames

maTargets

maLayout Array layout parameters - marrayLayout

Description of spotted probe sequences
- marrayInfo
Description of target samples - marrayInfo

Any notes

Matrix of average log intensities, A

maNormCall Function call

marrayInput package
• marrayInput provides functions for reading

microarray data into R and creating microarray
objects of class marrayLayout, marrayInfo, and
marrayRaw.

• Input
– Image quantitation data, i.e., output files from

image analysis software.
E.g. .gpr for GenePix, .spot for Spot.

– Textual description of probe sequences and target
samples.
E.g. gal files, god lists.

marrayInput package
• Widgets for graphical user

interface
widget.marrayLayout,
widget.marrayInfo,
widget.marrayRaw.

marrayPlots package
• See demo(marrayPlots).
• Diagnostic plots of spot statistics.

E.g. red and green log intensities, intensity log
ratios M, average log intensities A, spot area.
– maImage: 2D spatial color images.
– maBoxplot: boxplots.
– maPlot: scatter-plots with fitted curves and

text highlighted.
• Stratify plots according to layout

parameters such as print-tip-group, plate.
E.g. MA-plots with loess fits by print-tip-
group.

2D spatial images
maImage

Cy3 background intensity Cy5 background intensity

Boxplots by print-tip-group
maBoxplot

Intensity
log ratio, M

MA-plot by print-tip-group
maPlot

M = log2R - log2G vs. A = (log2R + log2G)/2

hexbin

marrayNorm package
• maNormMain: main normalization function,

allows robust adaptive location and scale
normalization for a batch of arrays
– intensity or A-dependent location normalization

(maNormLoess);
– 2D spatial location normalization (maNorm2D);
– median location normalization (maNormMed);
– scale normalization using MAD (maNormMAD);
– composite normalization;
– your own normalization function.

• maNorm: simple wrapper function.
maNormScale: simple wrapper function
for scale normalization.

marrayTools package
• The marrayTools package provides

additional functions for handling two-color
spotted microarray data (see devel. version).

• The spotTools and gpTools functions start
from Spot and GenePix image analysis
output files, respectively, and automatically
– read in these data into R,
– perform standard normalization (within print-tip-

group loess),
– create a directory with a standard set of diagnostic

plots (jpeg format), excel files of quality measures,
and tab delimited files of normalized log ratios M
and average log intensities A.

swirl dataset
• Microrrays:

– 8,448 probes (768 controls);
– 4 x 4 grid matrix;
– 22 x 24 spot matrices.

• 4 hybridizations: swirl mutant and wild type mRNA.
• Data stored in object of class marrayRaw: data(swirl).

> maInfo(maTargets(swirl))[,3:4]
experiment Cy3 experiment Cy5
1 swirl wild type
2 wild type swirl
3 swirl wild type
4 wild type swirl

Differential Gene Expression

Combining data across arrays

Genes

Arrays

M = log2(Red intensity / Green intensity)
expression measure, e.g. RMA.

0.46 0.30 0.80 1.51 0.90 ...
-0.10 0.49 0.24 0.06 0.46 ...
0.15 0.74 0.04 0.10 0.20 ...
-0.45 -1.03 -0.79 -0.56 -0.32 ...
-0.06 1.06 1.35 1.09 -1.09 ...
… … … … …

Data on G genes for n arrays

Array1 Array2 Array3 Array4 Array5 …

Gene2
Gene1

Gene3

Gene5
Gene4

G x n genes-by-arrays data matrix

…

Combining data across arrays

… but the columns have structure,
determined by the experimental design.

E
D

F

BA

C

E

Combining data across arrays

• cDNA array factorial experiment. Each
column corresponds to a pair of mRNA
samples with different drug x dose x time
combinations.

• Clinical trial. Each column corresponds to a
patient, with associated clinical outcome,
such as survival and response to treatment.

• Linear models and extensions thereof can
be used to effectively combine data across
arrays for complex experimental designs.

Gene filtering
• A very common task in microarray data

analysis is gene-by-gene selection.
• Filter genes based on

– data quality criteria, e.g. absolute intensity or
variance;

– subject matter knowledge;
– their ability to differentiate cases from controls;
– their spatial or temporal expression pattern.

• Depending on the experimental design, some
highly specialized filters may be required and
applied sequentially.

Gene filtering

• Clinical trial. Filter genes based on
association with survival, e.g. using a Cox
model.

• Factorial experiment. Filter genes based on
interaction between two treatments, e.g.
using 2-way ANOVA.

• Time-course experiment. Filter genes based
on periodicity of expression pattern, e.g.
using Fourier transform.

• The genefilter package provides tools to
sequentially apply filters to the rows (genes)
of a matrix or of an instance of the exprSet
class.

• There are two main functions, filterfun
and genefilter, for assembling and
applying the filters, respectively.

• Any number of functions for specific filtering
tasks can be defined and supplied to
filterfun.
E.g. Cox model p-values, coefficient of variation.

genefilter package

genefilter: separation of
tasks

1. Select/define functions for specific filtering
tasks.

2. Assemble the filters using the filterfun
function.

3. Apply the filters using the genefilter
function a logical vector, TRUE indicates
genes that are retained.

4. Apply that vector to the exprSet to obtain a
microarray object for the subset of interesting
genes.

genefilter: supplied filters
Filters supplied in the package
• kOverA – select genes for which k samples

have expression measures larger than A.
• gapFilter – select genes with a large IQR

or gap (jump) in expression measures across
samples.

• ttest – select genes according to t-test
nominal p-values.

• Anova – select genes according to ANOVA
nominal p-values.

• coxfilter – select genes according to Cox
model nominal p-values.

• It is very simple to write your own filters.
• You can use the supplied filtering

functions as templates.
• The basic idea is to rely on lexical

scope to provide values (bindings) for
the variables that are needed to do the
filtering.

genefilter: writing filters

1. First, build the filters
f1 <- anyNA
f2 <- kOverA(5, 100)

2. Next, assemble them in a filtering function
ff <- filterfun(f1,f2)

3. Finally, apply the filter
wh <- genefilter(marrayDat, ff)

4. Use wh to obtain the relevant subset of the
data

mySub <- marrayDat[wh,]

genefilter: How to?

Differential gene expression
• Identify genes whose expression levels are

associated with a response or covariate of
interest
– clinical outcome such as survival, response to

treatment, tumor class;
– covariate such as treatment, dose, time.

• Estimation: estimate effects of interest and
variability of these estimates.
E.g. slope, interaction, or difference in means in a
linear model.

• Testing: assess the statistical significance of
the observed associations.

limma: Linear models for
microarray data

• Fitting of gene-wise linear models to estimate
log-ratios between two or more target
samples simultaneously: lm.series,
rlm.series, glm.series (handles
replicate spots).

• ebayes: moderated t-statistics and log-odds
of differential expression by empirical Bayes
shrinkage of the standard errors towards a
common value.

Multiple hypothesis testing
• Large multiplicity problem: thousands of

hypotheses are tested simultaneously!
– Increased chance of false positives.
– E.g. chance of at least one p-value < α for G

independent tests is
and converges to one as G increases.
For G=1,000 and α = 0.01, this chance is
0.9999568!

– Individual p-values of 0.01 no longer correspond
to significant findings.

• Need to adjust for multiple testing when
assessing the statistical significance of the
observed associations.

G)−− α1(1

Multiple Hypothesis Testing
• Define an appropriate Type I error or false

positive rate.
• Develop multiple testing procedures that

– provide strong control of this error rate,
– are powerful (few false negatives),
– take into account the joint distribution of the

test statistics.
• Report adjusted p-values for each gene which

reflect the overall Type I error rate for the
experiment.

• Resampling methods are useful tools to deal
with the unknown joint distribution of the test
statistics.

multtest package
• Multiple testing procedures for controlling

– Family-Wise Error Rate - FWER: Bonferroni, Holm (1979),
Hochberg (1986), Westfall & Young (1993) maxT and minP;

– False Discovery Rate - FDR: Benjamini & Hochberg (1995),
Benjamini & Yekutieli (2001).

• Tests based on t- or F-statistics for one- and two-factor
designs.

• Permutation procedures for estimating the null
distribution (used to calculate adjusted p-values).

• Similar bootstrap procedures coming soon!
• Fast permutation algorithm for minP adjusted p-values.
• Documentation: tutorial on multiple testing.

Clustering and Classification

Clustering vs. classification
• Cluster analysis (a.k.a. unsupersived

learning)
– the classes are unknown a priori;
– the goal is to discover these classes from the data.

• Classification (a.k.a. class prediction,
supervised learning)
– the classes are predefined;
– the goal is to understand the basis for the

classification from a set of labeled objects and
build a predictor for future unlabeled observations.

Distances

• Microarray data analysis often involves
– clustering genes or samples;
– classifying genes or samples.

• Both types of analyses are based on a
measure of distance (or similarity) between
genes or samples.

• R has a number of functions for computing
and plotting distance and similarity matrices.

Distances
• Distance functions

– dist (mva): Euclidean, Manhattan, Canberra,
binary;

– daisy (cluster).
• Correlation functions

– cor, cov.wt.
• Plotting functions

– image;
– plotcorr (ellipse);
– plot.cor, plot.mat (sma).

Correlation matrices

plotcorr function from ellipse package

Correlation matrices

plot.cor function from sma package

Multidimensional scaling
• Given any n x n dissimilarity matrix D,

multidimensional scaling (MDS) is concerned
with identifying n points in Euclidean space
with a similar distance structure D'.

• The purpose is to provide a lower
dimensional representation of the distances
which conveys information on the
relationships between the n objects, such as
the existence of clusters or one-dimensional
structure in the data (e.g., seriation).

MDS
• There are different approaches for reducing

dimensionality, depending on how we define
similarity between the old and new dissimilarity
matrices for the n objects, i.e., depending on the
objective or stress function S that we seek to
minimize.
– Least-squares scaling

– Sammon mapping
places more emphasis on smaller dissimilarities
(and hence should be preferred for clustering
methods).

– Shepard-Kruskal non-metric scaling is based on
ranks, i.e., the order of the distances is more
important than their actual values.

() 2/12)'()',(∑ −= ijij ddDDS

ijijij dddDDS /)'()',(2∑ −=

MDS and PCA
• When the distance matrix D is the Euclidean distance

matrix between the rows of an n x m matrix X, there
is a duality between principal component analysis
(PCA) and MDS.

• The k-dimensional classical solution to the MDS
problem is given by the centered scores of the n
objects on the first k principal components.

• The classical solution of MDS in k-dimensional space
minimizes the sum of squared differences between
the entries of the new and old dissimilarity matrices,
i.e., is optimal for least-squares scaling.

MDS

• As with PCA, the quality of the
representation will depend on the
magnitude of the first k eigenvalues.

• The data analyst should choose a value
for k that is small enough for ease
representation but also corresponds to
a substantial “proportion of the distance
matrix explained”.

MDS

• N.B. The MDS solution reflects not only the
choice of a distance function, but also the
features selected.

• If features (genes) were selected to separate
the data into two groups (e.g., on the basis of
two-sample t-statistics), it should come as no
surprise that an MDS plot has two groups. In
this instance MDS is not a confirmatory
approach.

R MDS software

• cmdscale: Classical solution to MDS,
in package mva.

• sammon: Sammon mapping, in package
MASS.

• isoMDS: Kruskal's non-metric MDS, in
package MASS.

Classical MDS

Classical MDS

%43
||

|||| 2
=

+

∑
1

ιλ
λλ

%55
||

|||||| 32
=

++

∑
1

ιλ
λλλ

Cluster analysis packages
• class: self organizing maps (SOM).
• cluster:

– AGglomerative NESting (agnes),
– Clustering LARe Applications (clara),
– DIvisive ANAlysis (diana),
– Fuzzy Analysis (fanny),
– MONothetic Analysis (mona),
– Partitioning Around Medoids (pam),
– HOPACH (coming soon!).

• e1071:
– fuzzy C-means clustering (cmeans),
– bagged clustering (bclust).

• mva:
– hierarchical clustering (hclust),
– k-means (kmeans).

• Specialized summary, plot, and print methods for clustering
results.

pam and clusplot functions from cluster package

pam
K=2 K=3

pam and plot functions from cluster package

pam
K=2 K=3

hclust function from
mva package

hclust

Dendrogram
• N.B. While dendrograms are quite appealing

because of their apparent ease of
interpretation, they can be misleading.

• First, the dendrogram corresponding to a
given hierarchical clustering is not unique,
since for each merge one needs to specify
which subtree should go on the left and which
on the right --- there are 2^(n-1) choices.

• The default in the R function hclust is to
order the subtrees so that the tighter cluster is
on the left.

Dendrogram

• Second, they impose structure on the
data, instead of revealing structure in
these data.

• Such a representation will be valid only
to the extent that the pairwise
dissimilarities possess the hierarchical
structure imposed by the clustering
algorithm.

Dendrogram
• The cophenetic correlation coefficient can be

used to measure how well the hierarchical
structure from the dendrogram represents the
actual distances.

• This measure is defined as the correlation
between the n(n-1)/2 pairwise dissimilarities
between observations and their cophenetic
dissimilarities from the dendrogram, i.e., the
between cluster dissimilarities at which two
observations are first joined together in the
same cluster.

• Function cophenetic in mva package.

Dendrogram
Original data,
coph corr = 0.74

Randomized data
(perm. wi features),
coph corr = 0.57

Classification
• Predict a biological outcome on the basis of

observable features.

• Outcome: tumor class, type of bacterial
infection, survival, response to treatment.

• Features: gene expression measures,
covariates such as age, sex.

Classifier OutcomeFeatures

Classification
• Old and extensive literature on classification,

in statistics and machine learning.
• Examples of classifiers

– nearest neighbor classifiers (k-NN);
– discriminant analysis: linear, quadratic, logistic;
– neural networks;
– classification trees;
– support vector machines.

• Aggregated classifiers: bagging and boosting.
• Comparison on microarray data:

simple classifiers like k-NN and naïve Bayes
perform remarkably well.

Performance assessment
• Classification error rates, or related

measures, are usually reported
– to compare the performance of different

classifiers;
– to support statements such as

“clinical outcome X for cancer Y can be predicted
accurately based on gene expression measures”.

• Classification error rates can be estimated by
resampling, e.g., bootstrap or cross-
validation.

Performance assessment

• It is essential to take into account
feature selection and other training
decisions in the error rate estimation
process.
E.g. number of neighbors in k-NN, kernel in SVMs.

• Otherwise, error estimates can be
severely biased downward, i.e., overly
optimistic.

Important issues

• Standardization;
• Distance function;
• Feature selection;
• Loss function;
• Class priors;
• Binary vs. polychotomous classification.

Classification packages
• class:

– k-nearest neighbor (knn),
– learning vector quantization (lvq).

• e1071: support vector machines (svm).
• ipred: bagging, resampling based estimation of prediction

error.
• LogitBoost: boosting for tree stumps.
• MASS: linear and quadratic discriminant analysis (lda, qda).
• mlbench: machine learning benchmark problems.
• nnet: feed-forward neural networks and multinomial log-linear

models.
• ranForest, RanForests: random forests.
• rpart: classification and regression trees.
• sma: diagonal linear and quadratic discriminant analysis, naïve

Bayes (stat.diag.da).

Annotation

Annotation
• One of the largest challenges in analyzing

genomic data is associating the experimental
data with the available biological metadata,
e.g., sequence, gene annotation,
chromosomal maps, literature.

• Bioconductor provides two main packages for
this purpose:
– annotate (end-user);
– AnnBuilder (developer).

WWW resources
• Nucleotide databases: e.g. GenBank.
• Gene databases: e.g. LocusLink, UniGene.
• Protein sequence and structure databases: e.g.

SwissProt, Protein DataBank (PDB).
• Literature databases: e.g. PubMed, OMIM.
• Chromosome maps: e.g. NCBI Map Viewer.
• Pathways: e.g. KEGG.
• Entrez is a search and retrieval system that

integrates information from databases at NCBI
(National Center for Biotechnology Information).

annotate: matching IDs
Important tasks
• Associate manufacturers or in-house probe identifiers

to other available identifiers.
E.g.

Affymetrix IDs LocusLink LocusID
Affymetrix IDs GenBank accession number.

• Associate probes with biological data such as
chromosomal position, pathways.

• Associate probes with published literature data via
PubMed (need PMID).

annotate: matching IDs

“X”, “Xq13.1”Chromosomal location

“10486218”
“9205841”
“8817323”

PubMed, PMID

“ZNF261”Gene symbol

“X95808”GenBank accession #

“9203”LocusLink, LocusID

“41046_s_at”Affymetrix identifier
HGU95A chips

Annotation data packages
• The Bioconductor project provides annotation data

packages, that contain many different mappings to
interesting data
– Mappings between Affy IDs and other probe IDs:

hgu95av2 for HGU95Av2 GeneChip series, also,
hgu133a, hu6800, mgu74a, rgu34a, YG.

– Affy CDF data packages.
– Probe sequence data packages.

• These packages are updated and expanded
regularly as new data become available.

• They can be downloaded from the Bioconductor
website and also using installDataPackage.

• DPExplorer: a widget for interacting with data
packages.

• AnnBuilder: tools for building annotation data
packages.

annotate: matching IDs
• Much of what annotate does relies on matching

symbols.
• This is basically the role of a hash table in most

programming languages.
• In R, we rely on environments.
• The annotation data packages provide R

environment objects containing key and value pairs
for the mappings between two sets of probe
identifiers.

• Keys can be accessed using the R ls function.
• Matching values in different environments can be

accessed using the get or multiget functions.

annotate: matching IDs
> library(hgu95a)
> get("41046_s_at", env = hgu95aACCNUM)
[1] "X95808”
> get("41046_s_at", env = hgu95aLOCUSID)
[1] "9203”
> get("41046_s_at", env = hgu95aSYMBOL)
[1] "ZNF261"
> get("41046_s_at", env = hgu95aGENENAME)
[1] "zinc finger protein 261"
> get("41046_s_at", env = hgu95aSUMFUNC)
[1] "Contains a putative zinc-binding
motif (MYM)|Proteome"

> get("41046_s_at", env = hgu95aUNIGENE)
[1] "Hs.9568"

annotate: matching IDs
> get("41046_s_at", env = hgu95aCHR)
[1] "X"
> get("41046_s_at", env = hgu95aCHRLOC)
[1] "66457019@X"
> get("41046_s_at", env = hgu95aCHRORI)
[1] "-@X"
> get("41046_s_at", env = hgu95aMAP)
[1] "Xq13.1”
> get("41046_s_at", env = hgu95aPMID)
[1] "10486218" "9205841" "8817323"
> get("41046_s_at", env = hgu95aGO)
[1] "GO:0003677" "GO:0007275"

• Instead of relying on the general R
functions for environments, new user-
friendly functions have been written for
accessing and working with specific
identifiers.

• E.g. getGO, getGOdesc, getLL,
getPMID, getSYMBOL.

annotate: matching IDs

annotate: matching IDs
> getSYMBOL("41046_s_at",data="hgu95a")
41046_s_at
"ZNF261"

> gg<- getGO("41046_s_at",data="hgu95a")
> getGOdesc(gg, "MF")
$"c("GO:0003677", "GO:0007275")"
[1] "DNA binding"

> getLL("41046_s_at",data="hgu95a")
41046_s_at

9203
> getPMID("41046_s_at",data="hgu95a")
$"41046_s_at"
[1] 10486218 9205841 8817323

The annotate package provides tools for
• Searching and processing information from

various WWW biological databases
– GenBank,
– LocusLink,
– PubMed.

• Regular expression searching of PubMed
abstracts.

• Generating nice HTML reports of analyses,
with links to biological databases.

annotate: querying
databases

annotate: WWW queries

• Functions for querying WWW databases from
R rely on the browseURL function
browseURL("www.r-project.org")

Other tools: HTMLPage class, getTDRows,
getQueryLink, getQuery4UG, getQuery4LL,
makeAnchor .

• The XML package is used to parse query
results.

annotate: querying GenBank
www.ncbi.nlm.nih.gov/Genbank/index.html

• Given a vector of GenBank accession
numbers or NCBI UIDs, the genbank
function
– opens a browser at the URLs for the

corresponding GenBank queries;
– returns an XMLdoc object with the same data.

genbank(“X95808”,disp=“browser”)
http://www.ncbi.nih.gov/entrez/query.fcgi?tool=bioconductor&cmd=Search&db=Nucleotide&term=X95808

genbank(1430782,disp=“data”,
type=“uid”)

annotate: querying LocusLink
www.ncbi.nlm.nih.gov/LocusLink/

• locuslinkByID: given one or more LocusIDs, the
browser is opened at the URL corresponding to the
first gene.

locuslinkByID(“9203”)
http://www.ncbi.nih.gov/LocusLink/LocRpt.cgi?l=9203

• locuslinkQuery: given a search string, the results
of the LocusLink query are displayed in the browser.

locuslinkQuery(“zinc finger”)
http://www.ncbi.nih.gov/LocusLink/list.cgi?Q=zinc finger&ORG=Hs&V=0

• getQuery4LL.

annotate: querying PubMed
www.ncbi.nlm.nih.gov

• For any gene there is often a large
amount of data available from PubMed.

• The annotate package provides the
following tools for interacting with
PubMed
- pubMedAbst: a class structure for

PubMed abstracts in R.
- pubmed: the basic engine for talking to

PubMed (pmidQuery).

annotate: pubMedAbst class

Class structure for storing and processing
PubMed abstracts in R

• pmid
• authors
• abstText
• articleTitle
• journal
• pubDate
• abstUrl

annotate: high-level tools for
querying PubMed

• pm.getabst: download the specified
PubMed abstracts (stored in XML) and
create a list of pubMedAbst objects.

• pm.titles: extract the titles from a list
of PubMed abstracts.

• pm.abstGrep: regular expression
matching on the abstracts.

annotate: PubMed example
pmid <-get("41046_s_at", env=hgu95aPMID)
pubmed(pmid, disp=“browser”)

http://www.ncbi.nih.gov/entrez/query.fcgi?tool=bioconductor&cmd=Retrie
ve&db=PubMed&list_uids=10486218%2c9205841%2c8817323

absts <- pm.getabst(“41046_s_at”,
base=“hgu95a”)

pm.titles(absts)
pm.abstGrep("retardation",absts[[1]])

annotate: PubMed example

annotate: PubMed HTML
report

• The new function pmAbst2HTML takes a
list of pubMedAbst objects and generates
an HTML report with the titles of the
abstracts and links to their full page on
PubMed.

pmAbst2HTML(absts[[1]],filename="pm.html")

pmAbst2html
function from
annotate package

pm.html

annotate: analysis reports

• A simple interface, ll.htmlpage, can
be used to generate an HTML report of
analysis results.

• The page consists of a table with one
row per gene, with links to LocusLink.

• Entries can include various gene
identifiers and statistics.

genelist.html

ll.htmlpage
function from
annotate
package

annotate: chromLoc class

Location information for one gene
• chrom: chromosome name.
• position: starting position of the gene

in bp.
• strand: chromosome strand +/-.

annotate: chromLocation
class

Location information for a set of genes
• species: species that the genes correspond to.
• datSource: source of the gene location data.
• nChrom: number of chromosomes for the species.
• chromNames: chromosome names.
• chromLocs: starting position of the genes in bp.
• chromLengths: length of each chromosome in bp.
• geneToChrom: hash table translating gene IDs to

location.

Function buildChromClass.

Visualization

geneplotter: cPlot

geneplotter: alongChrom

geneplotter: alongChrom

mva: heatmap

