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Practical microarray analysis— experimental design

Experiments
Scientists deal mostly with experiments of the following form:

- A number of alternative conditions/ treatments
- one of which is applied to each experimental unit
- an observation (or several observations) then being made on each unit.

The objectiveis:.
- Separate out differences between the conditions / treatments from the

uncontrolled variation that is assumed to be present.
- Take steps towards understanding the phenomena under investigation.
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Uncertain

knowledge

Heidelberg, October 2003

Statistical thinking
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Decisions on the

Measurement model <
m=m+e

m — measurement with error, m- true but unknown value

What is the mean of e? "

What isthevarianceof €? 4~ -

| s there dependence between e and n?
What is the distribution of e (and m)?

Typically but not always. e ~ N(0O,s?)
Gaussian / Normal measurement model

experimental design
Influence the
measurement model.




Practical microarray analysis— experimental design

Main requirementsfor experiments

Once the conditions/ treatments, experimental units, and the nature of the observations
have been fixed, the main requirements are:

- Experimental units receiving different treatments should differ in no systematic
way from one another — Assumptions that certain sources of variation are absent
or negligible should, asfar as practical, be avoided;

- Random errors of estimation should be suitably small, and this should be achieved
with as few experimental units as possible;

- The conclusions of the experiment should have awide range of validity;
- The experiment should be ssimple in design and analysis,

- A proper statistical analysis of the results should be possible without making
artificial assumptions.

Taken from Cox DR (1958) Planning of experiments, Wiley & Sons, New Y ork (page 13)
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# of observational units

Information dilemma: too many or too few?

# of variables of interest

>

Classical situation of a clinical research project:

Statistical methods,

principles of clinical epidemiology and
principles of experimental design

allow to give a confirmatory answer, if results of
the study describe reality or are caused by
random fluctuations.
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# of observational units

Information dilemma: too many or too few?

# of variables of interest

>

The use of micro-array technology turns the
classical situation upside down.

There is the need for orientation how to perform
microarray experiments.

A new methodological consciousness is put to
work:

False detection rate

Validation to avoid overfitting
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Biometrical practice

Biological, medical
framework

Statistical
methods

Working with micro-arrays

Experimental design,
clinical epidemiology




Micro-array experiments

Biological, medical
framework

/

Bioinformatics

Technology

I

Statistical
methods

Complex
statistical
methods

Working with micro-arrays
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Experimental design,
clinical epidemiology

Data
collections




Example LPS: The setting

Problem: Differential reaction on LPS stimulation in peripheral blood of stroke
patients and controls?

Blood —> Gene expres.
atient DF,at
M Blood + LPS > | Gene expres. /
Difference ?
Blood — Gene expres.
Va £ Na
Control \ DKon
Blood + LPS > Gene expres. /

Sample size has to be chosen with respect to financial restrictions
Peripheral blood is a special tissue, possible confounder

PNAS, 100:1896-1901
Chosen technology: Affymetrix (22283 genes)

Working with micro-arrays 15



Example LPS: Design - Pooling

Assume a linear model for appropriately transformed gene expression:

Ypat Gen — transformed abundance + confounder effect +
biol. var. + techn. var.

No LPS

Pat 1 \

Pool

—» | Gene expres. \
—> /

Gene expres.

a
[ ps

/V

Pat 5

Pool

Correction for confounding - if composition of pools is homogeneous over
possible confounder

Reduction of biological variability: s,

No reduction of technological / array specific variability: s,

Reduction of arrays is determined by Y =s,_ ./ S,

Working with micro-arrays 16



Example LPS: Design - Gene exclusion
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Example LPS: Design - Gene exclusion
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Example LPS: Design - Gene exclusion
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Example LPS: Design - Gene exclusion
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Meta-genes

Patient 2

Meta-gene 6  Meta-gene 5

Meta-gene 7
Meta-gene 1

Patient 1
eta-gene 4

Meta-gene 3

Meta-gene 2
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Meta-genes
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Example LPS: Differential reaction DR

LPS LPS
stimulated stimulated
FC=3 FC =0.125
Control Patient
Differential reaction (DR): log(0.125 / 3) = log(0.125) - log(3) = - 3.18
DR = DPat - DKon

Working with micro-arrays 29



Example LPS: Data

Pool Group | Sexdistribution | mean age
(5 subjects) (Male:Female)
1 Control 1:4 60.8
2 Control 1:4 65.4
3 Control 2:3 61.6
4 Patient 4.1 64.4
5 Patient 5.0 66.2
6 Patient 3:2 74.4

Working with micro-arrays




Example LPS: Expression Summaries

Quantification of expression

MSAS: Tukey bi-weight signal of PM/MM,
which is log-transformed

Millions of identical
oligonucleotide
probes per feature

1.28 cm
(standard size)

RMA: linear additive model for log(PM), i S
Median polish to aggregate over probes i

1.28 cm
Up to ~ 400 000 features per microarray

VSN: arsinh - transformation for PM values
Rock - Blythe model for expression
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|
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Example LPS: Expression Summaries
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Differential reaction

Example LPS: First look on the data

All 22253 genes
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Mean diff. response
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Mean diff. reaction
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Example LPS: Metagenes

> nmet a. gene. r ma. sunmary

$net agene. 64

"213606_s_at*“

"34478_at"

"216629_at"

"205179_s_at" "207824_s_at*“
"217793_at" "218600_at"
"207387_s_at" "210692_s_at*“
"205660_at " "210163_at"
"217502_at"

619 "201167_x_at" "204270_at"
"219273 at"  "220557_s_at"
$met agene. 80
604 "207425 s _at" "216234 s at"
352
$nmet agene. 343
"200935_at"  "201556_s_at"
"211790_s_at“ "214792 x_at"
$nmet agene. 352
"201625 s _at" "201627_s_at"
"211139 s _at“ "222061 at"
$met agene. 604
"204747_at"  "205569 at"
"210797_s_at" "211122 s at"
80
343
$nmet agene. 619
o " AFFX- HUVRGE/ ML0098_3_at "
. . . . . " AFFX- HUVRGE/ ML0098_M at "
2 0 2 4 6 "AFFX-r2- Hs18Sr RNA-5_at "

Mean diff. expression

Working with micro-arrays

" AFFX- HUVRGE/ MLO098_5_at
" AFFX-r2- Hs18Sr RNA-3_s_at"
" AFFX- r 2- Hs18Sr RNA- M x_at "



Example LPS: Metagenes - multiple testing

> round(neta.gene.nult.test.rma[[1]][21:30,],5)

rawp Bonf erroni Hol m Hochber g Si dakSS Si dakSD BH BY
[1,] 0.00001 0. 00932 0.00932 0.00932 0.00928 0.00928 0.00504 0.03772
[2,] 0.00001 0. 01008 0. 01007 0.01007 0.01003 0.01002 0.00504 0.03772
[3,] 0.00002 0. 01573 0. 01570 0.01570 0. 01560 0.01557 0.00524 0.03924
[4,] 0.00004 0. 04341 0.04328 0.04328 0.04248 0.04235 0.00941 0.07042
[5,] 0.00005 0. 04821 0.04802 0.04802 0.04707 0.04689 0.00941 0.07042
[6,] 0.00006 0. 05645 0.05617 0.05617 0.05489 0.05462 0.00941 0.07042
[7,] 0.00008 0. 07559 0.07513 0.07513 0.07280 0.07238 0.01080 0.08083
[8,] 0.00012 0. 12024 0.11940 0.11940 0.11330 0.11255 0.01236 0.09255
[9,] 0.00012 0. 12398 0.12299 0.12299 0.11661 0.11573 0.01236 0. 09255
[ 10,] 0.00013 0.12696 0.12581 0.12581 0.11924 0.11823 0.01236 0. 09255
[11,] 0.00014 0. 13600 0.13464 0.13464 0.12716 0.12598 0.01236 0.09255
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Example LPS: Predictive analysis

N
o
observed t-statistics
3 ———  Mixture components
| - without DR
- negative DR
- positive DR
g |
S ] ,
/W
o
o
I I I I I
-10 -5 0 5 10

t Statistik
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Example LPS: Predictive analysis

0.10 0.15 0.20 0.25 0.30 0.35
| | | | | |

0.05
|

0.00

-10

I
0

t Statistik

Working with micro-arrays

observed t-statistics

——  Mixture components
- without DR
- negative DR
- positive DR

Inference of mixture
components by EM-
algorithm or Gibbs-
sampler
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Prob(Diff. reaction | t-value)

1.0

0.8

0.6

04

0.2

0.0

Example LPS: Predictive analysis

P
P

= 0.0018
= 0.0031

negative

positive

Value of t statistics

Working with micro-arrays



i-ter p-Wert

Example LPS: Adjusted p-values

Predictive analysis is closely related with frequentist test-theory: Procedure
by Benjamini Hochberg (Efron, Storey, Tibshirani, 2001)

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014

Index - FDR / # of genes

50

100

150 200 250 300

Index

Working with micro-arrays

FDR: 0.1

BH:

red area contains
In mean at most
10% false positive
decisions.
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Example LPS: Interpretation

Genes with differential reaction (RMA)

BH-procedure: # Genes: 122
PA with PPV>0.99: # Genes: 98 + 31

Genes with differential reaction (MAS5)

BH-procedure: # Genes: 42
PA with PPV>0.99: # Genes: 62

Set of genes common to RMA and MASS result: 27

Working with micro-arrays



Example LPS: Interpretation

Confounder, Covariates, Population variability -
Pools are unbalanced between cases and controls

Sample size calculation +

Setting allows with high chance to detect absolute effects above 2.
cDNA arrays may have resulted in a more efficient analysis.

Generality +/-
Few pools may not give a representative sample of the patient group of interest.

Interpretability -

Inhomogeneities with respect to sex and age make it difficult to interpret DR as
related to the disease.

Artificial assumptions -
Assumption of a linear model for confounder effects allows to assume an effect

measurement fully attributable to the disease. Use of cDNA arrays would have
automatically eliminated the confounder effects.

Working with micro-arrays 41



Practical microarray analysis— experimental design

The most simple measurement model in microarray
experiments

Situation: m arrays (Affimetrix) from control population
n arrays (Affimetrix) from population with
gpecial condition /treatment

Observation of interest: Mean difference of |og-transformed gene expression (DlogFC)

DlogFCq,s = DIogFC e + €
e~ N(0, s21/n+1/m])

In an experiment with 5 arrays per population and the same variance for the expression of a gene of interest,

the above formulaimplies that the variance of the DiogFC is only 40% (1/5+1/5 = 2/5 = 0.4) of the variability
of asingle measurement —taming of uncertainty.

Heidelberg, October 2003 5



Practical microarray analysis— experimental design

Separ ate out differences between the conditions/ treatments
from the uncontrolled variation that isassumed to be present.

|s DlogFCi; et 0?— How to decide?

Special Decision rules: Statistical Tests

- When the probability model for the mechanism generating the observed data is known,
hypotheses about the model can be tested.

- Thisinvolves the question: Could the presented data reasonable have come from the
model if the hypothesisis correct?

- Usually adecision must be made on the basis of the available data, and some degree of
uncertainty is tolerated about the correctness of that decision.

- These four components. data, model, hypothesis, and decision are basic to the
statistical problem of hypothesis testing.

Heidelberg, October 2003 6



Practical microarray analysis— experimental design

Quality of decision

True state of gene

Decision Geneisdiff. expr. Geneis not diff. expr.
Geneis diff. expr. OK false positive decision
happens with probability a
Geneis not diff. expr. false negative decision OK

happens with probability b

Two sources of error:

Power of atest:

Heidelberg, October 2003

False positive rate a

False negative rate b
Ability to detect adifferenceif thereis atrue difference

Power — true positiverate or Power =1- b



Practical microarray analysis— experimental design

The Statistical test

Question of interest (Alterative):  |Is the gene G differentially expressed between two cell populations?

Answer the question via a proof by contradiction: Show that there is no evidence to support the logical
contrary of the alternative. The logical contrary of the alternative is called null hypothesis.

Null hypothesis: The gene G is not differentially expressed between two cell populations of interest.

A test statistic T isintroduced which measures the fit of the observed datato the null hypothesis.
Thetest statistics T implies aprob. distribution P to quantify its variability when the null hypothesisis true.

It will be checked if the test statistic evaluated at the observed datat,,s behaves typically (not extreme) with
respect to the test distribution.
The p-valueis the probability under the null hypothesis of an observation which is more extreme as the

observation given by the data: P(T 3 tops ) = p.
A criteriais needed to asses extreme behaviour of the test statistic viathe p — valuewhich is called the level
of thetest: a.

The observed data does not fit to the null hypothesisif p < a or ftys| > t* wheret” isthe 1-a or 1-a/2
quantile of the prob. distribution P. t* is also called the critical value.
The conditionsp < a andty,s > t* are equivalent. If p < a or tys > t* the null hypothesis will be rejected.

If p2 a ortys® t* the null hypothesis can not be rejected — this does not mean that it istrue
Absence of evidence for adifference is no evidence for an absence of difference.

Heidelberg, October 2003



Practical microarray analysis— experimental design

Controlling the power —sample size calculations

The test should produce a significant result (level a) with a power of 1-b
If DlogFCye = d

null hypothesis. DlogFCie= 0 aternative: DlogFCy,e=d
0 d
3 ’ |
*
Z1-a/2 Snm Z1-p Shm S 2n,m =S 2>(1/n+1/m)

The above requirement isfulfilled if: d = (zy.a2 + Z1.5)*S nm
or

2
nxm (Z1-a/2 *21-p)" S
n+m d2

2
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Practical microarray analysis— experimental design

Controlling the power —sample size calculations

2.2
nxm (Z1-a/2 *Z1-p)" S

n+m d2

n = N>gand m = NX1-g) with M —total size of experiment and g1 ]0,1]

o
< -

2 .2
1 V(Zl-a/2+zl-b) xS

N = X
gX1- g) G

15

10

>
The size of the experiment isminimal if g= %2

0.0 0.2 0.4 0.6 0.8 1.0

Gamma

Heidelberg, October 2003
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Practical microarray analysis— experimental design

Sample size calculation for a microarray experiment |

Truth
Test result diff. expr. (H,) not diff. expr. (Ho)
diff. expr. D, Do D
not diff. expr. U, Uo U
Number of genes on array G, G G

dg = E[Do]/Go b]_ — E[Ul]/G]_ FDR:E[D()/D]
E: expectation / mean number

family type| error probability: ag = P[Dy>0]
family type Il error probability: be = P[U;>0]

Heidelberg, October 2003

1



Practical microarray analysis— experimental design

Sample size calculation for a microarray experiment ||

|ndependent genes Dependent Genes
P[Do=0] = (1-a0)*° = 1-ar Bonferroni: ap = agr/ Gy
D, ~ Binomia (G, ao)
E[Dg] = G, xao No direct link between the probability for
Dy and ak.

Poissonapprox.: E[Dg] ~ -In(1-af)

P[U]_:O] — (1_bl)G]_ — 1'bF 1‘b|: 3 maX{ O,l‘ Gl*)]_}
No direct link between the probability for
E[U1] = G, x(1-b,) U, and by. P Y

Heidelberg, October 2003




Practical microarray analysis— experimental design

Sample size calculation for a microarray experiment |11
for an array with 33000 independent genes
What are useful ay and b,?

ar=0.8 E[Dg] =-1n(1-0.8) =1.61 =1 P(exactly k false pos.) = exp(-l ) xl “ (k")
false pos. 0 1 2 3 4 5
Prob. 0.200 0.322 0.259 0.139 0.056 0.018

P(at least six false positives) = 0.0062
32500 unexpressed genes: a = 1.61/32500 = 0.0000495

500 expressed genes, set E[D;] = 450 1-b, = 450/500 = 0.9 b;=0.1 1-bg = (1-by) ®1 < 10
E[FDR] = 0.0035 95% quantile of FDR: 0.0089  (calculated by simulation)

Heidelberg, October 2003 13




Practical microarray analysis— experimental design

Sample size calculation for a microarray experiment |V

In order to complete the sample size calculation for a microarray experiment,
information on s is needed.

The size of the experiment, N, needed to detect a DIogFC,,. of d
on asignificance level a and with power 1-b is:
2

2
(z1-a/2 +21-p)° >
N =4 x
42

In asimilar set of experiments s for a set of 20 VSN transformed arrays was between
1.55 and 1.85. One may choose the value s* = 2.

d log(1.5) log(2) log(3) log(5) log(10)
N (s°=2) 1388 476 190 88 44
N (s*=1) 694 238 96 44 22

Sample size with a = 0.0000495, b = 0.1

Heidelberg, October 2003 14




Practical microarray analysis— experimental design

Sample size formula for a one group test

The test should produce a significant result (level a) with a power of 1-b

ifT=d
null hypothesis: T=0 aternative: T=d
0 d
: . |
4
Z1.a/2Sn Z1p Sh s’ =s’/n

The above requirement isfulfilled if: d = (z.a/2 + 21.5)%8n
or
(z1-ar2 t71- 0)? %S
n=
42

2

Heidelberg, October 2003



Practical microarray analysis— experimental design

M easurement model for cDNA arrays

Gene expression under condition A — intensity of red colour,
Gene expression under condition B — intensity of green colour
&l 0
M easurement: myg = Logzé edA t=gp+d+e

Igreen,B g

da/g — lOg-transformed true fold change of gene of condition A with respect to condition B
d - dye effect, e — measurement error with E[€] = 0 and Var(e) = s?

Measurement myg IS used to estimate unknown ga s

- Vertices mMRNA samples
Edges hybridization

Direction Dye assignment
Green ——» Red

Heidelberg, October 2003
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Practical microarray analysis— experimental design

Estimation of log fold change gas

Reference Design Dye swap design

B A

Estimate of gag

gE/B: Ma/r — Mp/r QR?B - (mA/B — mB/A)/2
Variability of estimate

Var(ga/g) = 26° Var(gayg) = 0.5%°
Sample Size increases proportional to the variance of the measurement!

Heidelberg, October 2003
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Practical microarray analysis— experimental design

2x2 factorial experimentsl|

treatment / condition Wild type Mutation
before treatment b b+m
after treatment b+t b+t +mty

b - basaline effect: t - effect of treatment; m- effect of mutation
y - differentia effect on treatment between WT and MUT

treatment effect on gene expr. in WT cells:
treatment effect on gene expr. in MUT célls:

differential treatment effect:

D"= (b+t)-b=t
DMUT_

= (b+t+mty)—(b+m=t+y

D'"WTip"Tory 1 0

How many cDNA arrays are needed to show y * 0 with significancea and power 1-b if ly | > In(5)?

Heidelberg, October 2003




Practical microarray analysis— experimental design

2x2 factorial experiments||

Study the joint effect of two conditions/ treatment, A and B, on the gene expression of a
cell population of interest.

There are four possible condition / treatment combinations:
AB: treatment applied to MUT cdlls

A treatment applied to WT cells 0 A
B: no treatment applied to MUT cells ¢
0: no treatment applied to WT cells ﬁ ﬁ

B |«——> | AB

Design with 12 slides

Heidelberg, October 2003 19
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2x2 factorial

experiments|||

Array M easurement

Ma/o Qwtd+e=t+d+e
Mo/a -Omotd+e=-t+d+e
Mg/o Botd+e=m+d+e
Mo/s -go+td+e=-m+d+e
Mas/o Owotd+te=m+t+y +d+e
Mo/ag -Opotd+e=-(m+t+y)+d+e
Mas/A Owpatd+e=m+y +d+e
Ma/aB -Oagatd+e=-(m+y)+d+e
Mag/B Owpstd+e=m+y +d+e
Mg/aB -Ongstdt+e=-(m+ty)+d+e
Ma/s wgtd+e=t-m+d+e
Me/A -vptd+e=-(t-m+d+e

. Each measurement has variance s°
- Parameter b is confounded with the dye effect

Heidelberg, October 2003



Practical microarray analysis— experimental design

geMA/o 0 8&: 10
¢Moa + c1-1 0
¢Mgol 20 1
C Ile/B - (;1 0) -1
¢Mag/o~ gl 11
ecMojag + gl -1 -1

Heidelberg, October 2003

47
Regression analysis ﬁ ﬁ
B |«——*| AB
0%
O— - For parameter g = (d, t, my ) define the design
0~ matrix X such that E(M) = Xq.
0 _ - For each gene, compute least square estimate
L * = (XX)™X'M BLUE
1igg O OOXM @
- G = - Obtain measures of precision of estimated
L ¢t effects
1+5m” . yseal possibilities of the theory of linear
- 1. gy P models.
1=+ Design problem:
- 1: - Each measurement M is made with variability
0~ s How precise can we estimate the
- components or contrasts of q7?
0g Answer: Look at (X’ X)™*

21



Practical microarray analysis— experimental design

2 X 2 factorial designs |V

» total. 2. by. 2. desi gn. mat

delta al pha beta psi > precision. 2. by. 2. rfc(x. mat)
A 0O 1 1 0 0 $i nv. mat
0/ A 1 -1 0 0
B/ O 1 0 1 0 tau nu pSi
0/ B 1 0 -1 0 tau 0.250 0.125 -0.25
AB/ 0 1 1 1 1 -0. 25
0/ AB 1 -1 -1 -1 0. 50
AB/ A 1 0 1 1
Al AB 1 0 -1 -1
AB/ B 1 1 0 1 au- mu
B/ AB 1 -1 0 -1 50 0.25
B/ A 1 -1 1 0
A B 1 1 -1 0

Var(A-B) =Var(A) + Var{B) —2XCov(A,B)

Heidelberg, October 2003
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Sample sizefor differential treatment effect (DTE)
Ina?2x 2factorial designs|

- Array has 20.000 genes: 19500 without DTE, 500 with DTE

- ap=0.9, using Bonferroni adjustment: a = 0.9/20.000 = 0.0000462
- Mean number of correct positivesissetto450: 1-b =0.9

. §%=0.7, taken from similar experiments

. A total dye swap design (12 arrays) estimatesy with precision s%/2 = 0.35

N = [4.074 + 1.282]%0.35/ In(5)* = 3.876

- The experiment would need intotal 4 x 12 = 48 arrays
- |sthere a chance to get the same result cheaper?

Heidelberg, October 2003
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Practical microarray analysis— experimental design

Design |

Common ref.

/AB

S

T~

2 X 2 factorial designsV

B

Design V
All-pairs

AB

/

S

\ 5

™S

93]

e

Heidelberg, October 2003

Design || Design 1| Design IV
Common ref. Connected Connected
AB o LAB v | AB
l B A B A <—v‘7 B
\ ; / \ - /' . /'

Scaled variances of estimated effects

D.I DIl [DBEE® D IV DV Dtot
tau 2 1 '0.75 1.00 0.5 0.25
mu 2 1 0.75 0.75 0.5 0.25
pSi 3 3 1.00 2.00 1.0 0.50
# chips 3 3 4 4 6 12

24



Practical microarray analysis— experimental design

Sample sizefor differential treatment effect (DTE)
Ina?2x2factorial designsi|

|s there a chance to get the same result cheaper?

- Using total dye swap design, the experiment would need in total 4 x 12 = 48 arrays

- Using Design 111, the effect of interest is estimated with doubled variance (4 ® 8) but
by using adesign which need only 4 arrays (12 ® 4).

- Thisreduces the number of arrays needed from 48 to 32.

Heidelberg, October 2003 25
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Experimental Design - Conclusions

- Designs for time course experiments

- In addition to experimental constraints, design decisions should be guided by knowledge of
which effects are of greater interest to the investigator.

- The unrealistic planning based on independent genes may be put into a more realistic
framework by using simulation studies — speak to your bio — statistician/informatician

- How to collect and present experience from performed microarray experiments on which to base
assumptions for planing (s°)?
- Further reading:

Kerr MK, Churchill GA (2001) Experimental design for gene expression microarrays,
Biostatistics, 2:183-201

Lee MLT, Whitmore GA (2002), Power and sample size for DNA microarray studies,
Stat. in Med., 21:3543-3570
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