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Topics

• Estimation and Statistical Testing

– Simulation

– Bootstrap

– Jackknife

– Permutation

• Prediction

– Jackknife

– Cross-validation

– Bootstrap
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Resampling

• Approximations obtained by random sampling or simulation are
called Monte Carlo estimates

Assume random variable Y has a certain distribution
→ Use simulation or analytic derivations to study how an estima-
tor, computed from samples from this distribution, behaves.

e.g. Y has lognormal distribution ⇒ var(median) = ?

1. analytical solution?

2. simulate 500 samples of size n from the lognormal distribution,
compute the sample median for each sample, and then compute
the sample variance of the 500 sample medians.

Problem: need knowledge of the population distribution function
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Example of 100 random deviates

?rlnorm

n <- 100

set.seed(12345)

y <- matrix(rlnorm(500*n,meanlog=0,sdlog=1),nrow=n,ncol=500)

summary(apply(log(y),2,mean))

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.307200 -0.060810 -0.001447 0.003774 0.076070 0.268100

summary(apply(log(y),2,sd))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.7787 0.9433 0.9941 0.9945 1.0440 1.2190

ym <- apply(y, 2, median)

print(var(ym))

[1] 0.01567178
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Baron Münchhausen

• He found himself at the bottom of a lake (swamp)

• ... and pulled himself up by his bootstraps!

• No fraud!!



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Resampling and the Bootstrap 6

The Bootstrap

Efron’s bootstrap is a general purpose technique for obtaining esti-
mates of properties of statistical estimators without making assump-
tions about the distribution of the data.

Often used to find

1. standard errors of estimates

2. confidence intervals for unknown parameters

3. p values for test statistics under a null hypothesis
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The Bootstrap

Suppose Y has a cumulative distribution function (cdf)
F (y) = P (Y ≤ y)

We have a sample of size n from F (y), Y1, Y2, . . . , Yn

Steps:

1. Repeatedly simulate sample of size n from F

2. Compute statistic of interest

3. Study behavior of statistic over B repetitions
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• Without knowledge of F we use the empirical cdf
Fn(y) = 1

n

∑n
i=1 I(Yi ≤ y) as an estimate of F .

• Pretend that Fn(y) is the original distribution F (y).

• Sampling from Fn(y) is equivalent to sampling with replacement
from originally observed Y1, ..., Yn



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Resampling and the Bootstrap 10

• For large n the expected fraction of original data points that are
selected for each bootstrap sample is 0.632

P (obs. i ∈ bootstrap sample b) = 1− (1− 1

n
)n

≈ 1− e−1

= 0.632

Note: 1 − 1
n is probability for not being selected at a specific drawing; with n

drawings we get that (1− 1
n)n is probability of not being selected at least once.

• From bootstrap sampling we can estimate any aspect of the distri-
bution of s(y) [which is any quantity computed from the data y],
for example its standard error

ŝeB =

{
1

B − 1

B∑
b=1

(θ̂∗(b)− θ̂∗(·))2

}1/2

where θ̂∗(b) = s(y∗b) is the bootstrap replication of s(y) and

θ̂∗(·) =
∑B

b=1 θ̂∗(b)/B.
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The Jackknife (“a large strong pocketknife”, Quenouille, 1949)

• We have a sample y = (y1, ..., yn) and estimator θ̂ = s(y).

• Target: Estimate the bias and standard error of θ̂.

• The leave-one-out observation samples

y(i) = (y1, ..., yi−1, yi+1, ..., yn)

for i = 1, ..., n are called jackknife samples.

• Jackknife estimators are θ̂(i) = s(y(i)).
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• The jackknife estimate of bias is

b̂iasJ = (n− 1)(θ̂(·) − θ̂)

where θ̂(·) =
∑n

i=1 θ̂(i)/n

• The jackknife estimate of the standard error is

ŝeJ =

√
n− 1

n

∑
(θ̂(i) − θ̂(·))2

• The Jackknife often provides a simple and good approximation to
the bootstrap (see below) for estimation of standard error and bias.

• But can fail if θ̂ is not “smooth” (i.e. differentiable)!
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Example Accuracy of the median

y <- scan()

10 27 31 40 46 50 52 104 146

median(y)

[1] 46

Note that the median is not a differentiable (i.e. smooth) function of y.

Increasing the 4th smallest value y = 40 does not change the median
until y exceeds 46, after that, the median is equal to y , until y exceeds
50!
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Example Accuracy of the median (cont)

The jackknife values of the median are

n <- length(y)

ymat <- matrix(y, n-1, n)

y.j <- rev(apply(ymat, 2, median))

print(y.j)

[1] 48 48 48 48 45 43 43 43 43

Note that there are only 3 distinct values.
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Example Accuracy of the median (cont)

Now compare it with the bootstrap estimate using 200 bootstrap sam-
ples

se.j <- sqrt( (n-1)/n * sum( (y.j -mean(y.j))^2 ))

set.seed(54321)

ymat <- matrix(sample(y, size=n*200, replace=T), n, 200)

y.b <- apply(ymat, 2, median)

se.b <- sd(y.b)

print(c(se.j, se.b))

[1] 6.681465 11.313352

• Fix the inconsistency by using delete-d jackknife

• Use jackknife to measure the uncertainty of the bootstrap estimate
of the standard error of a statistic s(y): jackknife-after-bootstrap
→ cp. function jack.after.boot from R package boot.
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Sensitivity analysis (Jackknife after Bootstrap)

How different would the results have been if an observation yj has
been absent from the original data?

Measure effect of yj on calculations by comparing full simulation with
the subset of statistics t∗1, ..., t

∗
B obtained from bootstrap samples

without yj.

Using frequencies f ∗bj counting the number of times yj appears in the
bth simulation we restrict to replicates with f ∗bj = 0.

⇒ Measure effect of yj on the bias by scaled difference

n(bias−j − bias) =

 1

B−j

∑
b:f∗

bj=0

(t∗b − t−j)−
1

B

∑
(t∗b − t)


t−j is the value of t when yj is excluded from the original data.
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Hypothesis testing

• Null hypothesis: absence of some effect

• Hypothesis test

– within the context of a statistical model

– without a model
(1) non-parametric
(2) permutation

• Many hypotheses

– Testing too many hypotheses is related to fitting too many pre-
dictors in a regression model

– Point estimates are badly biased when the quantity to be esti-
mated was determined by “data dredging” (cp. shrinkage).
This is especially true when one wants to publish an effect es-
timate corresponding to the hypothesis yielding the smallest
p-value



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Resampling and the Bootstrap 18

Classical inference statistic: parametric statistical tests

• statistical hypothesis concerning the distribution of features of in-
terest in a population (or its parameters)

• checking the hypothesis by random sampling from the population

• Assumption:
every element of the population has the same chance to be included
into the sample

• a statistical test is based on a test statistic T which measures the
discrepancy between the data and the null hypothesis

Permutation tests

• Also called randomization tests, rerandomization tests, exact tests.

• Introduced in the 1930s.

• Usually require only a few weak assumptions.
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Example: t-test for independent samples

0.
0

0.
1

0.
2

0.
3

0.
4

de
ns

ity

µx µy

• Comparison of expectations in two normal distributed populations

• Assumptions:
two normal distributed populations with means µx and µy and
identical variances σ2

x = σ2
y
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Null hypothesis: H0 : µx = µy

Alternative hypothesis (two-sided): HA : µx 6= µy

• random samples X = {x1 . . . , xnx
} and Y = {y1, . . . , yny

}
• test statistic

T =
X − Y√

(nx−1)S2
x+(ny−1)S2

y

(nx−1)+(ny−1)

·
√

nx · ny

nx + ny

(X , Y and S2
x, S2

y are sample means and sample variances, nx, ny

sample sizes)

• under H0 holds T ∼ tnx+ny−2 (t-distribution with nx + ny − 2 d.f.)

• compute the p-value for the observed value t of test statistic T

p = 1−P (|T | ≤ |t||H0) = 2[1−P (T ≤ |t||H0)] = 2[1−Ft,nx+ny−2(|t|)]

• Decision rule: reject H0 if p-value ≤ α
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The p-value

• The p-value is the chance of obtaining a test statistic as or more
extreme (as far away from what we expected or even farther in the
direction of the alternative) than the one we got, assuming the null
hypothesis is true.

• This chance is called the observed significance level, or p-value.

• A test statistic with a p-value less than some prespecified false
positive level (or size) α is said to be ’statistically significant’ at
that level.

• The p-value represents the probability that we would observe a
difference as large as we saw (or larger) if there were really nothing
happening other than chance variability.

• The significance level (or size) α of a test is the probability of
making a Type I error; that is, α is the probability of deciding
erroneously on the alternative when, in fact, the hypothesis is true.
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The power of a test

• Two types of error

Decision
The Facts µx = µy µx 6= µy

µx = µy Type I error α
µx 6= µy Type II error β

• The power 1 − β of a test is 1 minus the probability of making a
type II error; that is, 1 − β is the probability of deciding on the
alternative when the alternative is the correct choice.

• The ideal statistical test would have a significance level α of zero
and a power of 1, but this ideal can not be realized.

• In practice, we will fix a significance level α > 0 (usually this will
be 0.05), and choose a statistic that maximizes or comes closest to
maximizing the power 1− β.
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Five steps to a Permutation Test

1. Analyze the problem

• What is the hypothesis? What are the alternatives?

• What distribution is the data drawn from?

• What losses are associated with bad decisions?

2. Choose a test statistic which will distinguish the hypothesis from
the alternative.

3. Compute the test statistic for the original labelling of the observa-
tions.

4. Compute the test statistic for all possible permutations (rearrange-
ments) of the labels of the observations.

5. Make a decision

Reject the hypothesis and accept the alternative if the value of the
test statistic for the original labelling (original data) is an extreme
value in the permutation distribution of the statistic. Otherwise,
accept the hypothesis and reject the alternative.
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Example t test vs. permutation test

• data

X Y
A B C D E F

121 118 110 34 12 22
xn = 116.33 yn = 22.67

t test statistic: t = 13.0875, two-sided p-value: p = 0.0002

• after one permutation:

X Y
A B D C E F

121 118 34 110 12 22
xn = 91 yn = 48

• how many permutations exist?

C6
3 =

(
6

3

)
=

6!

3! · 3!
=

6 · 5 · 4
1 · 2 · 3

= 20
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permutation X Y xn yn xn − yn t
1 ABC DEF 116.33 22.67 93.67 13.087
2 ABD CEF 91.00 48.00 43.00 1.019
3 ABE CDF 87.00 52.00 35.00 0.795
4 ABF CDE 83.67 55.33 28.33 0.627
5 ACD BEF 88.33 50.67 37.67 0.866
6 ACE BDF 84.33 54.67 29.67 0.659
7 ACF BDE 81.00 58.00 23.00 0.500
8 ADE BCF 59.00 80.00 -21.00 -0.455
9 ADF BCE 55.67 83.33 -27.67 -0.611
10 AEF BCD 51.67 87.33 -35.67 -0.813
11 BCD AEF 87.33 51.67 35.67 0.813
12 BCE ADF 83.33 55.67 27.67 0.611
13 BCF ADE 80.00 59.00 21.00 0.455
14 BDE ACF 58.00 81.00 -23.00 -0.500
15 BDF ACE 54.67 84.33 -29.67 -0.659
16 BEF ACD 50.67 88.33 -37.67 -0.866
17 CDE ABF 55.33 83.67 -28.33 -0.627
18 CDF ABE 52.00 87.00 -35.00 -0.795
19 CEF ABD 48.00 91.00 -43.00 -1.019
20 DEF ABC 22.67 116.33 -93.67 -13.087

• Test decision: In two of 20 cases overall the absolute value of the
test statistic t is greater than or equal to the absolute value of
t = 13.087 we obtained for the original labelling.

Therefore we obtain the exact p value p = 2/20 = 0.1.
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• Note: 0.1 is the smallest p value you can get for comparing two
groups of size 3.

• Note: If both groups have equal size only half of permutations is
really needed (symmetry)

• Note: The number of permutations for comparing two groups of
size m and n−m is

Cn
m =

(
n

m

)
=

n!

m! · (n−m)!

e.g. for n = 52 and m = 18

C52
18 =

(
52

18

)
=

52!

18! · 34!
= 4.27× 1013

• It may be necessary to use Monte Carlo sampling to approximate
the permutation test
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Microarray Data

Estimate the joint distribution of the test statistics T1, . . . , TG under
the complete null hypothesis HC

0 by permuting the columns of the
(G× n) gene expression data matrix X.

Permutation algorithm for non-adjusted p-values

• For the b-th permutation, b = 1, . . . , B

1. Permute the n columns of the data matrix X.

2. Compute test statistics t1,b, . . . , tG,b for each hypothesis.

• The permutation distribution of the test statistic Tg for hypoth-
esis Hg, g = 1, . . . , G, is given by the empirical distribution of
tg,1, . . . , tg,B. For two-sided alternative hypotheses, the permuta-
tion p-value for hypothesis Hg is

p∗g =
1

B

B∑
b=1

I(|tg,b| ≥ |tg|)

where I(.) is the indicator function, equaling 1 if the condition in
parenthesis is true, and 0 otherwise.
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Permutation algorithm of Westfall & Young (maxT)

• Order observed test statistics: |tr1
| ≥ |tr2

| ≥ . . . ≥ |trG
|.

• For the b-th permutation of the data (b = 1, . . . , B):

– divide the data into its artificial control and treatment group

– compute test statistics t1,b, . . . , tG,b

– compute successive maxima of the test statistics

uG,b = |trG,b|
ug,b = max{ug+1,b, |trg,b|} for g = G− 1, . . . , 1

• compute adjusted p-values:

p̃∗rg
=

1

B

B∑
b=1

I(ug,b ≥ |trg
|)
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Permutation algorithm of  Westfall & Young  – Example

:

7.13

3.42

2.85

0.24

0.11

|t|gene

03.01.83

03.02.12

13.03.05

11.30.84

11.31.31

I(ub>|t|)ub|tb|gene

sort observed 
values B=1000 permutations                       adjusted p-values

0.04848

0.145145

0.138138

0.876876

0.935935

= ∑ / B∑ p~
Gr

t

1r
t

1−Gr
t

2r
t

O. Hartmann - NGFN Symposium, 19.11.2002 Berlin
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Nonparametric Bootstrap Tests

• permutation tests are special nonparametric resampling tests, in
which resampling is done without replacement

• the special nature of significance tests requires that probability
calculations be done under a null hypothesis model, that means

we must resample from a distribution F̂0, say, which satisfies the
relevant null hypothesis H0

• the basic bootstrap test will be to compute the p-values as

pboot = P ∗(T ∗ ≥ t|F̂0)

approximated by

p =
1

B

B∑
b=1

I(t∗b ≥ t)

using the results t∗1, t
∗
2, . . . , t

∗
B from B bootstrap samples
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Example: comparison of population means H0 : µx = µy vs.
HA : µx 6= µy

• if the shapes of the underlying distributions are identical, then the
two distributions are the same under H0

• choose for F̂0 the pooled empirical distribution function of the two
samples

• the bootstrap test will be the same as the permutation test, except
that random permutations will be replaced by random samples of
size nx + ny drawn with replacement from the pooled data
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(Monte Carlo) Permutation vs. Bootstrap Resampling

• In MC sampling one samples values of the test statistic from its
underlying permutation distribution

• In Bootstrapping there are two sources of error:

1. Error caused by resampling from an empirical cumulative dis-
tribution function formed from the initial data set.

2. Error caused from by carrying out only a finite number of re-
samples.

• For messier problems when the test statistic has a complicated
analytically intractible distribution the bootstrap can provide a
reasonable answer while the permutation test may not work.

• Permutation methods only apply in a narrow range of problems.
When they apply, as in testing F = G in two-sample problems,
they give “exact” answers without parametric assumptions
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(Monte Carlo) Permutation vs. Bootstrap Resampling
(cont)

An example comparing the location of two distributions by one-sided
tests:

x <- scan()

16 23 38 94 99 141 197

y <- scan()

10 27 31 40 46 50 52 104 146

The observed test statistic X̄ − Ȳ is

mean(x)-mean(y)

[1] 30.63492
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(Monte Carlo) Permutation vs. Bootstrap Resampling
(cont)

We want to compute P (X̄ − Ȳ ≥ 30.63|F = G). The permutation
test is done using 16!/(7!9!) = 11440 partitions of the 16 cases into
two groups of 9 and 7, respectively.

library(exactRankTests)

perm.test(x, y, alter="greater")

2-sample Permutation Test

data: x and y

T = 608, p-value = 0.1406

alternative hypothesis: true mu is greater than 0

A bootstrap test was done with 1000 bootstrap samples.
In 122 of these the bootstrap estimate of X̄ − Ȳ equalled or exceeded
the original mean difference of 30.63.
Thus the bootstrap estimate of the p-value is 122/10000 = 0.122
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When does the permutation test fail?

The permutation test is exact, if:

• in the one-sample problem, the variables have a symmetric distri-
bution

• in the two- and k-sample problem, the variables are exchangeable
among the samples

A permutation test for comparing the means of two populations does
not fail, if either the variances are the same, or the sample sizes are
the same (cp. Romano, JASA 1990, p.686-692).

A permutation test for the difference of the medians of two distri-
butions will not be exact, even asymptotically, unless the underlying
distributions are the same. This is independent of the sample sizes
(cp. Romano, JASA 1990, p.686-692).

A permutation test fails, if one tests for interaction in an unbalanced
design! (cp. Good, Permutation Tests, 1993).
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When does the permutation test fail?

An example comparing the location of two distributions by two-sided
tests, where the true means and variances as well as the two group
sizes are different:

x <- rnorm(25,0,1)

y <- rnorm(75,1,4)

perm.test(x,y,exact=T)

boot.test(x,y,B=5000)

t.test(x,y)

Two-sample permutation test: p = 0.174
Two-sample bootstrap test using the t-test statistic: p = 0.0302
Welch two-sample t-test: p = 0.0243
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Bootstrapping in more complicated situations

• Two different ways to bootstrap a regression model

1. Bootstrap data pairs xi = (ci, yi)

2. Bootstrap the residuals

⇒ xi = (ci, ciβ̂ + ε̂i1)
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Example

Regression model yi = ciβ + εi

• To generate x∗ we first select a random sample of bootstrap error
terms

F̂ → ε∗ = (ε∗1, ..., ε
∗
n)

• Bootstrap responses y∗i are generated by

y∗i = ciβ̂ + ε∗i β̂ fixed

• The parametric bootstrap data set is then x∗ = (x∗1, ...., x
∗
n) with

x∗i = (ci, y
∗
i )

• The bootstrap least squares estimator β̂∗ is

β̂∗ = (CTC)−1CTy∗

with
var(β̂∗) = σ̂2

F (CTC)−1
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Notes:

• The parametric bootstrap test samples new data under the Null
hypothesis by assuming a distribution of the test statistic which
depend upon nuisance parameters.

• Bootstrapping pairs is less sensitive to assumptions than bootstrap-
ping residuals

• Bootstrap confidence intervals can be calculated using the quantiles
of the calculated bootstrap sample.
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When might the bootstrap fail?

• Incomplete data

• Dependent data

• Dirty data (“outliers”)
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Outlook: Bootstrap aggregating

Bagging (acronym for Bootstrap aggregating)
fits many (large) trees to bootstrap-resampled versions of the training
data, and builds classifiers/predictors by majority vote/average.

Growing the tree on a learning sample L = {(yi, xi), i = 1, ..., n}
provides a predictor φ(x,L) for the response y.

Using a sequence of learning samples {Lk}, drawn from the same un-
derlying distribution as L, allows to replace φ(x,L) by the average of
φ(x,Lk),

φA(x) = Eφ(x,L)

Bootstrapping lets us imitate the process leading to φA(x) by using B
bootstrap samples L1, ...,LB from L and computing

φB(x) = aveB
b=1φ(x,Lb)
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Bagging Survival Estimates

Possibilities:

1. Pointwise median of Kaplan-Meier curves

2. Do not aggregate point predictions but predict the conditional sur-
vival probability function by bagged survival trees:

• Draw B bootstrap samples

• Construct survival tree on each bootstrap sample

• For a new observation

– determine the B terminal leaves corresponding to this obser-
vation

– aggregate the B bootstrap subgroups of observations belong-
ing to these B terminal leaves, i.e. patients are aggregated
with repetition.

– compute the Kaplan-Meier estimate using the aggregated set
of observations


