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Overview

« Exploratory data analysis: Unsupervised learning

« Example: Time series

* Distance measures: Object (dis-)similarities

e Cluster algorithms: Grouping of data

e Clustering microarray data: Comparisons and hints

* Other exploratory methods for microarray data
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Interactive exploratory data analysis

YOU ARE ALL GENES...
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Classification tasks for microarrays

e (lassification of SAMPLES:

Generate gene expression profiles that can

(1) discriminate between different known cell types or
conditions, e.g. between tumor and normal tissue,

(1) 1dentify different and previously unknown cell types or
conditions, €.g. new subclasses of an existing class of tumors.

e (lassification of GENES:

(1) Assign an unknown cDNA sequence to one of a set of known
gene classes.

(1) Partition a set of genes into new (unknown) functional
classes on the basis of their expression patterns across a
number of samples.
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Classification

 Paper of Golub et al. (1999):

Molecular classification of cancer:

class discovery and class prediction by gene expression
monitoring, Science 286, p. 531-537.

« Machine learning:

Supervised learning vs. unsupervised learning.

e Statistics:

Discriminant analysis vs. cluster analysis.
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Classification

MESSAGE 1:

Discriminant analysis: CLASSES KNOWN

Cluster analysis: CLASSES NOT KNOWN
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Classification

MAX-PLANCK-GESELLSCHAFT

 Difference between discriminant analysis (supervised
learning) and cluster analysis (unsupervised learning) is
important:

* If the class labels are known, many different supervised
learning methods are available. They can be used for
prediction of the outcome of future objects.

e If the class labels are unknown, unsupervised learning
methods have to be used. For those, it is difficult to ascertain
the validity of inferences drawn from the output.
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Cluster analysis

MAX-PLANCK-GESELLSCHAFT

* Goalin cluster analysis:

Grouping a collection of objects into subsets or “clusters”,

such that those within each cluster are more closely related to
one another than objects assigned to different clusters.

* Questions:
1. What does “closely related” mean?
2. How do we find such subsets or clusters?
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Cluster analysis

« Two “ingredients” are needed to group objects
into subsets:

1. Distance measure:

A notion of distance or similarity of two objects: When are
two objects close to each other?

2. Cluster algorithm:

A procedure to minimize distances of objects within groups
and/or maximize distances between groups.
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Cluster analysis

* Clustering columns: grouping similar
samples

* Clustering rows: Grouping genes with
similar trajectories
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expression matrix
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Cluster analysis: Bi-Clustering

e Clustering columns: grouping similar The gene
samples expression matrix

* Clustering rows: Grouping genes with probes
similar trajectories

>

 Biclustering: Group genes that have similar
partial trajectories 1n a subset of the
samples

Soud3

Literature:
Tanay, A., Sharan, R., and Shamir, R.
(2002): Discovering Statistically
Signifnicant Biclusters in Gene

Expression Data, Bioinformatics 18,
Suppl.1, 136-144.
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Time series example

Biology:
Measurements of gene expression
on 4 (consecutive) days.

Statistics:

Every gene 1s coded by a vector
of length 4.

gene expression

e steep up: X, =(2,4,9,0) ; ; ; ;
(2/4, 414, 5/4,6/4) <L N— - SR

° up: X, = . | |
« down:  x,=(6/4, 4/4, 3/4, 2/4) *i 2' ;':, dit
e change: x,=(2.5,3.5,4.5,1) day
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Distance measures - Time series example

Euclidean distance:

The distance between two vectors 1s the square root of the sum of
the squared differences over all coordinates.

do(x,, X,) = \J(2-2/4)> + (4-4/4) +(5-5/4)* + (6-6/4)> =3~/3/4 ~2.598

e steep up: X, =(2,4,9,0)
° up: X, = (2/4, 4/4, 5/4, 6/4)
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Distance measures - Time series example

Euclidean distance:

The distance between two vectors 1s the square root of the sum of

the squared differences over all coordinates.

do(x,, X,) = \J(2-2/4) + (4-4/4)> +(5-5/4)* + (6-6/4)> =3~/3/4 ~2.598

e steep up: X, =(2,4,9,0)
° up: X, = (2/4, 4/4, 5/4, 6/4)

* change:

X, = (2.5, 3.5, 4.5, 1)
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0 2.60 | 2.75 | 2.25
2.60 0 1.23 | 2.14
275 | 1.23 0 2.15
225 | 2.14 | 2.15 0

Matrix of pairwise distances
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Distance measures - Time series example

Manhattan distance:

The distance between two vectors 1s the sum of the absolute
(unsquared) differences over all coordinates.

dy (x,, X,) = |2-2/4]+|4-4/4|+|5-5/4| +|6-6/4 = 51/4 = 12.75

e steep up: X, =(2,4,9,0)
° up: X, = (2/4, 4/4, 5/4, 6/4)
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Distance measures - Time series example

Manhattan distance:

The distance between two vectors 1s the sum of the absolute
(unsquared) differences over all coordinates.

dy (x,, X,) = |2-2/4]+|4-4/4|+|5-5/4| +|6-6/4 = 51/4 = 12.75

e steep up: X, =(2,4,9,0)
° up: X, = (2/4, 4/4, 5/4, 6/4)

* change:

X, = (2.5, 3.5, 4.5, 1)
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Distance measures - Time series example

Correlation distance:

Distance between two vectors 1s 1-p, where p 1s the Pearson
correlation of the two vectors.

d.(x,x,)=1- (2_L7)(;_17)+(4_L7)(A_17)+(5—f)(§-{g)+(6_i)(g_{g
c\ A 2 \/(2_17) +(4- 17) +(5- 17) +(6-17) \/(2 1Ty 4 (4o %) (- }g) (- }Z

e steep up: X, =(2,4,9,0)
° up: X, = (2/4, 4/4, 5/4, 6/4)
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Distance measures - Time series example

Correlation distance:

Distance between two vectors 1s 1-p, where p 1s the Pearson
correlation of the two vectors.

de(x;,%;)=1- - DG-D+EDE-D+E-DE- D+ DG

JO- D 4 (@1 (5= 1) (6= 1) (2= 4 (A=Y +(5-11) 4 (8- 11)2

* steep up: X,=(2,4,5,06) 0 0 2 | 1.18
* up: X, = (2/4, 4/4, 5/4, 6/4) 0 0 2 | 1.18
e down:  Xx;=(6/4,4/4, 3/4, 2/4) 2 2 0 | 0.82
e change: x,=(2.5,3.5,4.5,1) 1.18 | 1.18 | 0.82 | 0

Matrix of pairwise distances
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Distance measures - Time series example

MAX-PLANCK-GESELLSCHAFT

Euclidean Manhattan Correlation
0 2.60 | 2.75 | 2.25 0 12.75 | 13.25 | 6.50 0 0 2 1.18
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Distance measures - Time series example

Summary:

 Euclidean distance measures average difference
across coordinates.

 Manhattan distance measures average difference
across coordinates, in a robust way.

 Correlation distance measures difference with
respect to trends.
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Distance measures - standardization

Standardization:

Data points are normalized with respect to mean and variance:

: X— [l
Apply transtformation X F—> —=

of the mean (usually average across coordinates) and o is an
estimator of the variation (usually empirical standard deviation).

, Where 4 1S an estimator

After standardization, Fuclidean distance and Correlation
. . . 2
distance are equivalent(!): d,(x,x,)” =2nd.(x,x,)

Standardization makes sense, if you are not interested in the
magnitude of the effects, but in the effect itself. Results can be
misleading for noisy data.
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Distance measures

MESSAGE 2:

Appropriate choice of distance measure
depends on your intention!
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Cluster algorithms

Most popular cluster algorithms:

Hierarchical clustering algorithms

K-means
PAM (Partitioning around medoids)
SOM’s (Self-Organizing Maps)

K-means and SOM's take original data directly as input.

Hierarchical cluster algorithms and PAM allow the choice of a
dissimilarity matrix d, that assigns to each pair of objects x; and x;
a value d(x;,X;) as their distance.
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Hierarchical cluster algorithms

MAX-PLANCK-GESELLSCHAFT

* Hierarchical clustering was the first algorithm used in
microarray research to cluster genes (Eisen et al. (1998)).

 First, each object 1s assigned to its own cluster. Then,
iteratively, the two most similar clusters are joined,
representing a new node of the clustering tree. The node 1s
computed as average of all objects of the joined clusters.
Then, the similarity matrix 1s updated with this new node
replacing the two joined clusters. This process 1s repeated
until only one single cluster remains.
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Hierarchical cluster algorithms

« C(Calculation of distance between two clusters 1s based on
object dissimilarity between the objects from the two
clusters:

= Average linkage: Average distance
= Single linkage: Smallest distance

» Complete linkage: Largest distance

 Instead of agglomerative clustering, sometimes divisive
clustering 1s used:

[teratively, best possible splits are calculated.
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Hierarchical cluster algorithms

 Visualization of hierarchical clustering through dendrogram:
= (Clusters that are joined are combined by a line.
= Height of line 1s average distance between clusters.
" (Cluster with smaller variation 1s plotted on left side.

* The procedure provides a hierarchy of clusterings, with the
number of clusters ranging from 1 to the number of objects.

 BUT:
= Parameters for distance matrix: n(n-1)/2
* Parameters for dendrogram: n-1.

— Hierarchical clustering does not show the full picture!
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Time series example

* FEuclidean distance:

Similar values are
clustered together

steepup-
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Time series example

« Manhattan distance:
Similar values are
clustered together
(robust)

steepup -

gene expression

Jorg Rahnenfuhrer, MPI Informatik

Cluster Dendrogram

up

steep up
change

cdown

MANHATTAN distance
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Time series example

e (Correlation distance:

Similar trends are
clustered together

steepup

gene expression
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Iyer et al., Science, Jan 1999:

200, Cluster C {32 genes}
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Clustering time series data — literature examples

MAX-PLANCK-GESELLSCHAFT

Iyer et al.,
Science,
Jan 1999:

Genes from
functinal
classes are
clustered
together
(sometimes!).

Careful
interpretation
neccessary!
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Clustering time series data — literature examples

Golub et al.: Leukemia dataset, htp:/www.genome.wi.mit.edu/MPR

3 cancer classes: Cluster Dendrogram

25 acute myeloid
leukemia (AML),

4’7 acute lympho- - —
blastic leukemia

(ALL), the latter - g ;EE L= ’Jw F}H
9 T-cell and 38 o = a2 $’£g

=2
B-cell. - - = ==

12
|

10

AML
_ 1
ALL

Height

Dendrogram for 38 training
data shows perfect separation. helust ¢ “average"
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http://www.genome.wi.mit.edu/MPR

Cluster algorithms — k-means

« K-means is a partitioning algorithm with a prefixed number k of
clusters. It tries to minimize the sum of within-cluster-variances.

* The algorithm chooses a random sample of k different objects as
initial cluster midpoints. Then it alternates between two steps until
convergence:

1. Assign each object to its closest of the k midpoints with respect to
Euclidean distance.

2. Calculate k new midpoints as the averages of all points assigned to the old
midpoints, respectively.

* K-means 1s a randomized algorithm, two runs usually produce
different results. Thus it has to be applied a few times to the same
data set and the result with minimal sum of within-cluster-
variances should be chosen.
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« SOM’s are similar to k-means,
but with additional constraints.

* Mapping from input space onto
one or two-dimensional array of
k total nodes.

* [teration steps (20000-50000):

» Pick data point P at random

= Move all nodes in direction of P,
the closest node most, the further a
node 1s in network topology, the

less Data point  Node (cluster prototypes)
- D§cr§ase 2.1m0unt of movement Tamayo et al. (1999): First use of SOM’s
with iteration steps for gene clustering from microarrays
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Cluster algorithms - PAM

PAM (Partitioning around medoids, Kaufman and Rousseeuw
(1990)) 1s a partitioning algorithm, a generalization of k-means.

For an arbitrary dissimilarity matrix d it tries to minimize the sum
(over all objects) of distances to the closest of k prototypes.

T
Objective function: Z j:Tin ; d(i,m;)| (d: Manhattan, Correlation, etc.)
£ Ty

BUILD phase: Initial 'medoids®.
SWAP phase: Repeat until convergence:

= Consider all pairs of objects (1,]), where 1 1s a medoid and j not, and make the
1 ¢ j swap (if any) which decreases the objective function most.
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Comparative study

« Comparative study for tumor classification with microarrays:
Comparison of hierarchical clustering, k-means, PAM and SOM’s

« Data sets:

= Golub et al: Leukemia dataset, /ittp:/www.oenome.wi.mit.edu/MPR,
3 cancer classes: 25 acute myeloid leukemia (AML) and 47 acute

lymphoblastic leukemia (ALL), the latter 9 T-cell and 38 B-cell,
Affymetrix high-density oligonucleotide chip, threshold and filtering

preprocessing steps as in paper.
= Ross et al.: NCI60 cancer dataset, /ittp.//cenome-www.stanford.edu/nci60),

9 cancer classes: 9 breast, 6 central nervous system, 7 colon, 8 leukemia, 8
melanoma, 9 lung, 6 ovarian, 2 prostate, 8 renal,

cDNA microarray, log, imputation of missing values with k-nearest-
neighbor method and correlation distance.
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Comparative study — cluster validity

 If true class labels are known, the validity of the clustering can be
verified by comparing true class labels and clustering label.

N... table of observations Zz ZZ z; Z;
n;... number of observations| [NV | - _

in class 1 and cluster j "L P T T

ni ng ... N | N,

Rand index:
Probability of > ) — [Z ) (nz'“")] (%)
randomly drawing | Rand = - % :
consistent” pair He o)) - |smeem|/e
of observations : £ : .
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Comparative study — method

Definition 5.1 BOSC (Bootstrap-scaling):
Let n,p,k,B € IN>q. Let (M;j)i=1.p,j=1..n be a data (gene expression) matriz
of dimension p X n (for p genes and n samples) and (l1,...,1,) € (1,..., k)" an
n-dimensional label vector that assigns every sample to one of k clusters (tumor
types).
1. Forbe (1,...,B):
Create replicate M% by randomly drawing from all values M; ;, of the
original data matriz that fulfill ic =i and jo € {7 : ; =15, }.

2. Fors € (81,...,85) with 0 < 81 <82 < ... <85 < 00:
Define the modified (stretched) replicate ij(s) as

1
#{jo:l; =15} 2.

Jol; =l_,-0

M,% (s) :=(1—s) Mo | + s M;} (5.1)

Jorg Rahnenfihrer, MPI Informatik NGFN course, Heidelberg, October 8, 2003



Comparative study - method

Color — Group

Shape — Cluster
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Comparative study - method

Color — Group

Shape — Cluster

B Groupl
== Group 2
® Group3
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Comparative study - winners

MAX-PLANCK-GESELLSCHAFT

Winners:

— K -means

— = = Hierarchical,
Correlation

seenees PAM,
Manhattan
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Comparative study - conclusions

* Superiority of k-means with repeated runs

Similar experience for discriminant analysis: FLDA 1s best
(Dudott et al., 2001)

* Superiority of PAM with Manhattan distance,

especially for noisy data

« BUT: Differences are not very significant and depend on the
specific dataset!

* Preselection of genes important
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Classification

MESSAGE 3:

Simple cluster algorithms work better
in case of little model knowledge!

(But: More sophisticated methods might be more
appropriate with more a priori knowledge)
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Recommendations

* Preselection of genes:
For clustering of samples, choose top 100-200 genes with respect
to variance across samples.

This decreases noise and computation time.

 Number of clusters:
There 1s no general rule how to select the ‘correct’ number of
clusters. Try different numbers and choose a cutoff, for which

the performance of the clustering algorithm breaks down.
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Recommendations

* Interest in specific genes:

If you search for genes that are coregulated with a specific gene of
you choice, DO SO!
Don’t do clustering, but create a list of genes close to your gene

with respect to a distance of your choice.

* Clustering after feature selection?
NO! Don’t select genes first based on the outcome of some
covariable (e.g. tumor type) and then look at the clustering.
You will ALWAYS find difference w.r.t. your covariable, since
this 1s how you selected the genes!
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Other exploratory methods

 PCA: Principal Component Analysis
Data are projected on lower dimensional space.
Iteratively, the direction with largest variance 1s selected as i-th
principal component (orthogonality constraint).
Can be used as preprocessing step, but low interpretability.

* Correspondence Analysis
Genes and samples are projected into two-dimensional plane to
show associations between them.

« ISIS: A class discovery method
Search for class distinctions that are characterized by
differential expression of just a small set of genes, not by
global similarity of the gene expression profile.
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R commands and libraries

 library(mva)
* Hierarchical clustering: hclust()
» Kmeans: kmeans()

= Principal components: princomp()

* library(cluster)
= PAM: pam()

 ISIS package: http://www.molgen.mpg.de/~heydebre

Jorg Rahnenfuhrer, MPI Informatik NGFN course, Heidelberg, October 8, 2003



SUMMARY

MESSAGE 1:
Discriminant analysis: CLASSES KNOWN
Cluster analysis: CLASSES NOT KNOWN

MESSAGE 2:
Appropriate choice of distance measure depends on

your intention!

MESSAGE 3:
Simple cluster algorithms work better
in case of little model knowledge!

Jorg Rahnenfuhrer, MPI Informatik NGFN course, Heidelberg, October 8, 2003



Much more interesting microarray analysis...

Contact: rahnenfj@mpi-sb.mpg.de

Jorg Rahnenfiihrer

Computational Biology and Applied Algorithmics
Max Planck Institute for Informatics

D-66123 Saarbricken, Germany

Phone: (+49) 681-9325 320

Saarvoir vivre...

Jorg Rahnenfuhrer, MPI Informatik NGFN course, Heidelberg, October 8, 2003
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