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Gene expression data

Gene expression data on GG genes (features) for n mRNA samples

(observations)

mRNA samples
11 T12

21 22

LG1 G2 TGn

T 4; = expression measure for gene g in mRNA sample 1.

An array of conormalized arrays.




Role of distances

Microarray data analysis often involves

e clustering genes or samples;

e classifying genes or samples.

Inherent in every machine learning approach, unsupervised and
supervised, is a notion of distance or simzilarity between the objects

to be clustered or classified.




Role of distances

e Many clustering procedures operate directly on a matrix of

pairwise distances between the objects to be clustered: e.g.,
partitioning around medoid (PAM) and hierarchical clustering
methods.

e In supervised learning, new observations are typically assigned

to classes on the basis of their distances from objects with
known class labels.

— k-nearest neighbor: based on an explicit choice of distance
function.

— Linear discriminant analysis: based on the Mahalanobis distance

of observations from class means.

— Support vector machines: based on the Euclidean distance
between individual observations and a separating hyperplane

(margin).




Role of distances

The choice of distance is important and can have a large impact on

the results of supervised and unsupervised learning analyses.

In some cases, the Euclidean metric will be sensible, while in
others, a distance based on correlations will be a better choice.

Subject matter knowledge is very helpful in selecting an

appropriate distance for a given project.
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Definitions: metrics and distances

A metric, d, is a function that satisfies the following five properties
(i) non-negativity d(x,y) > 0;

(ii) symmetry d(x,y) = d(y, X);

(iii) identification mark d(x,x) = 0;

(iv) definiteness d(x,y) = 0 if and only if x = y;

(v) triangle inequality d(x,z) < d(x,y) + d(y, z).

We can also consider distance functions that satisfy the first

three properties only.

We will refer to distances which include metrics and only mention

metrics when the behavior of interest is specific to them.




Definitions: similarity and dissimilarity functions

A similarity function, s, is more loosely defined and satisfies the
three following properties

(i) non-negativity s(x,y) > 0;

(i) symmetry s(x,y) = s(y,X);

(iii) The more similar the objects x and y, the greater s(x,y).

A dissimilarity function, d, satisfies (i) and (ii), but for (iii),

d(x,y) is larger the more dissimilar the objects.




Distances

There is a great deal of choice (and hence literature) on selecting a
distance function.

Some books that pay particular attention to distances in the
context of classification and clustering include

e Section 4.7 of Duda, Hart, & Stork (2000);
e Chapter 2 of Gordon (1999);

e Chapter 1 of Kaufman and Rousseeuw (1990);
e Chapter 13 of Mardia, Kent, & Bibby (1979).

When some variables are continuous and others categorical, there
are more choices and the implications of the different choices
should be weighed caretully.




Examples of distances

Euclidean metric (possibly standardized);
Mahalanobis metric;
Manhattan metric;

Minkowski metric (special cases are Euclidean and Manhattan

metrics);

Canberra metric;
One minus correlation;

etc.




Examples of distances

Name Formula

Euclidean metric dg(x;, xj) = {Zg wg(mg,i — mgj)2}1/2
Unstandardized wg =1
Standardized by s.d. wg = 1/33'
(Karl Pearson distance)
Standardized by range wg = 1/R3.
Mahalanobis metric darr (x4, xj) = {(x; — xj)S_l(xi —

—1
= {Zg Zg/ Sgg’ (wgi - mgj)(mgl,i -

where S = (sgg/) is any G X G positive definite matrix, usually

the sample covariance matrix of the variables.
When the matrix is the identity, this reduces to the
unstandardized Euclidean distance.

Manhattan metric dpagn (X4,%x5) = Zg wglrg; — xgj

Minkowski metric dpapg (x4, %x5) = {Zg wglrg; — :ng|>‘}1/)‘, A > 1.
A = 1: Manhattan distance

A = 2: Euclidean distance

Canberra metric do (x4, xj) _ Zg :222123; ||
Yg(@gi—Z ;) (wg; =% 4)
(Ty(egi—7.)2 2T (ngj—z )2}1/2

The formulae refer to distances between observations (arrays).

One minus Pearson correlation dcorr(xz’,xj) =1 -




R distance functions

R has a number of functions for computing and displaying distance
and similarity matrices.
e Distance functions
— dist (mva): FEuclidean, Manhattan, Canberra, binary:;

— daisy (cluster): Euclidean, Manhattan.

e Correlation functions

— cor, cor.wt.

e Plotting functions

image;

plotcorr (ellipse);

levelplot (lattice);
plot.cor, plot.mat (sma).




Correlation matrices: plotcorr

Correlation matrix for ALL AML data
39 genes with maxT adjusted p-value < 0.01
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Correlation matrices: plotcorr

Correlation matrix for ALL AML data
G=3,051 genes
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Figure 2: Correlation matrix for Golub et al. (1999) ALL AML data:
(a) G=3,051 genes and (b) G=39 genes with maxT adjusted p-value
< 0.01.




Correlation matrices: levelplot

(a)

Figure 3: Correlation matrix for Golub et al. (1999) ALL AML data:
(a) G=3,051 genes and (b) G=39 genes with maxT adjusted p-value
< 0.01.




Distances between clusters

For many clustering algorithms, distances between clusters will be
necessary. There are a number of different ways of defining a
distance between groups, or between one observation and a group
of observations.

Single linkage The distance between two clusters is the minimum
distance between any two objects, one from each cluster.

Average linkage The distance between two clusters is the average

of all pairwise distances between the members of both clusters.

Complete linkage The distance between two clusters is the
mazimum distance between two objects, one from each cluster.

Centroid distance The distance between two clusters is the
distance between their centroids. The definition of centroid
may depend on the clustering algorithm being used.




Distances between clusters

The choice of distance measure between clusters has a large effect

on the shape of the resulting clusters.

For instance, single linkage leads to long thin clusters, while
average linkage leads to round clusters.




Standardization

e Standardization of variables is an important issue when

considering distances between objects.

e The distance function and its behavior are intimately related to

the scale on which measurements are made.

e There are no objective methods for dealing with this problem.

The solution is generally problem specific.




Standardization

For microarray data both genes and/or arrays can be standardized.
Which of the two should be carried out is dependent upon whether
samples or genes are being clustered or classified.

Standardizing genes

Tqi — (x4 — centery)/scaley,

where center, is a measure of the center of the distribution of the
set of values {z4; : ¢ =1,...,n}, such as the mean or median, and

scale, is a measure of scale, such as the standard deviation, IQR,
or MAD.

Standardizing arrays

Tqi < (Tg; — center;)/scale;.




Standardizing genes

Gene standardization in some sense puts all genes on an equal

footing and weighs them equally in the classification or

clustering. Common standardization procedures are

. Lgi—Tg.
:I;gz % Sg.

where T4, and s4. denote respectively the average and standard deviation

Y

of gene g’s expression levels across the n arrays.

’
madyg.

Tgi <
where mg4. and mady. denote respectively the median and median absolute
deviation (MAD) of gene g’s expression levels across the n arrays. These
are robust estimates of location and scale.

Lgi—Lg(1)

Tg(n) ~Tg(1)’
y denote the ordered expression levels for gene g,

where Tg(j

Tg(1) S Tg(2) S -+ S Tg(n):




Standardizing arrays

Standardization of arrays can be viewed as part of the
normalization step.

It is consistent with the common practice of using the correlation
between the gene expression profiles of two mRNA samples to

measure their similarity.

In practice, we recommend more general adaptive and robust
normalization methods which correct for intensity, spatial, and
other types of bias using robust local regression (see lecture on

pre-processing).




Table 1: Impact of standardization of observations and variables on

the distance function.

Distance between observations

Standardize

variables

(genes)

Standardize
observations

(arrays)

Euclidean, wg =1

Euclidean, wgy = 1/33_
Mahalanobis

One minus Pearson correlation

Changed
Unchanged

Changed, unless S diagonal
Changed

Changed
Changed
Changed
Unchanged




Standardization

Note the relationship between the Euclidean distance dg(-, )
between standardized vectors and the distance defined as one

minus the Pearson correlation:

\/ 2m(1 frmy

where rg, denotes the Pearson correlation between the m-vectors x

and y.




Affymetrix versus spotted arrays

A main difference between these two technologies is that
Affymetrix arrays are typically used to measure the overall
abundance of a probe sequence in a target sample, while spotted
arrays typically measure the relative abundance of a probe

sequence in two target samples (one of the two samples is often a

reference sample used in multiple experiments).

The expression measures for Affymetrix arrays are typically
absolute (log) intensities, while they are (log) ratios of intensities

for spotted arrays.




Affymetrix versus spotted arrays

There is a belief that the expression measures of different genes can
be compared directly for spotted arrays but not for Affymetrix

arrays.

The distinction is somewhat artificial, since one could always take

ratios of expression measures from an Affymetrix experiment with

some reference sample and hence have data that are the equivalent
of spotted array data.

Whether there is any real difference between the use of absolute
and relative expression measures depends on the distance that is
being considered.




Absolute versus relative expression measures

Consider the standard situation where we have x,; represent the
absolute log expression measure for gene g on patient sample/array

1.

Let yg; = x4; — £44, where array A is our reference sample. Then

the relative expression measures y,; represent the standard data

from a spotted array experiment with a common reference sample.

Use of relative expression measures amounts to a location

transformation for each gene, ct. gene centering.




Absolute versus relative expression measures

For m-vectors x = (z1,...,Zm) and y = (y1,...,Ym), consider

distance functions of the form

d(X>Y) — F(dl(xla yl)a S 7dm(xma ym))a

where di are themselves distance functions.

E.g. the Minkowski metric : dg(zg, yx) = | — yx| and
Pty zm) = (S )V

The representation is quite general. There is, in particular, no need
for the d to all be the same.




Absolute versus relative expression measures

First, suppose that we want to measure the distance between
samples 7 and j. Then

d(yia YJ) — F(dl (yl’i) ylj)) sy dG (yG’iv ij))

— F(dl(a:h; — T1A,T15 — SElA), ‘e ,dc;(xc;q; — TGA,TG; — xGA)).

If all of the di(ag,br) are simply functions of ay — by, then

d(y.i,y.j) =d(x4,%x ;) and it does not matter whether we look at

relative (the y’s) or absolute (the x’s) expression measures.

Examples include the Minkowski metric.




Absolute versus relative expression measures

Suppose now that we are interested in the distance between
genes and not samples. If

d(YQ-)Yj- -+ a’) — d(}’g,}’g)

for any vectors y,. and y; and for any scalar a, then the distance

will be the same for both absolute expression measures and relative

expression measures.

One minus the Pearson correlation is a distance with this property.




Absolute versus relative expression measures

Thus, for the Minkowski metric (e.g., Euclidean), the distance

between samples is the same for relative (spotted array) and
absolute (Affymetrix) expression measures. This does not hold for
the distance between genes.

For the one minus Pearson correlation distance, the distance
between genes is the same for relative (spotted array) and absolute
(Affymetrix) expression measures. This does not hold for the
distance between samples.




Absolute versus relative expression measures

Distance between

samples genes

Minkowski | Unchanged  Changed

One minus correlation | Changed  Unchanged

Changed (unchanged) means that absolute and relative expression

measures yield different (the same) results.




Absolute versus relative expression measures

One can argue in favor of both of these properties, i.e., invariance

of (i) gene distances or (ii) sample distances, for absolute and

relative expression measures.

In general, the correct way in which to analyze the data will
depend on the biological question of interest and the relative merits

of the two types of expression measures.




Distances and expression measures

Distances may need to be extended in various ways to deal with
different types of problems.

Weights may be incorporated in any of the distances above to deal

with different types of variables. For example, mixing patient level

covariates with gene expression measures may be best dealt with by
weighting.

In other cases, one might want to consider mixed versions of the

distances. Again, if mixing patient level covariates (e.g., categorical

variables) together with gene expression measures, then the

Euclidean distance might be appropriate for the gene expression
data, but not for the patient covariates.




Experiment specific distances between genes

The gene distance functions considered thus far do not take into
account the structure or design of the microarray experiment, i.e.,
they treat the columns of the genes-by-arrays matrix of expression
measures interchangeably.

However, microarray experiments can be highly-structured, e.g., as

in timecourse and multifactorial experiments.

Below are general approaches to supervise the distances so that

they reflect the design of the experiment under consideration.




Experiment specific distances between genes

One can exploit covariate information (e.g., treatment, cell type,

dose, time) to derive suitable transformations of the

genes-by-arrays data matrix, e.g., using linear modeling.

Instead of computing distances directly on the genes-by-arrays data
matrix, distances can then be computed on the new

genes-by-estimated-effects matrix.




Experiment specific distances between genes

In timecourse experiments, it makes sense to consider distances
that are not time exchangeable and use the time index in an

essential way.

For a large enough number of timepoints, one may
e penalize for non-smoothness as in Sobolev metrics;

e use one of the standard wavelet decompositions to transform
expression profiles into potentially interpretable quantities
corresponding to local frequency components.

Distances can then be computed for the new profiles and genes

clustered based on these distances.




Experiment specific distances between genes

The transformed expression profiles can be matched to a library of
profiles of interest for the particular experiment.

For instance, in factorial experiments across time, interesting

reference profiles for main effects and interactions might include:

cyclical, early, or late effects, or the effects over time for a known
gene.

One may also compare genes based on biological metadata, e.g.,
co-citation in PubMed abstracts.




Multidimensional scaling

Given any n X n distance matrix D, multidimensional scaling

(MDS) is concerned with identifying n points in Euclidean space

with a similar distance structure D’.

The purpose is to provide a lower dimensional representation of the
distances which conveys information on the relationships among
the n objects, such as the existence of clusters or one-dimensional

structure in the data (e.g., seriation).




Multidimensional scaling

There are different approaches for reducing dimensionality,
depending on how we define similarity between the old and new
distance matrices for the n objects, i.e., depending on the objective

or stress function S that we seek to minimize.

e Least-squares scaling: S(D,D’) = (3_,; ;(dij — d;j)2)1/2.

e Sammon mapping: S(D,D’) =, (di;j — di;)?/dij.
Places more emphasis on smaller distances.
e Shepard-Kruskal non-metric scaling: based on ranks, i.e., the

order of the distances is more important than their actual

values.




MDS and PCA

When the distance matrix D is the Euclidean distance matrix
between the rows of a n x m matrix X, there is a duality between

principal component analysis (PCA) and MDS.

The k-dimensional classical solution to the MDS problem is given
by the centered scores of the n objects on the first k principal

components.

The classical solution of MDS in k-dimensional space minimizes the
sum of squared differences between the entries of the new and old

distance matrices, i.e., is optimal for least-squares scaling.




Multidimensional scaling

As with PCA, the quality of the representation will depend on the
magnitude of the first £ eigenvalues.

The data analyst should choose a value for £ that is small enough

for ease representation but also corresponds to a substantial
“proportion of the distance matrix explained”.




Multidimensional scaling

N.B. The MDS solution reflects not only the choice of a distance
function, but also the features selected.

If features were selected to separate the data into two groups (e.g.,

on the basis of two-sample t-statistics), it should come as no

surprise that an MDS plot has two groups!




R MDS software

e cmdscale: Classical solution to MDS, in package mva.

e sammon: Sammon mapping, in package MASS.

e isoMDS: Kruskal’s non-metric MDS, in package MASS.




Multidimensional scaling

MDS for ALL AML data, correlation matrix, G=3,051 genes, k=2
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Figure 4: Classical MDS: Golub et al. (1999) ALL AML data, cor-
relation matrix, G = 3,051 genes, k = 2, % = 0.43.




Multidimensional scaling

MDS for ALL AML data, correlation matrix, G=3,051 genes, k=3

Figure 5: Classical MDS: Golub et al. (1999) ALL AML data, cor-
relation matrix, G = 3,051 genes, k = 3, % = (.55.




