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Differential gene expression

e Identify genes whose expression levels are agsociated with a

response or covariate of interest

— clinical outcome such as survival, response to treatment,
tumor class;

— covariate such as treatment, dose, time.

o Estimation: egtimate effects of interest (e.g. difference in
means, slope, interaction) and variability of these estimates.

o Testing: assess the statistical sjgnificance of the observed
associations.

Hypothesis testing

e Test for each gene the null hypothesis of no differential
expression, e.g. using t— or F-statistic.
H, : the expression level of gene g

is not associated with the covariate or respoms

Two types of errors can be committed

e Type I error or false positive

say that a gene is differentially expressed when it is not, i.e.’
reject a true null hypothesis.

e Type II error or false negative
fail to identify a truly differentially expressed gene, i.e.’
fail to reject a false null hypotheSIS.

Multiple hypothesis testing

e Large multiplicity prodem: thousands of hypotheses are tested
simultaneously!
— Increased chance of false positives.

— E.g. chance of at least one p—value < a for G independent
tests is 1 — (1 — a)“ and converges to one as G increases.
For G = 1,000 and « = 0.01, this chance is 0.9999568!

— Individual p—values of 0.01 no longer correspond to
significant findings.

o Need t0 adjust for multiple testing when assessing the
statistical significance of the observed associations.




Multiple hypothesis testing

Define an appropriate Type I error or false positive rate.

Develop multiple testing procedures that

— provide strong control of this error rate,

— are powerful (few false negatives),

— take into account the joint distribution of the test

statistics.

Report adjusted p—values for each gene which reflect the
overall Type I error rate for the experiment.

Resampling methods are useful tools to deal with the
unknown joint distribution of the test statistics.

Multiple hypothesis testing
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From Benjamini & Hochberg (1995).

Type I error rates

. Per—family error rate (PFER). The PFER is defined as the

expected number of Type I errors, i.e.,

PFER = E(V).

. Per—comparison error rate (PCER). The PCER is defined

as the expected value of (number of Type I errors/number of
hypothcses)a Le.,
PCER=E(V)/G.

Type I error rates

3. Family—wise error rate (FWER). The FWER is defined as
the probability of at least one Type I error, i.e.’

FWER = p(V > 0).

4. False discovery rate (FDR). The FDR of Benjamini &
Hochberg (1995) is the expected proportion of Type I errors

among the rejected hypotheses, i.e.,
FDR = E(Q),
where by definition

V/R, i R>0,

Q= ,
0, if R=0.




Strong vs. weak control

N.B. All probabilities are conditional on which hypotheses are
true.

Strong control refers to control of the Type I error rate under
any combination of true and false hypotgcfcs,

ie under NgegHy for any K C {1,"" "’

Weak control refers to control of the Type I error rate only when
all the null hypotheses are true, i.e., under the complete null
hypothesis H§ = ﬂ?leg with Gy = G.

In general, weak control without any other safeguards is
unsatisfactory.

Comparison of Type I error rates

In general, for a given multiple testing procedure,
PCER < FWER < PFER,
and
FDR < FWER,
with FDR = FW ER under the complete null.

Thus, for a fixed criterion « for controlling the Type I error rates,

the order reverses for the number of rejected hypotheS€s R:
procedures controlling the FWER are generally more conservative

than those controlling either the FDR or PCER.

10

p—value adjustment

If interest is in controlling the FWER, the adjusted p—value for
hypothesis Hg is:

Py = inf {a : Hy is rejected at FWER a} .

Hypothesis H, is rejected at FWER o if p, < a.

Adjusted p—values for other Type I error rates are defined similarly.

p—value adjustment

e The level of the test do€s not need to be specified in advance.

e Some multiple testing procedures are most conveniently
described in terms of their adjusted p—values.

e Adjusted p—values can usually be easily estimated using
resampling.

e For any given procedure, adjusted p—values provide a
convenient way of relating the Type I error rate to the number
of rejected hypotheses.

e Different multiple testing procedures can be readily compared
based on their respective adjusted p—values.
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Notation

For hypothesis Hy, g =1, "~ G

observed test statistic: '
g
observed unadjusted p-value: p,.
Ordering of the observed absolute test statistics: {re}e=1...G

such that

t,

>t > > .

Ordering of the observed unadjusted p—values: {ro}o=1...c

such that p,, <p,, <.. <p,..

The corresponding random varialeS are denoted by upper case
letters.
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Control of the FWER

Bonferroni single—step adjusted p—values

Dg = min(Gpg7 1).

Holm (1979) step—doWn adjusted p—values

ﬁ’l‘g = kg?:}‘(’g {mln((G - k + 1)p7‘k ) 1) }

Hochberg (1988) step—up adjusted p—values (Simes inequality)

pry = min _ {min((G =k +1)pr,.1) .

Control of the FWER

Westfall & Young (1993) step—doWn minP yqiysted p-values

pr, = max {p(_min P <p, HS)}

le{rk:7~"7rG}

Westfall & Young (1993) step—doWn maxT ;diusted p-values

r, = max {p( max 11> ]| H)}.

=1,..., le{ry,...,ra
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maxT and minP adjusted p—values

e Step—down procedures: successively smaler adjustments at

each step.
Take into account the joint distribution of the test statistics.

Less conservative than Bonferroni, Holm, or Hochberg adjusted
p—values.

Can be estimated by resampling.

Fast permutation algorithm for minP adjusted p—values
implemented in R multtest package (Ge & Dudoit, 2002).
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maxT and minP adjusted p—values

e The maxT and minP adjusted p—values are the same when the
test statistics are identically distributed.

e When the test statistics are not identically distributed,
procedures based on maxT adjusted p—values can lead to
unbalanced adjustments.

e maxT adjusted p-values are more tractalie computationally
than minP p-values.

e Procedures based on maxT adjusted p—values can be more
powerful in “small n, large G” situations.

Control of the FDR

Benjamini & Hochberg (1995): step-up procedure which controls
the FDR under some dependency structures

— . { . (G 1)}
Pry =, Ioin qmin{2-pr, 1) .

Benjamini & Yekutieli (2001): conservative step—up procedure
which controls the FDR under general dependency structures

G
b= foiee )}

where ag = 25:1 1/g =~ log G for large G.

Yekutieli & Benjamini (1999): resampling based adjusted p—values
controlling the FDR under certain dependency structures.
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Significance Analysis of Microarrays, SAM

Order statistics: T{q) > - > Tie)- o
Permutation estimates of the expected vglues of the order statistics
under the complete null: £, g=1,""""""

1. Efron et al. (2000). Reject Hyg if

|t(g) - f(g)| > A,
where A is chosen based on a permutation estimate of the PFER
under the complete null.

Adjusted p—values (for PCER):

N G . .
Boy = Lila P(ITwy =ty > Ttg) — tg)| | HE)/G.
Only weak control of the PFER.

The adjusted p—values are not monotone in g, i.e.’ I the test
statistics.

Significance Analysis of Microarrays, SAM

2. Tush t al. (2001). Reject H, if ¢ ty

< ust er et al. ( ) OAJOC dg lu ‘ %(%Suaréj <C%C))585 from the
@uan%%égﬂg(u%}fti‘f’ehfﬁfﬁtcgf lt’(g)( vg.aﬁg) %nd based on a permutation
estimate of the PFER under the complete null.

Order statistics are not used in estimating the PFER. The PFER is
thus controlled in the Strong sems
For binary outcomes, SAM is similar to a t—test for each gene using

asymmetric cut—offs.

The SAM estimate of the FDR is Ey(V)/R — can be greater than

one.

Dudoit et al. (2002)
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Efron et al. vs. Tusher et al. SAM versions

Quantile-Quantile plot for SAM
.
= cut-offs for SAM Efron .
= cut-offs for SAM Tusher
.

-
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Permutation t-statistics

Observed quantiles
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Pemutation quanties

Neighborhood analysis

Golub et al. (1999)

Reject Hy if |t,| > ¢ andet

€]

r(e) = Z I(|ty| > ¢) = observed number of rejected hypotheses
g=1
€]

R(c) = I(|T,4| > ¢) = r.v. for number of rejected hypotheses.
g=1

@ose a critical value ¢ such that
G(c) = p(R(c) > r(c) | H ) = o

where G(c) is estimated by permutation.

Neighborhood analysis

Difficulties:

e G(c) is a left—continuous function, with discontinuities at |¢4].

e G(c) is not monotone in ¢ = which ¢ to choose?

e G(c) is a random variabe.

e What type of error rate control is really achieved?
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Adjusted p—values for neighborhood analysis

Order statistics |T'|¢q) > - > |T|g)-
Step—down adjusted p—values
Blg) = max {p(Tlxy > Itlexy | HE) }.

Step—up adjusted p—values
p(s) = mi Tl > It | HS }
D) =, mm {p(l |k > [ty [ HG)

The procedure is based on the distribution of the order statistics
under the complete null hypothesis

= in general only weak control of the Type I error rate.

Step—down procedure controls FWER weakly, step—up procedure
do€s not.

Dudoit et al. (2002)
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Adjusted p—values for neighborhood analysis

R(E) vs. ¢ PIR(S) >=1(¢) H_0) vs. ¢

Step-down adi. p-values Step-up adj, p-values

ooooooooo

ooooo

Host genomic responses to pathogenic bacteria
Jen Balrick, Stanford

In vitro study of the gene expression response of human peripheral
blood mononuclear cells (PBMCs) to infection by pathogenic
bacteria.

Monitor the effect of three factors on the €xpression response

— Bacteria:  Gram-negative, B. pertussis,
Gram—positive, S. aureus;

— Dose: 1X, 10X, 100X, and 1000X;

— Time: 0.5, 2, 4, 6, and 12 hours,
and also 1 and 24 hours for dose 100X.

25

26

Microarray data

e Lymphochip: 18,432 cDNA probes.

e 44 hybridizations
(2 X 4 x5 plus 1 and 24 hour measurements for dose 100X)

— Cy5: mRNA from PBMCs ¢ hours after infection by
bacteria b at dose d;

: reference pool of mRNA from 6 immune cell lines.

—> Expression response of gene ¢ at time ¢ in PBMCs infected by
bacteria b at dose @ (after normalization):

Tgbdt = 10g2 R/G

Differentially expressed genes

Question. Identify the genes that have a different expression
response to infection by the Gram + and Gram — bacteria.

Approach. Simultaneously test G null hypotheses, one for each
gene g

H, : no bacteria effect on the expression response of gene g.

e Compute a paired t—statistic for each gene.

e Compute permutation p—values from the distribution of the
test statistics for the 222 permutations of the responses within

the 22 dose x time Hocks.

e Adjust for multiple hypothesis testing.
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Plot of number of rejections vs. Type I error rate
G ~
r(a) =32,_11(pg <) vs.
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Results

e 66 spotted DNA sequences had maxT adjusted p-values 1e58
than 0.05.

e Several of these sequences actually corresponded to the Same
genes: CD64 (3 copies), Ix B alpha (5 copies), SHP-1 (2
copies), plasma gelsolin (2 copies).

e The nature of the differential response varied among genes, as

they exhibited different dose responses to infection by the
pathogens.

A FAQ

Q: What about pre-screening to reduce the number of tests with
the aim of increasing power?

A: The Type I error rate is controled at the claimed level in
situations where

e we only focus on a subset of genes that are of interest —
selected before 1ooking at the data;

e the statistic used for screening is independent of the test
statistic under the null.

Other situations still need to be better understood.
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Discussion

e In multiple testing situations, there are several possible
definitions for the Type I error rate (FWER, PCER, PFER, or
FDR).

e FDR controlling procedures are promising alternatives to more
conservative FWER controlling procedures.

e Strong control of the Type I error rate is essential in the

microarray context.

e Adjusted p—values provide flexille summaries of the results
from a multiple testing procedure.

Discussion

e Substantial gains in power can be obtained by taking into
account the joint distribution of the test statistics (e.g.
Westfall & Young (1993)).

e More work is needed to develop procedures that take into
account the joint distribution of the test statistics.

e Resampling methods are needed to estimate adjusted p—values
for complex multivariate datasets.

e 2D-multiple testing prolems: thousands of genes, several
hypotheses for each gene.
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Discussion

Rather than cho0sing a specific error rate to control:

1. @oose a number r of hypotheses to reject with which the

researcher feels comfortalle. Evaluate the adjusted p—values
P(r) necessary to reach this number under various procedures
and types of error control.

2. For a given level, find the number of hypotheses that would be
rejected under one method, and give the level required to
achieve that number under other methods.

3. Find the number of hypotheses that would be rejected using a
procedure controlling FWER at a fixed level, and find how
many others would be rejected using procedures controlling
FDR and PCER at that level.

Discussion

e Microarray experiments have renewed the interest in multiple
testing

— lots of papers;
— old methods with new names;
— new methods with inadequate or unknown control
properties;
— a lot of confusion!
e New proposals should be formulated precisely, within the

standard statistical framework, to alow a clear assessment of
the properties of different procedures.

e The same applies to other problems, such as clustering and
classification.
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R multiple testing software

Bioconductor R multtest package.

Multiple testing procedures for controlling

— FWER: Bonferroni, Holm (1979), Hochberg (1986), Westfall &
Young (1993) maxT and minP.

— FDR: Benjamini & Hochberg (1995), Benjamini & Yekutieli
(2001).

Tests based on t— or F'—statistics for one— and two—factor
designs.

Permutation procedures for estimating adjusted p—values.
Fast permutation algorithm for minP adjusted p—values.

Documentation: tutorial on multiple testing.
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