

cDNA microarrays Affymetrix oligonucleotide chips

Basic principles

DNA microarrays

Outline

DNA microarrays rely on the **hybridization** properties of nucleic acids to monitor DNA or RNA abundance on a genomic scale in different types of cells.

The ancestor of cDNA microarrays: the Northern blot.

Hybridization

- Hybridization refers to the annealing of two nucleic acid strands following the base pairing rules.
- Nucleic acid strands in a duplex can be separated, or denatured, by heating to destroy the hydrogen bonds.

Gene expression assays

The main types of gene expression assays:

- Serial analysis of gene expression (SAGE);
- Short oligonucleotide arrays (Affymetrix);
- Long oligonucleotide arrays (Agilent Inkjet);
- Fibre optic arrays (Illumina);
- cDNA arrays (Brown/Botstein).

Applications of microarrays

- Measuring transcript abundance (cDNA arrays);
- Genotyping;
- Estimating DNA copy number (CGH);
- Determining identity by descent (GMS);
- Measuring mRNA decay rates;
- Identifying protein binding sites;
- Determining sub-cellular localization of gene products;
- ...

Transcriptome

- mRNA or transcript levels sensitively reflect the state of a cell.
- Measuring protein levels (translation) would be more direct but more difficult.

Transcriptome

- The transcriptome reflects
 - Tissue source: cell type, organ.
 - Tissue activity and state:
 - Stage of development, growth, death.
 - Cell cycle.
 - Disease vs. healthy.
 - Response to therapy, stress.

Applications of microarrays

• **Cancer research:** Molecular characterization of tumors on a genomic scale

 \rightarrow more reliable diagnosis and effective treatment of cancer.

 Immunology: Study of host genomic responses to bacterial infections; reversing immunity.

• ...

Applications of microarrays

- Compare mRNA (transcript) levels in different types of cells, i.e., vary
 - Tissue: liver vs. brain;
 - Treatment: drugs A, B, and C;
 - State: tumor vs. non-tumor, development;
 - Organism: different yeast strains;
 - Timepoint;
 - etc.

cDNA microarrays

- The relative abundance of a spotted DNA sequence in two DNA or RNA samples may be assessed by monitoring the differential hybridization of these two samples to the sequence on the array.
- **Probes**: DNA sequences spotted on the array, immobile substrate.
- **Targets**: Nucleic acid samples hybridized to the array, mobile substrate.

cDNA microarrays

• The ratio of the red and green fluorescence intensities for each spot is indicative of the relative abundance of the corresponding DNA probe in the two nucleic acid target samples.

cDNA microarrays

$\mathbf{M} = \mathbf{log}_2 \mathbf{R}/\mathbf{G} = \mathbf{log}_2 \mathbf{R} - \mathbf{log}_2 \mathbf{G}$

- M < 0, gene is over-expressed in greenlabeled sample compared to red-labeled sample.
- M = 0, gene is equally expressed in both samples.
- M > 0, gene is over-expressed in red-labeled sample compared to green-labeled sample.

• The probes are synthesized *in situ*,

- The probes are synthesized in situ, using combinatorial chemistry and photolithography.
- Probe cells are square shaped features on the chip containing millions of copies of a single 25 nerprobe. Sides are 18 50 microns.

cell.

Image analysis

•About 100 pixels per probe cell.

- •These intensities are combined to form one number representing the expression level for the probe cell oligo.
- \rightarrow CEL file with PM or MM intensity for each

Expression measures

- Most expression measures are based on differences of PM-MM.
- The intention if to correct for background and non-specific binding.
- E.g. MarrayArray Suite[®] (MAS) v. 4.0 uses Average Difference Intensity (ADI) or AvDiff = average of PM-MM.
- Problem: MM may also measure signal.
- More on this in lecture Pre-processing in DNA microarray experiments.

Statistical computing

Everywhere ...

- for statistical design and analysis:
 - pre-processing, estimation, testing, clustering, prediction, etc.
- for integration with biological information resources (in house and external databases)
 - gene annotation (GenBank, LocusLink);
 - literature (PubMed);
 - graphical (pathways, chromosome maps).

Integration of biological metadata

- Expression, sequence, structure, annotation, literature.
- Integration will depend on our using a common language and will rely on database methodology as well as statistical analyses.
- This area is largely unexplored.

WWW resources

 Complete guide to "microarraying" http://cmam.stanford.edu/obrown/mauid

http://www.microarrays.org

- Parts and assembly instructions for printer and scanner;
- Protocols for sample prep;
- Software;
- Forum, etc.
- cDNA microarray animation
 http://www.bio.davidson.edu/courses/genomics/chip/chip.html
- Affymetrix
 <u>http://www.affymetrix.com</u>

Next ...

Pre-processing in DNA microarray experiments

- cDNA microarrays
 - Image analysis;
 - Normalization.
- Affymetrix oligonucleotide chips
 - Image analysis;
 - Normalization;
 - Expression measures.