
Introduction To
Bioconductor

Sandrine Dudoit, Robert
Gentleman, and Rafael Irizarry

Bioconductor Workshop
Fred Hutchinson Cancer Research Center

December 4-6, 2002

© Copyright 2002, all rights reserved

Bioconductor Basics

• Bioconductor (www.bioconductor.org) is
a software project aimed at providing
high quality, innovative software tools
appropriate for computational biology

• We rely mainly on R (www.r-project.org)
as the computational basis

• we welcome contributions

Some basics

• for microarray data analysis we have
assembled a number of R packages
that are appropriate to the different
types of data and processing

• some issues:
– data complexity
– data size
– data evolution
– meta-data

Software Design

• to overcome complexity we use two
strategies: Abstract Data Types and
object oriented programming

• to deal with data evolution we have
separated the biological meta-data from
the experimental data

Pedagogy

• among the many choices we made in
the Bioconductor project is to try and
develop better teaching materials

• in large part this is because we are
between two disciplines (Biology and
Statistics) and most users are familiar
with only one of these

Vignettes
• we have adopted a new type of

documentation: the vignette
• a vignette is an integrated collection of

text and code – the code is runnable
and using Sweave it is possible to
replace the code with its output

• these documents are short and explicit
directions on how to perform specific
tasks

Vignettes – HowTo’s

• a good way to find out how to use
Bioconductor software is to read the
relevant Vignette

• then extract the code (tangleToR) and
examine it

• HowTo documents are shorter (one or
two pages)

• please write and contribute these

Vignettes

• in Bioconductor 1.1 we introduced two
new methods to interact with Vignettes

• openVignette() – gives you a menu
to select from

• vExplorer() – our first attempt at
turning Vignettes into interactive
documents

Bioconductor packages
Release 1.1,Nov. 18, 2002

• General infrastructure:
Biobase, rhdf5, tkWidgets, reposTools.

• Annotation:
annotate, AnnBuilder data packages.

• Graphics:
geneplotter, hexbin.

• Pre-processing for Affymetrix oligonucleotide chip data:
affy, CDF packages, vsn.

• Pre-processing for cDNA microarray data:
marrayClasses, marrayInput, marrayNorm,
marrayPlots, vsn.

• Differential gene expression:
edd, genefilter, multtest, ROC.

Outline

• Biobase and the basics

• annotate and AnnBuilder packages

• genefilter package

• multtest package

• R clustering and classification packages

Biobase: exprSet class

description

annotation

phenoData

Any notes

Matrix of expression measures, genes x samples

Matrix of SEs for expression measures

Sample level covariates, instance of class phenoData

Name of annotation data

Object of class MIAME

se.exprs

exprs

notes

> golubTest

Expression Set (exprSet) with

7129 genes

34 samples

phenoData object with 11
variables and 34 cases

varLabels

Samples: Samples

ALL.AML: ALL.AML

BM.PB: BM.PB

T.B.cell: T.B.cell

FAB: FAB

Date: Date

Gender: Gender

pctBlasts: pctBlasts

Treatment: Treatment

PS: PS

Source: Source

Typing the name of the
data set produces this
output

exprSet

• the set is closed under subsetting
operations (either x[,1] or x[1,]) both
produce new exprSets

• the first subscript is for genes, the
second for samples

• the software is responsible for
maintaining data integrity

exprSet: accessing the
phenotypic data

• phenotypic data is stored in a special
class: phenoData

• this is simply a dataframe and a set of
associated labels describing the
variables in the dataframe

Annotation packages
• One of the largest challenges in analyzing

genomic data is associating the experimental
data with the available metadata, e.g.
sequence, gene annotation, chromosomal
maps, literature.

• The annotate and AnnBuilder packages
provides some tools for carrying this out.

• These are very likely to change, evolve and
improve, so please check the current
documentation - things may already have
changed!

Annotation packages
• Annotation data packages;
• Matching IDs using environments;
• Searching and processing queries from

WWW databases
– LocusLink,
– GenBank,
– PubMed;

• HTML reports.

WWW resources
• Nucleotide databases: e.g. GenBank.
• Gene databases: e.g. LocusLink, UniGene.
• Protein sequence and structure databases:

e.g. SwissProt, Protein DataBank (PDB).
• Literature databases: e.g. PubMed, OMIM.
• Chromosome maps: e.g. NCBI Map Viewer.
• Pathways: e.g. KEGG.
• Entrez is a search and retrieval system that

integrates information from databases at NCBI
(National Center for Biotechnology Information).

NCBI Entrez
www.ncbi.nlm.nih.gov/Entrez

annotate: matching IDs
Important tasks
• Associate manufacturers probe identifiers

(e.g. Affymetrix IDs) to other available
identifiers (e.g. gene symbol, PubMed PMID,
LocusLink LocusID, GenBank accession
number).

• Associate probes with biological data such as
chromosomal position, pathways.

• Associate probes with published literature
data via PubMed.

annotate: matching IDs

“X”, “Xq13.1”Chromosomal location

“10486218”
“9205841”
“8817323”

PubMed, PMID

“ZNF261”Gene symbol

“X95808”GenBank accession #

“9203”LocusLink, LocusID

“41046_s_at”Affymetrix identifier
HGU95A chips

Annotation data packages
• The Bioconductor project has started to

deploy packages that contain only data.
E.g. hgu95a package for Affymetrix
HGU95A GeneChips series, also, hgu133a,
hu6800, mgu74a, rgu34a.

• These data packages are built using
AnnBuilder.

• These packages contain many different
mappings to interesting data.

• They are available from the Bioconductor
website and also using update.packages.

Annotation data packages
• Maps to GenBank accession number,

LocusLink LocusID, gene symbol, gene
name, UniGene cluster.

• Maps to chromosomal location: chromosome,
cytoband, physical distance (bp), orientation.

• Maps to KEGG pathways, enzymes, Gene
Ontology Consortium (GO).

• Maps to PubMed PMID.
• These packages will be updated and

expanded regularly as new or updated data
become available.

hu6800 data package

annotate: matching IDs
• Much of what annotate does relies on matching

symbols.
• This is basically the role of a hash table in most

programming languages.
• In R, we rely on environments (they are similar to

hash tables).
• The annotation data packages provide R

environment objects containing key and value pairs
for the mappings between two sets of probe
identifiers.

• Keys can be accessed using the R ls function.
• Matching values in different environments can be

accessed using the get or multiget functions.

E.g. hgu95a package.
• To load package library(hgu95a)
• For info on the package and list of mappings

available
? hgu95a
hgu95a()

• For info on a particular mapping
? hgu95aPMID

annotate: matching IDs

annotate: matching IDs
> library(hgu95a)
> get("41046_s_at", env = hgu95aACCNUM)
[1] "X95808”
> get("41046_s_at", env = hgu95aLOCUSID)
[1] "9203”
> get("41046_s_at", env = hgu95aSYMBOL)
[1] "ZNF261"
> get("41046_s_at", env = hgu95aGENENAME)
[1] "zinc finger protein 261"
> get("41046_s_at", env = hgu95aSUMFUNC)
[1] "Contains a putative zinc-binding
motif (MYM)|Proteome"

> get("41046_s_at", env = hgu95aUNIGENE)
[1] "Hs.9568"

annotate: matching IDs
> get("41046_s_at", env = hgu95aCHR)
[1] "X"
> get("41046_s_at", env = hgu95aCHRLOC)
[1] "66457019@X"
> get("41046_s_at", env = hgu95aCHRORI)
[1] "-@X"
> get("41046_s_at", env = hgu95aMAP)
[1] "Xq13.1”
> get("41046_s_at", env = hgu95aPMID)
[1] "10486218" "9205841" "8817323"
> get("41046_s_at", env = hgu95aGO)
[1] "GO:0003677" "GO:0007275"

• Provide tools for searching and
processing information from various
biological databases.

• Provide tools for regular expression
searching of PubMed abstracts.

• Provide nice HTML reports of analyses,
with links to biological databases.

annotate: database searches
and report generation

annotate: WWW queries

• Functions for querying WWW
databases from R rely on the
browseURL function

browseURL("www.r-project.org")

annotate: GenBank query
www.ncbi.nlm.nih.gov/Genbank/index.html

• Given a vector of GenBank accession
numbers or NCBI UIDs, the genbank
function
– opens a browser at the URLs for the

corresponding GenBank queries;
– returns an XMLdoc object with the same data.

genbank(“X95808”,disp=“browser”)
http://www.ncbi.nih.gov/entrez/query.fcgi?tool=bioconductor&cmd=Search&db=Nucleotide&term=X95808

genbank(1430782,disp=“data”,
type=“uid”)

annotate: LocusLink query
www.ncbi.nlm.nih.gov/LocusLink/

• locuslinkByID: given one or more LocusIDs, the
browser is opened at the URL corresponding to the
first gene.

locuslinkByID(“9203”)
http://www.ncbi.nih.gov/LocusLink/LocRpt.cgi?l=9203

• locuslinkQuery: given a search string, the results
of the LocusLink query are displayed in the browser.

locuslinkQuery(“zinc finger”)
http://www.ncbi.nih.gov/LocusLink/list.cgi?Q=zinc finger&ORG=Hs&V=0

annotate: PubMed query
www.ncbi.nlm.nih.gov

• For any gene there is often a large amount of
data available from PubMed.

• The annotate package provides the
following tools for interacting with PubMed
– pubMedAbst: a class structure for PubMed

abstracts in R.
– pubmed: the basic engine for talking to PubMed.

• WARNING: be careful you can query them
too much and be banned!

annotate: pubMedAbst class

Class structure for storing and processing
PubMed abstracts in R
• authors
• abstText
• articleTitle
• journal
• pubDate
• abstUrl

annotate: high level tools for
PubMed query

• pm.getabst: download the specified
PubMed abstracts (stored in XML) and
create a list of pubMedAbst objects.

• pm.titles: extract the titles from a set
of PubMed abstracts.

• pm.abstGrep: regular expression
matching on the abstracts.

annotate: PubMed example
pmid <-get("41046_s_at", env=hgu95aPMID)
pubmed(pmid, disp=“browser”)

http://www.ncbi.nih.gov/entrez/query.fcgi?tool=bioconductor&cmd=Retrie
ve&db=PubMed&list_uids=10486218%2c9205841%2c8817323

absts <- pm.getabst(“41046_s_at”,
base=“hgu95a”)

pm.titles(absts)
pm.abstGrep("retardation",absts[[1]])

annotate: PubMed example

annotate: data rendering

• A simple interface, ll.htmlpage, can
be used to generate an HTML report of
your results.

• The page consists of a table with one
row per gene, with links to LocusLink.

• Entries can include various gene
identifiers and statistics.

genelist.html

ll.htmlpage
function from
annotate
package

annotate: chromLoc class

Location information for one gene
• chrom: chromosome name.
• position: starting position of the gene

in bp.
• strand: chromosome strand +/-.

annotate: chromLocation
class

Location information for a set of genes
• species: species that the genes correspond to.
• datSource: source of the gene location data.
• nChrom: number of chromosomes for the species.
• chromNames: chromosome names.
• chromLocs: starting position of the genes in bp.
• chromLengths: length of each chromosome in bp.
• geneToChrom: hash table translating gene IDs to

location.

Function buildChromClass

geneplotter: cPlot

geneplotter: alongChrom

geneplotter: alongChrom

Gene filtering
• A very common task in microarray data

analysis is gene-by-gene selection.
• Filter genes based on

– data quality criteria, e.g. absolute intensity or
variance;

– subject matter knowledge;
– their ability to differentiate cases from controls;
– their spatial or temporal expression pattern.

• Depending on the experimental design, some
highly specialized filters may be required and
applied sequentially.

Gene filtering
• Clinical trial. Filter genes based on

association with survival, e.g. using a Cox
model.

• Factorial experiment. Filter genes based on
interaction between two treatments, e.g.
using 2-way ANOVA.

• Time-course experiment. Filter genes based
on periodicity of expression pattern, e.g.
using Fourier transform.

• The genefilter package provides tools to
sequentially apply filters to the rows (genes)
of a matrix.

• There are two main functions, filterfun
and genefilter, for assembling and
applying the filters, respectively.

• Any number of functions for specific filtering
tasks can be defined and supplied to
filterfun.
E.g. Cox model p-values, coefficient of variation.

genefilter package

genefilter: separation of
tasks

1. Select/define functions for specific filtering
tasks.

2. Assemble the filters using the filterfun
function.

3. Apply the filters using the genefilter
function a logical vector, TRUE indicates
genes that are retained.

4. Apply that vector to the exprSet to obtain a
microarray object for the subset of interesting
genes.

genefilter: supplied filters

Filters supplied in the package
• kOverA – select genes for which k samples have

expression measures larger than A.
• gapFilter – select genes with a large IQR or gap

(jump) in expression measures across samples.
• ttest – select genes according to t-test nominal p-

values.
• Anova – select genes according to ANOVA nominal

p-values.
• coxfilter – select genes according to Cox model

nominal p-values.

• It is very simple to write your own filters.
• You can use the supplied filtering

functions as templates.
• The basic idea is to rely on lexical

scope to provide values (bindings) for
the variables that are needed to do the
filtering.

genefilter: writing filters

1. First, build the filters
f1 <- anyNA
f2 <- kOverA(5, 100)

2. Next, assemble them in a filtering function
ff <- filterfun(f1,f2)

3. Finally, apply the filter
wh <- genefilter(exprs(DATA), ff)

4. Use wh to obtain the relevant subset of the
data

mySub <- DATA[wh,]

genefilter: How to?

golubEsets

• now we will spend some time looking at
filtering genes according to different
criteria

golubEsets

• are there genes that are differentially
expressed by Sex?

• if so on which chromosomes are they?
• are there any genes on the Y

chromosome that are expressed in
samples from female patients?

Differential gene expression
• Identify genes whose expression levels are

associated with a response or covariate of
interest
– clinical outcome such as survival, response to

treatment, tumor class;
– covariate such as treatment, dose, time.

• Estimation: estimate effects of interest and
variability of these estimates.
E.g. slope, interaction, or difference in means in a
linear model.

• Testing: assess the statistical significance of
the observed associations.

Acknowledgements
• Bioconductor core team
• Ben Bolstad, Biostatistics, UC Berkeley
• Vincent Carey, Biostatistics, Harvard
• Francois Collin, GeneLogic
• Leslie Cope, JHU
• Laurent Gautier, Technical University of Denmark, Denmark
• Yongchao Ge, Statistics, UC Berkeley
• Robert Gentleman, Biostatistics, Harvard
• Jeff Gentry, Dana-Farber Cancer Institute
• John Ngai Lab, MCB, UC Berkeley
• Juliet Shaffer, Statistics, UC Berkeley
• Terry Speed, Statistics, UC Berkeley
• Yee Hwa (Jean) Yang, Biostatistics, UCSF
• Jianhua (John) Zhang, Dana-Farber Cancer Institute
• Spike-in and dilution datasets:

– Gene Brown’s group, Wyeth/Genetics Institute
– Uwe Scherf’s group, Genomics Research & Development, GeneLogic.

• GeneLogic and Affymetrix for permission to use their data.

