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Bioconductor Basics

• Bioconductor (www.bioconductor.org) is 
a software project aimed at providing 
high quality, innovative software tools 
appropriate for computational biology

• We rely mainly on R (www.r-project.org) 
as the computational basis

• we welcome contributions



Some basics

• for microarray data analysis we have 
assembled a number of R packages 
that are appropriate to the different 
types of data and processing

• some issues:
– data complexity
– data size
– data evolution
– meta-data



Software Design

• to overcome complexity we use two 
strategies: Abstract Data Types and 
object oriented programming

• to deal with data evolution we have 
separated the biological meta-data from 
the experimental data



Pedagogy

• among the many choices we made in 
the Bioconductor project is to try and 
develop better teaching materials

• in large part this is because we are 
between two disciplines (Biology and 
Statistics) and most users are familiar 
with only one of these



Vignettes
• we have adopted a new type of 

documentation: the vignette
• a vignette is an integrated collection of 

text and code – the code is runnable 
and using Sweave it is possible to 
replace the code with its output

• these documents are short and explicit 
directions on how to perform specific 
tasks



Vignettes – HowTo’s

• a good way to find out how to use 
Bioconductor software is to read the 
relevant Vignette

• then extract the code (tangleToR) and 
examine it

• HowTo documents are shorter (one or 
two pages)

• please write and contribute these



Vignettes

• in Bioconductor 1.1 we introduced two 
new methods to interact with Vignettes

• openVignette() – gives you a menu 
to select from

• vExplorer() – our first attempt at 
turning Vignettes into interactive 
documents



Bioconductor packages
Release 1.1,Nov. 18, 2002

• General infrastructure:
Biobase, rhdf5, tkWidgets, reposTools.

• Annotation:
annotate, AnnBuilder data packages.

• Graphics: 
geneplotter, hexbin.

• Pre-processing for Affymetrix oligonucleotide chip data: 
affy, CDF packages, vsn.

• Pre-processing for cDNA microarray data: 
marrayClasses, marrayInput, marrayNorm, 
marrayPlots, vsn.

• Differential gene expression: 
edd, genefilter, multtest, ROC.



Outline

• Biobase and the basics

• annotate and AnnBuilder packages

• genefilter package

• multtest package

• R clustering and classification packages



Biobase: exprSet class

description

annotation

phenoData

Any notes

Matrix of expression measures, genes x samples

Matrix of SEs for expression measures

Sample level covariates, instance of class phenoData 

Name of annotation data 

Object of class MIAME

se.exprs

exprs

notes



> golubTest

Expression Set (exprSet) with 

7129 genes

34 samples

phenoData object with 11 
variables and 34 cases

varLabels

Samples: Samples

ALL.AML: ALL.AML

BM.PB: BM.PB

T.B.cell: T.B.cell

FAB: FAB

Date: Date

Gender: Gender

pctBlasts: pctBlasts

Treatment: Treatment

PS: PS

Source: Source

Typing the name of the 
data set produces this 
output



exprSet

• the set is closed under subsetting 
operations (either x[,1] or x[1,]) both 
produce new exprSets

• the first subscript is for genes, the 
second for samples

• the software is responsible for 
maintaining data integrity 



exprSet: accessing the 
phenotypic data

• phenotypic data is stored in a special 
class: phenoData

• this is simply a dataframe and a set of 
associated labels describing  the 
variables in the dataframe



Annotation packages
• One of the largest challenges in analyzing 

genomic data is associating the experimental 
data with the available metadata, e.g. 
sequence, gene annotation, chromosomal 
maps, literature.

• The annotate and AnnBuilder packages 
provides some tools for carrying this out.

• These are very likely to change, evolve and 
improve, so please check the current 
documentation - things may already have 
changed!



Annotation packages 
• Annotation data packages;
• Matching IDs using environments;
• Searching and processing queries from 

WWW databases
– LocusLink,
– GenBank,
– PubMed;

• HTML reports.



WWW resources
• Nucleotide databases: e.g. GenBank.
• Gene databases: e.g. LocusLink, UniGene. 
• Protein sequence and structure databases: 

e.g. SwissProt, Protein DataBank (PDB). 
• Literature databases: e.g. PubMed, OMIM.
• Chromosome maps: e.g. NCBI Map Viewer.
• Pathways: e.g. KEGG.
• Entrez is a search and retrieval system that 

integrates information from databases at NCBI 
(National Center for Biotechnology Information).



NCBI Entrez
www.ncbi.nlm.nih.gov/Entrez



annotate: matching IDs
Important tasks
• Associate manufacturers probe identifiers 

(e.g. Affymetrix IDs) to other available 
identifiers (e.g. gene symbol, PubMed PMID, 
LocusLink LocusID, GenBank accession 
number).

• Associate probes with biological data such as 
chromosomal position, pathways.

• Associate probes with published literature 
data via PubMed.



annotate: matching IDs

“X”, “Xq13.1”Chromosomal location

“10486218” 
“9205841” 
“8817323”

PubMed, PMID

“ZNF261”Gene symbol

“X95808”GenBank accession #

“9203”LocusLink, LocusID

“41046_s_at”Affymetrix identifier
HGU95A chips



Annotation data packages
• The Bioconductor project has started to 

deploy packages that contain only data. 
E.g. hgu95a package for Affymetrix
HGU95A GeneChips series, also, hgu133a, 
hu6800, mgu74a, rgu34a. 

• These data packages are built using 
AnnBuilder.

• These packages contain many different 
mappings to interesting data.

• They are available from the Bioconductor
website and also using update.packages.



Annotation data packages
• Maps to GenBank accession number, 

LocusLink LocusID, gene symbol, gene 
name, UniGene cluster.

• Maps to chromosomal location: chromosome, 
cytoband, physical distance (bp), orientation.

• Maps to KEGG pathways, enzymes, Gene 
Ontology Consortium (GO).

• Maps to PubMed PMID.
• These packages will be updated and 

expanded regularly as new or updated data 
become available.



hu6800 data package



annotate: matching IDs
• Much of what annotate does relies on matching 

symbols.
• This is basically the role of a hash table in most 

programming languages.
• In R, we rely on environments (they are similar to 

hash tables).
• The annotation data packages provide R 

environment objects containing key and value pairs 
for the mappings between two sets of probe 
identifiers. 

• Keys can be accessed using the R ls function.
• Matching values in different environments can be 

accessed using the get or multiget functions. 



E.g. hgu95a package.
• To load package library(hgu95a)
• For info on the package and list of mappings 

available
? hgu95a
hgu95a()

• For info on a particular mapping
? hgu95aPMID

annotate: matching IDs



annotate: matching IDs 
> library(hgu95a)
> get("41046_s_at", env = hgu95aACCNUM)
[1] "X95808”
> get("41046_s_at", env = hgu95aLOCUSID)
[1] "9203”
> get("41046_s_at", env = hgu95aSYMBOL)
[1] "ZNF261"
> get("41046_s_at", env = hgu95aGENENAME)
[1] "zinc finger protein 261"
> get("41046_s_at", env = hgu95aSUMFUNC)
[1] "Contains a putative zinc-binding 
motif (MYM)|Proteome"

> get("41046_s_at", env = hgu95aUNIGENE)
[1] "Hs.9568"



annotate: matching IDs
> get("41046_s_at", env = hgu95aCHR)
[1] "X"
> get("41046_s_at", env = hgu95aCHRLOC)
[1] "66457019@X"
> get("41046_s_at", env = hgu95aCHRORI)
[1] "-@X"
> get("41046_s_at", env = hgu95aMAP)
[1] "Xq13.1”
> get("41046_s_at", env = hgu95aPMID)
[1] "10486218" "9205841"  "8817323" 
> get("41046_s_at", env = hgu95aGO)
[1] "GO:0003677" "GO:0007275"



• Provide tools for searching and 
processing information from various 
biological databases.

• Provide tools for regular expression 
searching of PubMed abstracts.

• Provide nice HTML reports of analyses, 
with links to biological databases.

annotate: database searches 
and report generation



annotate: WWW queries

• Functions for querying WWW 
databases from R rely on the 
browseURL function

browseURL("www.r-project.org")



annotate: GenBank query
www.ncbi.nlm.nih.gov/Genbank/index.html

• Given a vector of GenBank accession 
numbers or NCBI UIDs, the genbank
function 
– opens a browser at the URLs for the 

corresponding GenBank queries;
– returns an XMLdoc object with the same data.

genbank(“X95808”,disp=“browser”)
http://www.ncbi.nih.gov/entrez/query.fcgi?tool=bioconductor&cmd=Search&db=Nucleotide&term=X95808

genbank(1430782,disp=“data”,
type=“uid”)



annotate: LocusLink query
www.ncbi.nlm.nih.gov/LocusLink/

• locuslinkByID: given one or more LocusIDs, the 
browser is opened at the URL corresponding to the 
first gene.

locuslinkByID(“9203”)
http://www.ncbi.nih.gov/LocusLink/LocRpt.cgi?l=9203

• locuslinkQuery: given a search string, the results 
of the LocusLink query are displayed in the browser.

locuslinkQuery(“zinc finger”)
http://www.ncbi.nih.gov/LocusLink/list.cgi?Q=zinc finger&ORG=Hs&V=0



annotate: PubMed query
www.ncbi.nlm.nih.gov

• For any gene there is often a large amount of 
data available from PubMed.

• The annotate package provides the 
following tools for interacting with PubMed
– pubMedAbst: a class structure for PubMed

abstracts in R.
– pubmed: the basic engine for talking to PubMed.

• WARNING: be careful you can query them 
too much and be banned!



annotate: pubMedAbst class

Class structure for storing and processing
PubMed abstracts in R
• authors
• abstText
• articleTitle
• journal
• pubDate
• abstUrl



annotate: high level tools for 
PubMed query

• pm.getabst: download the specified 
PubMed abstracts (stored in XML) and 
create a list of pubMedAbst objects.

• pm.titles: extract the titles from a set 
of PubMed abstracts.

• pm.abstGrep: regular expression 
matching on the abstracts.



annotate: PubMed example
pmid <-get("41046_s_at", env=hgu95aPMID)
pubmed(pmid, disp=“browser”)

http://www.ncbi.nih.gov/entrez/query.fcgi?tool=bioconductor&cmd=Retrie
ve&db=PubMed&list_uids=10486218%2c9205841%2c8817323

absts <- pm.getabst(“41046_s_at”, 
base=“hgu95a”)

pm.titles(absts)
pm.abstGrep("retardation",absts[[1]])



annotate: PubMed example



annotate: data rendering

• A simple interface, ll.htmlpage, can 
be used to generate an HTML report of 
your results.

• The page consists of a table with one 
row per gene, with links to LocusLink. 

• Entries can include various gene 
identifiers and statistics.



genelist.html

ll.htmlpage 
function from
annotate 
package



annotate: chromLoc class

Location information for one gene
• chrom: chromosome name.
• position: starting position of the gene 

in bp.
• strand: chromosome strand +/-.



annotate: chromLocation
class

Location information for a set of genes
• species: species that the genes correspond to.
• datSource: source of the gene location data.
• nChrom: number of chromosomes for the species.
• chromNames: chromosome names.
• chromLocs: starting position of the genes in bp.
• chromLengths: length of  each chromosome in bp.
• geneToChrom: hash table translating gene IDs to 

location.

Function buildChromClass



geneplotter: cPlot



geneplotter: alongChrom



geneplotter: alongChrom



Gene filtering
• A very common task in microarray data 

analysis is gene-by-gene selection. 
• Filter genes based on

– data quality criteria, e.g. absolute intensity or 
variance;

– subject matter knowledge;
– their ability to differentiate cases from controls;
– their spatial or temporal expression pattern.

• Depending on the experimental design, some 
highly specialized filters may be required and 
applied sequentially.



Gene filtering
• Clinical trial. Filter genes based on 

association with survival, e.g. using a Cox 
model.

• Factorial experiment. Filter genes based on 
interaction between two treatments, e.g. 
using 2-way ANOVA.

• Time-course experiment. Filter genes based 
on periodicity of expression pattern, e.g. 
using Fourier transform.



• The genefilter package provides tools to 
sequentially apply filters to the rows (genes) 
of a matrix.

• There are two main functions, filterfun
and genefilter, for assembling and 
applying the filters, respectively.

• Any number of functions for specific filtering 
tasks can be defined and supplied to 
filterfun. 
E.g. Cox model p-values, coefficient of variation.

genefilter package



genefilter: separation of 
tasks

1. Select/define functions for specific filtering 
tasks.

2. Assemble the filters using the filterfun
function.

3. Apply the filters using the genefilter
function a logical vector, TRUE indicates 
genes that are retained.

4. Apply that vector to the exprSet to obtain a 
microarray object for the subset of interesting 
genes.



genefilter: supplied filters

Filters supplied in the package
• kOverA – select genes for which k samples have 

expression measures larger than A.
• gapFilter – select genes with a large IQR or gap 

(jump) in expression measures across samples.
• ttest – select genes according to t-test nominal p-

values.
• Anova – select genes according to ANOVA nominal 

p-values.
• coxfilter – select genes according to Cox model 

nominal p-values.



• It is very simple to write your own filters.
• You can use the supplied filtering 

functions as templates.
• The basic idea is to rely on lexical

scope to provide values (bindings) for 
the variables that are needed to do the 
filtering. 

genefilter: writing filters



1. First, build the filters
f1 <- anyNA
f2 <- kOverA(5, 100)

2. Next, assemble them in a filtering function
ff <- filterfun(f1,f2)

3. Finally, apply the filter
wh <- genefilter(exprs(DATA), ff)

4. Use wh to obtain the relevant subset of the 
data

mySub <- DATA[wh,]

genefilter: How to?



golubEsets

• now we will spend some time looking at 
filtering genes according to different 
criteria



golubEsets

• are there genes that are differentially 
expressed by Sex?

• if so on which chromosomes are they?
• are there any genes on the Y 

chromosome that are expressed in 
samples from female patients?



Differential gene expression
• Identify genes whose expression levels are 

associated with a response or covariate of 
interest
– clinical outcome such as survival, response to 

treatment, tumor class;
– covariate such as treatment, dose, time.

• Estimation: estimate effects of interest and 
variability of these estimates. 
E.g. slope, interaction, or difference in means in a 
linear model.

• Testing: assess the statistical significance of 
the observed associations.
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