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Motivation

• Measurement model:  m = µ + e

• The great challenge is, how to gain information on
the error distribution.

measurement taken
observed

true value of interest
unknown

measurement error

For doing statistics the measurement
error has to fulfil the following
criteria:

• E[e] = 0

• Var[e] = σ2 – variation independent
of µ.

• To calculate CI’s and to perform
statistical tests the distribution of e
has to be known.

It can not generally be assumed that
e~N(0, σ2)
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Motivation – Example (1)
Analysis of Variance for Gene Expression Microarray Data [Kerr et al. (2000)]

Which genes are differentially expressed?

Model: mi,j,k,g = µ + Ai + Dj + Vk + Gg + AGig + VGkg + εi,j,k,g

(i,j,k) ∈ { (1,1,1), (1,2,2), (2,1,2), (2,2,1)}

AG: Array – Gene Interaction
VG: Variety – Gene Interaction

Interest: For which genes is VG1g – VG2g ≠ 0?

Liver Muscle

Array

Dye 1 2

1 Liver Muscle

2 Muscle Liver
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Motivation – Example (2)
Estimation of model parameters

µ = mean(mijkg)

A1 = mean(m1jkg) - µ; A2 = mean(m2jkg) - µ A1+A2 = µ1⋅⋅⋅ + µ2 ⋅⋅⋅ - 2µ = 0

D1 = mean(mi1kg) - µ; D2 = mean(mi2kg) - µ D1+D2 = µ⋅1 ⋅⋅ + µ⋅2 ⋅⋅ - 2µ = 0

V1 = mean(mij1g) - µ; V2 = mean(mij2g) - µ V1+V2 = µ⋅⋅1 ⋅ + µ⋅⋅2 ⋅ - 2µ = 0

Gg* = mean(mijkg*) - µ Σ Gg = 0

AGi*g* = mean(mi*jkg*) – Ai* - Gg* -µ Σi AGig = Σg AGig = 0

VGk*g* = mean(mijk*g*) – Vk* - Gg* -µ Σk VGkg = Σg VGkg = 0
i*, k*, g* - fixed indices

Array

Dye 1 2

1 Liver Muscle

2 Muscle Liver
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Motivation – Example (3)

ls.figure.1.rfc()
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Motivation – Example (4)
ANOVA results

> ls.effect.estimates.res <- ls.effect.estimates.rfc()
> ls.effect.estimates.res$ANOVA.table

               DF       SS     MS        F
Array           1   92.338 92.338 1433.870
Dye             1    0.744  0.744   11.558
Variety         1    2.969  2.969   46.106
Gene         1285 1885.893  1.468   22.790
ArrayxGene   1285  160.014  0.125    1.934
VarietyxGene 1285 1357.283  1.056   16.402
Residual     1285   82.751  0.064
Total        5143 3581.991
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Motivation – Example (5)
Measurement model

ls.figure.3a.rfc()
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Motivation – Example (6)
Measurement model

ls.figure.2.rfc()
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Motivation – Example (7)

The distribution of the residuals has heavier tails as the normal distribution. Therefore,
the classical ANOVA theory can not be used to answer questions of inferential statistics
like:

1. Is the AG component (array-gene interaction) an important component of the
model (F=1.934)?

2. Which genes are differential expressed?

How can we perform statistical tests and calculate confidence intervals without knowing
the parametric form of the relevant distributions?
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The Bootstrap – basic idea

1. Imitate an unknown random process based on the observed data.
2. Transfer the results gained by imitating the random process to the unknown random

process.

It is truly important that the distribution of the imitation is close to the unknown but true
distribution. Under quite general assumptions, differences can be compensated by first
order bias correction.

T random variable which describes the statistic (parameter) under the true, but unknown distribution.

T* random variable which describes the statistic under the bootstrap distribution.

Evaluation of T-θ by T*-tobs has two sources of error
(θ - parameter to be estimated, tobs – estimate of θ from the data):
 - data variability between true and bootstrap distribution.
 - estimates based on finite simulations.
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The Bootstrap – two approaches

• Parametric bootstrap (PB):
Mathematical model for the distribution of interest is known and has parameter ψ. The
parameter to be estimated θ is a component of ψ.
Example: Normal distribution ψ = (µ, σ²), θ = µ.

• Non-parametric bootstrap (NPB):
No mathematical model available. Approach is based on the fact that data is based on
observations from iid random variables. NPB may also be used to assess the robustness of
conclusions drawn from a parametric analysis.

Non-parametric analysis is based on the empirical distribution function:
 )y(F̂  = 1/n #{Yi ≤ y}.
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The Bootstrap – testing a null-hypothesis (1)

Question of interest: Is the AG-component important to explain the variability
 observed in the Kerr et al. experiment?

Null-hypothesis: The true model is given by µ+A+D+V+G+VG [MHo]

Test statistic T: F-value for the AG component if µ+A+D+V+G+AG+VG [MA] is
 fitted to the data. (tobs = 1.934)

Distribution of T*: Fit MHo to the observed data and calculate residuals and fitted values.
Under the null-hypothesis, the 5144 residuals are iid.
Create a new data set by resampling with replacement 5144 times from

 the residuals. Add the new residuals to the fitted values.
 Calculate t* by fitting Model MA to the new data set
 Repeat both steps many times (say 1000 times)
 Result: Min = 0.852, Max = 1.254 (1000 samples)
 Min = 0.81, Max = 1.27 (20000 samples, Kerr et al.)

Bootstrap p – value: pboot = #{t* ≥ tobs} / # bootstrap samples ( = 0)
Procedure is given programmed in ls.boot.F.value.rfc.
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The Bootstrap – testing a null-hypothesis (2)

• Improving the bootstrap p-value and checking if bootstrap test is ok:
pboot = P(T* ≥ tobs | obs. Data) has to be uniformly distributed.
Can be checked by a double bootstrap.

Improved bootstrap p-value: padj = P(P* ≤ pboot | obs. Data)
P* is a random variable which describes the behaviour of pboot under a double bootstrap.

• Estimating the power of a test:
Power is defined by P(T ≥ tp | HA) where tp comes from P(T ≥ tp | H0) = p

The t0.05 in the Kerr example can be estimated (1000 samples) by 1.096. The bootstrap
algorithm proposed for the test problem can be easily modified to sample data under
the alternative HA for some prespecified AG effect.
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The Bootstrap – confidence intervals (1)

Quantiles of T-θ will be approximated by using ordered values of T*-tobs

(t* is a realisation of T*, bootstrap sample *
1t , ...., *

Nt )

Estimate p quantile of T-θ by the (N+1)⋅p –th ordered value of the bootstrap sample
{ *

1t -tobs, ...., 
*
Nt -tobs }, that is *

]p)1N[(t ⋅+  - tobs (the value of (N+1)⋅p has to be an integer)

Simple (1-α) confidence intervals for θ:

Quantile method: [tobs – ( *
)]2/1()1N[(t α−⋅+ -tobs); tobs – ( *

]2/)1N[(t α⋅+ -tobs)]

Studentized: [tobs – z1-α/2⋅ *ν ; tobs + z1-α/2⋅ *ν ]
 ν* is bootstrap estimate of variance of the mean of T*.
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The Bootstrap – confidence intervals (2)

Question of interest: Which genes in the experiment of Kerr et al. are differentially
 expressed? Kerr et al. base the argument on the 99% confidence
 interval for the contrast VG1g-VG2g.

• There are simultaneously 1286 statistics of interest, one for each gene: *
gT  = VG1g-VG2g.

• What is an appropriate procedure to sample realisations *
gt  of *

gT ? [See Wu CFJ (1986)]

- Fit the model MA : µ+A+D+V+G+AG+VG to the data. Get the fitted values and the residuals.
- Create a new data set by resampling 4x1286 with replacement from the residuals. Rescale the
  samples residuals by [4xN/(N-4)]1/2. Add the rescaled residuals to the fitted values.

- Calculate a new realisation of *
gT , g = 1, ..., N.

- Repeat the last two steps many times (Kerr et al. 20000 times)
- For each g = 1, ..., N calculate a (1-α) bootstrap confidence interval (α = 0.01).
Procedure programmed in ls.boot.expression.rfc.

• Multiple testing problems?
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The Bootstrap – confidence intervals (3)
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Genes are ordered with respect to
the size of the contrast VG1g – VG2g.
The 100 genes with the smallest and
the 100 genes with the highest
contrast values are plotted together
with a 99% bootstrap confidence
intervals.

The mean with of the CIs is 1.384
(5000 samples).

A exp{1.384/2} = 1.998 fold change
in gene expression implies a
systematic differential expression.

ls.figure.4.rfc
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The Bootstrap – Caveats

• Quantiles depend on the sample in an unsmooth or unstable way. For finite samples it
may not work well. The set of possible values for T* may be very small and
vulnerable to unusual data points.

• Incomplete data: The missing mechanism has to be non-informative to guarantee the
statistical consistency of the estimation of T.

• Dependent data: Bootstrap estimate of the variance would be wrong.

• Dirty data: Outliers in the data may imply that the conclusions depend crucially on
particular observations (especially in the non-parametric case).
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The Permutation Test (1)

• The permutation test is a test where the null-hypothesis allows to reduce the inference
to a randomisation problem. The process of randomisation makes it possible to ascribe
a probability distribution to the difference in the outcome possible under H0.

• The outcome data are analysed many times (once for each acceptable assignment that
could have been possible under H0) and then compared with the observed result,
without dependence on additional distributional or model-based assumptions.

• How to perform a permutation test:
 -  Analyse the problem, choice of null-hypothesis
 -  Choice of test statistic T
 -  Calculate the value of the test statistic for the observed data: tobs

 -  Apply the randomisation principle and look at all possible permutations,
 this gives the distribution of the test statistic T under H0.
 -  Calculation of p-value: p = P(T ≥ tobs | H0) ~ #{t* ≥ tobs} / # permutations.
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The Permutation Test (2)
Coexpression of genes

Data: n measurements of gene expression for Gene 1 and Gene 2 with respect to some

 reference – ( 1
1g , 2

1g ), ..., ( 1
ng , 2

ng ).

H0: Gene 1 and Gene 2 are not correlated.
Test statistic T: Pearson (or Spearman) correlation coefficient,
 calculate tobs

Randomization: ( 1
)1(g , ..., 1

)n(g , 2
)1(g , ..., 2

)n(g )

p-value: p = # of permutations such that T* ≥ tobs / n!

Under H0 it is possible to permute
the values observed for Gene 2.

There are n! possibilities.

Distribution of T under H0
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The Permutation Test (3)

• A comparative test between two groups of sizes n1 and n2 has to look at 






 +

1

21
n

nn

permutations of the group indices.

CAVE: What is H0? For the test the H0: F1 = F2 is needed. This does not follow from
H0: µ1 = µ2. Additional assumptions are needed: Fi(y)= G(y-µi) or = G(y/µi) for G
unspecified.

• Special example: SAM [Tusher et al. (2001)]

• It is rarely possible or necessary to compute the permutation p-value exactly. The most
practical approach is to take a large number N of random permutations, calculate the

corresponding values *
1t , ..., *

Nt  of T, and approximate p by
 pmc= [1 + #{t*≥tobs }]/(N+1)
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