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M otivation

M easurement mode!: m=m+e

measurement taken true value of interest measurement error

observed unknown

- The great challenge is, how to gain information on
the error distribution.
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For doing statistics the measurement
error hasto fulfil the following
criteria

E[e] =0

Var[e] = s* — variation independent

of m

To calculate Cl's and to perform

statistical tests the distribution of e

has to be known.

It can not generally be assumed that
e~N(0, s?)
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Motivation — Example (1)

Liver

Analysis of Variance for Gene Expression Microarray Data [Kerr et al. (2000)]

» | Muscle

Which genes are differentially expressed?

Moddl: mi,j,k,g =m+ Ai + Dj + Vk + c;g + AGig + VGkg + a,j,k,g

Array
Dye 1 2
1 Liver Muscle
2 Muscle Liver
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(iK1 {(111),(1.22), (21,2), (2,2,1)}

AG: Array — Gene Interaction
VG: Variety — Gene Interaction

Interest: For which genesisVGq—VGyyt 07
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Motivation — Example (2)

Estimation of model parameters

m= mean(IM;jg)
A1 = mean(myg) - M A, = mean(Myjg) - M
D; = mean(mMiyg) - M D> = mean(Mmiag) - M
V1 = mean(mjjig) - M V, = mean(mjg) - M
Gy = mean(Mijg) - M
AGi g = mean(Mijxg-) — Ajx - Gg -m
VGysg = mean(Mijg) — Vi - Gy -m

Array
Dye 1 2
1 Liver Muscle
2 Muscle Liver
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A1+AS> = Mot M- 2M=0
D;+Ds = Myt Mpx- 2M=0
Vi+Vo = My xt Mex- 2M=0
SG;=0

S AGy=5;AGy=0

S VG =S4 VG, =0

i*, k*, g* - fixed indices
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Motivation — Example (3)

Histogram of VG contrasts

Is.figure.1.rfc()
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Motivation — Example (4)
ANOVA results

> |s.effect.estimates.res <- Is.effect.estimates.rfc()
> | s.effect.estimtes. res$ANOVA. t abl e

DF SS \%S) =
Array 1 92. 338 92.338|1433. 870
Dye 1 0.744 0.744 11. 558
Vari ety 1 2.969 2.969 46. 106
Gene 1285 1885.893 1.468 22. 790
ArrayxGene 1285 160.014 0.125 1.934
Vari et yxGene| 1285 1357.283 1.056 16. 402
Resi dual 1285 82.751 0.064
Tot al 5143 3581.991

random variation
_2 2_ 2 - 42
SSiotal =a (Mijjkg- M= a residijyg +
,],k,g
aAf+ & Df+ AV2+ & Gi+ & AGH+ & VGfy
kg i,]kg Lj,k.g  1,]k,g ,],k,g ,],K,g
Variation explained by the model
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05

Residuals
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Motivation — Example (5)
M easurement model
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Is.figure.3a.rfc()
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Motivation — Example (6)
M easurement model

Normal Q-Q Plot
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Theoretical Quantiles
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Motivation — Example (7)

The distribution of the residuals has heavier tails as the normal distribution. Therefore,
the classical ANOV A theory can not be used to answer questions of inferential statistics
like:

1.Isthe AG component (array-gene interaction) an important component of the
model (F=1.934)?

2.Which genes are differential expressed?

How can we perform statistical tests and calculate confidence intervals without knowing
the parametric form of the relevant distributions?

Heidelberg, September 2002 9
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TheBootstrap —basic idea

1. Imitate an unknown random process based on the observed data.

2. Transfer the results gained by imitating the random process to the unknown random
Process.

It istruly important that the distribution of theimitation is close to the unknown but true
distribution. Under quite general assumptions, differences can be compensated by first
order bias correction.

T  random variable which describes the statistic (parameter) under the true, but unknown distribution.
T* random variable which describes the statistic under the bootstrap distribution.

Evaluation of T-q by T*-tys has two sources of error

(q - parameter to be estimated, t,ns — estimate of g from the data):
- data variability between true and bootstrap distribution.
- estimates based on finite sSsimulations.

Heidelberg, September 2002 10
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The Bootstrap —two approaches

- Parametric bootstrap (PB):
Mathematical model for the distribution of interest is known and has parameter y . The

parameter to be estimated g isacomponent of y .
Example: Normal distributiony = (ms?,q=m

- Non-parametric bootstrap (NPB):
No mathematical model available. Approach is based on the fact that datais based on
observations from iid random variables. NPB may also be used to assess the robustness of

conclusions drawn from a parametric analysis.

Non-parametric analysisis based on the empirical distribution function:
F(y) =1n#{Y; £y}.

Heidelberg, September 2002 11
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TheBootstrap —testing a null-hypothesis (1)

Question of interest:

Null-hypothesis;
Test statistic T:

Distribution of T*:

Bootstrap p — value:

|s the AG-component important to explain the variability
observed in the Kerr et al. experiment?

The true model is given by mtA+D+V+G+V G [My]

F-value for the AG component if mtA+D+V+G+AG+V G [Ma] is
fitted to the data. (tos = 1.934)

Fit My, to the observed data and calculate residuals and fitted values.
Under the null-hypothesis, the 5144 residuals are iid.
Create a new data set by resampling with replacement 5144 times from
the residuals. Add the new residuals to the fitted values.

Calculate t* by fitting Model M4 to the new data set
Repeat both steps many times (say 1000 times)
Result: Min=0.852, Max = 1.254 (1000 samples)

Min = 0.81, Max = 1.27 (20000 samples, Kerr et al.)

Pooot = #{ 1* 3 tos} / # bootstrap samples ( = 0)

Procedure is given programmed inl s. boot . F. val ue. rfc.

Heidelberg, September 2002
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TheBootstrap —testing a null-hypothesis (2)

- Improving the bootstrap p-value and checking if bootstrap test is ok:
Pooot = P(T* 3 tyes | ObS. Data) hasto be uniformly distributed.
Can be checked by a double bootstrap.

Improved bootstrap p-value: paj = P(P* £ Ppoot | ObS. Data)

P* isarandom variable which describes the behaviour of pyo: Under a double bootstrap.

- Estimating the power of atest:
Power is defined by P(T 3 t, | Ha) where t, comesfrom P(T 2 t, | Hg) = p

The ty o5 IN the Kerr example can be estimated (1000 samples) by 1.096. The bootstrap

algorithm proposed for the test problem can be easily modified to sample data under
the alternative H, for some prespecified AG effect.

Heidelberg, September 2002 13
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The Bootstrap — confidence intervals (1)

Quantiles of T-q will be approximated by using ordered values of T* -ty
(t* isaredisation of T*, bootstrap sample ti, tT\|)

Estimate p quantile of T-q by the (N+1)% —th ordered value of the bootstrap sample
{ t1-tabs, s U~Lavs }, tEL TS T +1)5p] - Lobs (the value of (N+1)>p has to be an integer)

Simple (1-a) confidence intervals for q:
Quantilemethod:  [tons — (tf( N+1)X1- a/2)] “Lobs); tobs — (tE(N +1)a /2] tobs)]

Studentized: [tobs — Z1.9/2% n* : tobs + Z1ap™ n* ]
n* is bootstrap estimate of variance of the mean of T*.

Heidelberg, September 2002 14
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The Bootstrap — confidence intervals (2)

Question of interest:  Which genesin the experiment of Kerr et a. are differentialy
expressed? Kerr et al. base the argument on the 99% confidence
interval for the contrast VGi4-VGag.

- There are simultaneously 1286 statistics of interest, one for each gene: T; =VGi4VGy,

- What is an appropriate procedure to sample realisations t; of TS ? [ See Wu CFJ (1986)]

- Fit the model M, : mFA+D+V+G+AG+V G to the data. Get the fitted values and the residuals.
- Create a new data set by resampling 4x1286 with replacement from the residuals. Rescale the
samples residuals by [4xN/(N-4)] 2. Add the rescaled residuals to the fitted values.

- Calculate a new realisation of TS, g=1, .. N.

- Repeat the last two steps many times (Kerr et al. 20000 times)
-Foreachg =1, ..., N calculate a (1-a) bootstrap confidenceinterval (a = 0.01).
Procedure programmed in| s. boot . expression.rfc.

- Multiple testing problems?

Heidelberg, September 2002 15
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The Bootstrap — confidence intervals (3)
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Genes

Genes are ordered with respect to
the size of the contrast VGig — VGyy.
The 100 genes with the smallest and
the 100 genes with the highest
contrast values are plotted together
with a 99% bootstrap confidence
intervals.

The mean with of the Clsis 1.384
(5000 samples).

A exp{1.384/2} =1.998 fold change
in gene expression implies a
systematic differential expression.

Is.figure.4.rfc
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TheBootstrap — Caveats

- Quantiles depend on the sample in an unsmooth or unstable way. For finite samples it
may not work well. The sat of possible values for T* may be very smal and
vulnerable to unusual data points.

- Incomplete data: The missing mechanism has to be non-informative to guarantee the
statistical consistency of the estimation of T.

- Dependent data: Bootstrap estimate of the variance would be wrong.

- Dirty data: Outliers in the data may imply that the conclusions depend crucialy on
particular observations (especially in the non-parametric case).

Heidelberg, September 2002 17
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The Permutation Test (1)

- The permutation test is atest where the null-hypothesis allows to reduce the inference
to a randomisation problem. The process of randomisation makes it possible to ascribe
a probability distribution to the difference in the outcome possible under Hj.

- The outcome data are analysed many times (once for each acceptable assgnment that
could have been possible under Hy) and then compared with the observed result,
without dependence on additional distributional or model-based assumptions.

- How to perform a permutation test:
- Analyse the problem, choice of null-hypothesis
Choice of test statistic T
Calculate the value of the tes statistic for the observed data: ts
Apply the randomisation principle and look at all possible permutations,
this gives the distribution of the test statistic T under H,,.

Calculation of p-value: p=P(T 3 tys | Hy) ~#{t* 3 tys} / # permutations.

Heidelberg, September 2002 18



Practical microarray analysis —resampling and the bootstrap

The Permutation Test (2)

Coexpression of genes

Data.  n measurements of gene expression for Gene 1 and Gene 2 with respect to some

Ho: Gene 1 and Gene 2 are not correlated.
Test statistic T Pearson (or Spearman) correlation coefficient,
caculate typs

Randomization: (g%l), g%n), g(zl), g(zn))
L L 4

=Jp | Distribution of T under Ho

Under Hy it is possible to permute

the values observed for Gene 2.
There are n! possibilities.

p-value: p = # of permutations such that T* 3 ty,/ n!

Heidelberg, September 2002 19
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The Permutation Test (3)

. : af thoO
- A comparative test between two groups of sizes n, and n, hasto look at g 1n 2;
1 @

permutations of the group indices.

CAVE: What i1s Hy? For the test the Hy: F; = F, 1sneeded. This does not follow from
Ho: m = m. Additional assumptions are needed: Fi(y)= G(y-m) or = G(y/m) for G
unspecified.

- Special example: SAM [Tusher et al. (2001)]

- It israrely possible or necessary to compute the permutation p-value exactly. The most
practical approach isto take alarge number N of random permutations, calculate the

corresponding values t’i, tT\| of T, and approximate p by
Pmc= [1+#H{ "3 ts  }]/(N+1)
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