
An introduction to R

Course in Practical Microarray
Analysis

Heidelberg 23.-27.9.2002
Wolfgang Huber

What this is

o A short, highly incomplete tour around some
of the basic concepts of R as a programming
language
o Some hints on how to obtain documentation on
the many library functions (packages)
o Followed by exercises which you may solve
yourself, and which take you all the way from
obtaining a set of image-processed microarray
files to producing and assessing lists of
differentially expressed genes

R, S and S-plus
S: an interactive environment for data analysis
developed at Bell Laboratories since 1976
1988 - S2: RA Becker, JM Chambers, A Wilks
1992 - S3: JM Chambers, TJ Hastie
1998 - S4: JM Chambers

Exclusively licensed by AT&T/Lucent to Insightful
Corporation, Seattle WA. Product name: �S-plus�.

Implementation languages C, Fortran.

See:
http://cm.bell-labs.com/cm/ms/departments/sia/S/history.html

R, S and S-plus
R: initially written by Ross Ihaka and Robert
Gentleman at Dep. of Statistics of U of Auckland,
New Zealand during 1990s.

Since 1997: international �R-core� team of ca. 15
people with access to common CVS archive.

GNU General Public License (GPL)
- can be used by anyone for any purpose
- contagious

Open Source
-quality control!
-efficient bug tracking and fixing system supported
by the user community

What R does and does not
o data handling and
storage: numeric,
textual
o matrix algebra
o hash tables and
regular expressions
o high-level data
analytic and statistical
functions
o classes (�OO�)
o graphics
o programming language:
loops, branching,
subroutines

o is not a database, but
connects to DBMSs
o has no graphical user
interfaces, but connects
to Java, TclTk
o language interpreter
can be very slow, but
allows to call own C/C++
code
o no spreadsheet view
of data, but connects to
Excel/MsOffice
o no professional /
commercial support

R and statistics
o Packaging: a crucial infrastructure to efficiently
produce, load and keep consistent software libraries
from (many) different sources / authors
o Statistics: most packages deal with statistics and
data analysis
o State of the art: many statistical researchers
provide their methods as R packages

R as a calculator
> log2(32)

[1] 5

> sqrt(2)

[1] 1.414214

> seq(0, 5, length=6)

[1] 0 1 2 3 4 5

> plot(sin(seq(0, 2*pi, length=100)))

0 20 40 60 80 100
-1

.0
-0

.5
0.

0
0.

5
1.

0
Index

si
n(

se
q(

0,
 2

 *
pi

, l
en

gt
h

=
10

0)
)

variables
> a = 49
> sqrt(a)
[1] 7

> a = "The dog ate my homework"
> sub("dog","cat",a)
[1] "The cat ate my homework�

> a = (1+1==3)
> a
[1] FALSE

numeric

character
string

logical

missing values
Variables of each data type (numeric, character,
logical) can also take the value NA: not available.
o NA is not the same as 0
o NA is not the same as ��
o NA is not the same as FALSE

Any operations (calculations, comparisons) that involve
NA may or may not produce NA:
> NA==1
[1] NA
> 1+NA
[1] NA
> max(c(NA, 4, 7))
[1] NA
> max(c(NA, 4, 7), na.rm=T)
[1] 7

> NA | TRUE
[1] TRUE
> NA & TRUE
[1] NA

functions and operators
Functions do things with data
�Input�: function arguments (0,1,2,�)
�Output�: function result (exactly one)

Example:
add = function(a,b)
{ result = a+b
return(result) }

Operators:
Short-cut writing for frequently used
functions of one or two arguments.
Examples: + - * / ! & | %%

functions and operators
Functions do things with data
�Input�: function arguments (0,1,2,�)
�Output�: function result (exactly one)

Exceptions to the rule:
Functions may also use data that sits around
in other places, not just in their argument
list: �scoping rules�*

Functions may also do other things than
returning a result. E.g., plot something on the
screen: �side effects�
*Lexical scope and Statistical Computing. R. Gentleman, R. Ihaka, Journal of Computational and Graphical
Statistics, 9(3), p. 491-508 (2000).

vectors, matrices and arrays
vector: an ordered collection of data of the
same type
> a = c(1,2,3)
> a*2
[1] 2 4 6

Example: the mean spot intensities of all
15488 spots on a chip: a vector of 15488
numbers

In R, a single number is the special case of a
vector with 1 element.

Other vector types: character strings, logical

vectors, matrices and arrays

matrix: a rectangular table of data of the
same type

example: the expression values for 10000
genes for 30 tissue biopsies: a matrix with
10000 rows and 30 columns.

array: 3-,4-,..dimensional matrix

example: the red and green foreground and
background values for 20000 spots on 120
chips: a 4 x 20000 x 120 (3D) array.

Lists
vector: an ordered collection of data of the same
type.
> a = c(7,5,1)
> a[2]
[1] 5

list: an ordered collection of data of arbitrary types.
> doe = list(name="john",age=28,married=F)
> doe$name
[1] "john“
> doe$age
[1] 28

Typically, vector elements are accessed by their index
(an integer), list elements by their name (a character
string). But both types support both access methods.

Data frames
data frame: is supposed to represent the typical
data table that researchers come up with � like a
spreadsheet.

It is a rectangular table with rows and columns;
data within each column has the same type (e.g.
number, text, logical), but different columns may
have different types.

Example:
> a

localisation tumorsize progress
XX348 proximal 6.3 FALSE
XX234 distal 8.0 TRUE
XX987 proximal 10.0 FALSE

Factors
A character string can contain arbitrary text. Sometimes it is useful to use a
limited vocabulary, with a small number of allowed words. A factor is a
variable that can only take such a limited number of values, which are called
levels.
> a
[1] Kolon(Rektum) Magen Magen
[4] Magen Magen Retroperitoneal
[7] Magen Magen(retrogastral) Magen
Levels: Kolon(Rektum) Magen Magen(retrogastral)
Retroperitoneal
> class(a)
[1] "factor"
> as.character(a)
[1] "Kolon(Rektum)" "Magen" "Magen"
[4] "Magen" "Magen" "Retroperitoneal"
[7] "Magen" "Magen(retrogastral)" "Magen"
> as.integer(a)
[1] 1 2 2 2 2 4 2 3 2
> as.integer(as.character(a))
[1] NA NA NA NA NA NA NA NA NA NA NA NA
Warning message:
NAs introduced by coercion

Subsetting
Individual elements of a vector, matrix, array or data frame
are accessed with �[]� by specifying their index, or their name
> a

localisation tumorsize progress
XX348 proximal 6.3 0
XX234 distal 8.0 1
XX987 proximal 10.0 0

> a[3, 2]
[1] 10

> a["XX987", "tumorsize"]
[1] 10

> a["XX987",]
localisation tumorsize progress

XX987 proximal 10 0

SubsettingSubsetting
> a

localisation tumorsize progress
XX348 proximal 6.3 0
XX234 distal 8.0 1
XX987 proximal 10.0 0

> a[c(1,3),]
localisation tumorsize progress

XX348 proximal 6.3 0
XX987 proximal 10.0 0

> a[c(T,F,T),]
localisation tumorsize progress

XX348 proximal 6.3 0
XX987 proximal 10.0 0

> a$localisation
[1] "proximal" "distal" "proximal"

> a$localisation=="proximal"
[1] TRUE FALSE TRUE

> a[a$localisation=="proximal",]
localisation tumorsize progress

XX348 proximal 6.3 0
XX987 proximal 10.0 0

subset rows by
a vector of
indices

subset rows by
a logical vector

subset a column

comparison resulting
in logical vector

subset the
selected rows

Branching

if (logical expression) {
statements

} else {
alternative statements

}

else branch is optional

Loops
When the same or similar tasks need to be
performed multiple times; for all elements of
a list; for all columns of an array; etc.

for(i in 1:10) {
print(i*i)

}

i=1
while(i<=10) {

print(i*i)
i=i+sqrt(i)

}

lapply, sapply, apply

When the same or similar tasks need to be performed multiple
times for all elements of a list or for all columns of an array.
May be easier and faster than �for� loops

lapply(li, fct)
To each element of the list li, the function fct is applied. The
result is a list whose elements are the individual fct results.

> li = list("klaus","martin","georg")
> lapply(li, toupper)
> [[1]]
> [1] "KLAUS"
> [[2]]
> [1] "MARTIN"
> [[3]]
> [1] "GEORG"

lapply, sapply, apply

sapply(li, fct)
Like apply, but tries to simplify the result, by converting it into
a vector or array of appropriate size

> li = list("klaus","martin","georg")
> sapply(li, toupper)
[1] "KLAUS" "MARTIN" "GEORG"

> fct = function(x) { return(c(x, x*x, x*x*x)) }
> sapply(1:5, fct)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 1 4 9 16 25
[3,] 1 8 27 64 125

apply

apply(arr, margin, fct)
Applies the function fct along some dimensions of the
array arr, according to margin, and returns a vector or
array of the appropriate size.
> x

[,1] [,2] [,3]
[1,] 5 7 0
[2,] 7 9 8
[3,] 4 6 7
[4,] 6 3 5

> apply(x, 1, sum)
[1] 12 24 17 14

> apply(x, 2, sum)
[1] 22 25 20

hash tables
In vectors, lists, dataframes, arrays, elements are stored
one after another, and are accessed in that order by their
offset (or: index), which is an integer number.

Sometimes, consecutive integer numbers are not the
�natural� way to access: e.g., gene names, oligo sequences

E.g., if we want to look for a particular gene name in a long
list or data frame with tens of thousands of genes, the
linear search may be very slow.

Solution: instead of list, use a hash table. It sorts, stores
and accesses its elements in a way similar to a telephone
book.

hash tables
In R, a hash table is the same as a workspace for variables,
which is the same as an environment.

> tab = new.env(hash=T)

> assign("cenp-e", list(cloneid=682777,
description="putative kinetochore motor ..."), env=tab)

> assign("btk", list(cloneid=682638,
fullname="Bruton agammaglobulinemia tyrosine kinase"), env=tab)

> ls(env=tab)
[1] "btk" "cenp-e"

> get("btk", env=tab)
$cloneid
[1] 682638
$fullname
[1] "Bruton agammaglobulinemia tyrosine kinase"

regular expressions
A tool for text matching and replacement which is available in similar
forms in many programming languages (Perl, Unix shells, Java)

> a = c("CENP-F","Ly-9", "MLN50", "ZNF191", "CLH-17")

> grep("L", a)
[1] 2 3 5

> grep("L", a, value=T)
[1] "Ly-9" "MLN50" "CLH-17"

> grep("^L", a, value=T)
[1] "Ly-9"

> grep("[0-9]", a, value=T)
[1] "Ly-9" "MLN50" "ZNF191" "CLH-17"

> gsub("[0-9]", "X", a)
[1] "CENP-F" "Ly-X" "MLNXX" "ZNFXXX" "CLH-XX"

Object orientation

primitive (or: atomic) data types in R are:

numeric (integer, double, complex)
character
logical
function

out of these, vectors, arrays, lists can be
built.

Object orientation

Object: a collection of atomic variables and/or
other objects that belong together

Example: a microarray experiment
- probe intensities
- patient data (tissue location, diagnosis, follow-up)
- gene data (sequence, IDs, annotation)

Parlance:
class: the �abstract� definition of it
object: a concrete instance
method: other word for �function�
slot: a component of an object

Object orientation

Advantages:

Encapsulation (can use the objects and methods
someone else has written without having to care
about the internals)

Generic functions (e.g. plot, print)

Inheritance (hierarchical organization of
complexity)

Caveat:
Overcomplicated, baroque program architecture�

Object orientation
library('methods')
setClass('microarray', ## the class definition

representation(## its slots
qua = 'matrix',
samples = 'character',
probes = 'vector'),

prototype = list(## and default values
qua = matrix(nrow=0, ncol=0),
samples = character(0),
probes = character(0)))

dat = read.delim('../data/alizadeh/lc7b017rex.DAT')
z = cbind(dat$CH1I, dat$CH2I)

setMethod('plot', ## overload generic function ‘plot’
signature(x='microarray'), ## for this new class
function(x, ...)
plot(x@qua, xlab=x@samples[1], ylab=x@samples[2], pch='.', log='xy'))

ma = new('microarray', ## instantiate (construct)
qua = z,
samples = c('brain','foot'))

plot(ma)

Object orientation
library('methods')
setClass('microarray', ## the class definition

representation(## its slots
qua = 'matrix',
samples = 'character',
probes = 'vector'),

prototype = list(## and default values
qua = matrix(nrow=0, ncol=0),
samples = character(0),
probes = character(0)))

dat = read.delim('../data/alizadeh/lc7b017rex.DAT')
z = cbind(dat$CH1I, dat$CH2I)

setMethod('plot', ## overload generic function ‘plot’
signature(x='microarray'), ## for this new class
function(x, ...)
plot(x@qua, xlab=x@samples[1], ylab=x@samples[2], pch='.', log='xy'))

ma = new('microarray', ## instantiate (construct)
qua = z,
samples = c('brain','foot'))

plot(ma)

Storing data

Every R object can be stored into and
restored from a file with the commands
�save� and �load�.

This uses the XDR (external data
representation) standard of Sun
Microsystems and others, and is portable
between MS-Windows, Unix, Mac.

> save(x, file=“x.Rdata”)
> load(“x.Rdata”)

Importing and exporting data
There are many ways to get data into R and out of R.

Most programs (e.g. Excel), as well as humans, know
how to deal with rectangular tables in the form of
tab-delimited text files.

> x = read.delim(�filename.txt�)
also: read.table, read.csv

> write.table(x, file=�x.txt�, sep=�\t�)

Importing data: caveats
Type conversions: by default, the read functions try
to guess and autoconvert the data types of the
different columns (e.g. number, factor, character).
There are options as.is and colClasses to control
this � read the online help

Special characters: the delimiter character (space,
comma, tabulator) and the end-of-line character
cannot be part of a data field. To circumvent this,
text may be �quoted�. However, if this option is used
(the default), then the quote characters themselves
cannot be part of a data field. Except if they
themselves are within quotes�
Understand the conventions your input files use and
set the quote options accordingly.

Getting help
Details about a specific command whose name
you know (input arguments, options, algorithm,
results):

>? t.test

or

>help(t.test)

Getting help

o HTML search
engine

o search for
topics with regular
expressions:
�help.search�

Web sites
www.r-project.org

cran.r-project.org

www.bioconductor.org

Full text search:
www.r-project.org

or
www.google.com

with �� site:.r-project.org� or other R-specific
keywords

