Version 1.20.0
Date 2023-05-25

Package ‘rebook’

November 1, 2025

Title Re-using Content in Bioconductor Books

Description Provides utilities to re-use content across chapters of a Bioconductor
book. This is mostly based on functionality developed while writing the
OSCA book, but generalized for potential use in other large books with
heavy compute. Also contains some functions to assist book deployment.

Imports utils, methods, knitr (>= 1.32), rmarkdown, CodeDepends,
dir.expiry, filelock, BiocStyle

Suggests testthat, igraph, XML, BiocManager, RCurl, bookdown,
rappdirs, yaml, BiocParallel, OSCA.intro, OSCA.workflows

License GPL-3
VignetteBuilder knitr

biocViews Software, Infrastructure, ReportWriting

RoxygenNote 7.2.3

git_url https://git.bioconductor.org/packages/rebook
git_branch RELEASE_3_22

git_last_commit 0301643

git_last_commit_date 2025-10-29
Repository Bioconductor 3.22
Date/Publication 2025-10-31

Author Aaron Lun [aut, cre, cph]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

Contents

bioc-images . . .
bookCache . . .
buildChapterGraph

chapterPreamble

collapseStart . . .
compileBook . .

compileChapter

configureBook . .



2 bioc-images
createMakefile . . . . . . . ... 10
createRedirects . . . . . . . . L 11
deployCustomCSS . . . . . . . . 12
extractCached . . . . . . . . . .. 13
extractFromPackage . . . . . . .. ..o 15
Link . .. 17
openingDetails . . . . . .. ... L 18
prettySessionlnfo . . . . . ... L 19
md2id . ... e 19
scrapeDependencies . . . . . . . . .. e 20
scrapeReferences . . . . . . . . .. L 21
setupHTML . . . . . . . e e e 22
updateDependencies . . . . . . ... .o e 23

Index 25

bioc-images Get various Bioconductor images

Description

Helper functions to pull down images to use in the book. These aim to provide a sensible default
for Bioconductor-related books.

Usage

BiocFavicon()
BiocSticker(mode = c("static”, "animated"))

Arguments

mode String specifying the type of sticker to show.
Value
BiocFavicon will return a path to a favicon.ico file.
BiocSticker will return a URL or path to a sticker.
Author(s)
Aaron Lun
Examples
BiocFavicon()

BiocSticker()



bookCache 3

bookCache Get the local book cache

Description

Get the path to the cache directory in which the book will be built.

Usage

bookCache (package)

bookCacheExpiry()
Arguments

package String containing the name of the book package.
Details

For bookCache, the last elements of the output path are the package and version, consistent with the
expectations of dir.expiry functions. This path is located in a directory determined by rappdirs. If
the environment variable REBOOK_CACHE is set, it is used to obtain the root of the path instead.

If the environment variable REBOOK_CACHE_EXPIRY is set, it is coerced into an integer and returned
by bookCacheExpiry. This allows users to tune the expiry interval for older cached books.

Value

For bookCache, a string containing the path to the cache directory for this book package.

For bookCacheExpiry, an integer specifying the maximum number of days from last access for a
book cache. Any unaccessed caches are subject to deletion by various rebook functions.
Author(s)

Aaron Lun

See Also

configureBook, where this function is used in the Makefile.

extractFromPackage, which populates the cache directory if this is not supplied.

Examples

bookCache ('OSCA.workflows')
bookCacheExpiry ()



4 buildChapterGraph

buildChapterGraph Build the chapter dependency graph

Description

Build the dependency graph between chapter based on their extractCached calls to each other.

Usage

buildChapterGraph(dir, recursive = TRUE, pattern = "\\.Rmd$")

Arguments

dir String containing the path to the directory containing Rmarkdown reports. This
is searched recursively for all files ending in " .Rmd".

recursive, pattern
Further arguments to pass to 1ist.files when searching for Rmarkdown re-
ports.

Value

A directed graph object from the igraph package, where each node is a chapter and is connected to
its dependencies by an edge.

Author(s)

Aaron Lun

Examples

dir <- tempfile()
dir.create(dir)

tmp1 <- file.path(dir, "alpha.Rmd")
write(file=tmp1, "~ ~~{r, echo=FALSE, results='asis'}
rebook: :chapterPreamble()

Nty

rodan <- 1

~~~u)

tmp2 <- file.path(dir, "bravo.Rmd")
write(file=tmp2, "~ ~~{r, echo=FALSE, results='asis'}
rebook: :chapterPreamble()

)
extractCached('alpha.Rmd")

~~~u)

# Building the chapter graph:
g <- buildChapterGraph(dir)



chapterPreamble 5

plot(g)

chapterPreamble Execute chapter preamble code

Description

Execute code to set up the compilation environment at the start of every chapter.

Usage

chapterPreamble(cache = TRUE)

Arguments

cache Logical indicating whether to cache code chunks.

Details

Compilation is performed with no tolerance for errors, no printing of package start-up messages,
and no printing of warnings.

Numbers are printed to 4 digits of precision.

The BiocStyle package is automatically attached, primarily for use of Biocpkg and similar func-
tions.

HTML elements are defined using setupHTML.

Value

HTML is printed to standard output, see setupHTML.

Author(s)

Aaron Lun

Examples

tmp <- tempfile(fileext=".Rmd")
write(file=tmp, "~ ~{r, echo=FALSE, results='asis'}
rebook: :chapterPreamble()

)
pi # four digits!

T

warning('ASDASD') # warnings and messages are not saved in the HTML.

***{r, results='asis'}
prettySessionInfo()



6 compileBook

DY

rmarkdown: : render (tmp)

if (interactive()) browseURL(sub(”.Rmd$"”, ".html”, tmp))
collapseStart Print the collapse opening and ending
Description

Print HTML tags to open and close the collapsible chunks.

Usage

collapseStart(message)

collapseEnd()

Arguments

message String containing a message to insert in the collapsible header.

Value

Both functions will cat HTML tags; one to start and another to end each collapsible chunk.

Author(s)

Aaron Lun

Examples

collapseStart("This is collapsible”)
cat("something inside the chunk\n")
collapseEnd()

compileBook Compile the book

Description

Copy a bookdown book to a separate workspace prior to compilation, and then copy the compiled
book to a final location.

Usage

preCompileBook(src.dir, work.dir, desc = NULL)

postCompileBook(work.dir, final.dir, handle = NULL)



compileBook 7

Arguments
src.dir String containing the path to the book Rmarkdown sources.
work.dir String containing the path to the versioned cache directory used to compile the
book, see the dir.expiry package for details.
desc String containing the path to a DESCRIPTION file to copy into work.dir. Typi-
cally used when the book is to inherit the DESCRIPTION of the enclosing pack-
age.
final.dir String containing the path to the final location for the compiled book’s HTMLs.
handle The lock handle returned by preCompileBook.
Details

These two functions should bracket a render_book call. We do not make these into a single function
as calling render_book inside another function inside a package does not interact properly with
some imports. The offending example is that of cbind, which fails to be converted into an S4
generic (this would normally happen when BiocGenerics gets attached).

preCompileBook may take some time as it will compile all chapters via compileChapter. It does
so by locking and unlocking each chapter as it is compiled, thus avoiding problems with concurrent
attempts to compile the same chapter via extractFromPackage. (Concurrent compilation of dif-
ferent chapters is still supported and allows for parallel package builds.) The actual compilation of
the book with bookdown will simply re-use these caches for efficiency.

After compilation of the individual chapters, preCompileBook will lock the entire work.dir. This
ensures that bookdown’s directory shuffling does not break concurrent processes using the knitr
cache directories. The lock can be released by passing the returned handle to handle in postCompileBook.

Value

For preCompileBook, work is populated with the book sources and intermediate content (e.g.,
caches). A lock handle is returned.

For postCompileBook, final is populated with the HTMLs. Cache directories are moved out of
_bookdown_files into their original location.

In both cases, a NULL is invisibly returned.

Author(s)

Aaron Lun

See Also

configureBook, where this function is called in the Makefile.

bookCache, the default choice for work.dir.



8 compileChapter

compileChapter Compile a Rmarkdown file

Description
Compile a Rmarkdown file - typically a chapter of a book - so that extractCached calls work
correctly in other chapters.

Usage
compileChapter(path, cache = TRUE)

Arguments

path String containing a path to an Rmarkdown file.

cache Logical scalar indicating whether the compilation should be cached.
Details

Compilation is performed in a completely fresh R session, to ensure that objects, globals and loaded
packages from one chapter do not affect the next chapter.

If an error is encountered during compilation of any Rmarkdown file, the standard output of render
leading up to the error is printed out before the function exists.

Value
The specified file is (re)compiled to generate the corresponding *_cache directories. NULL is invis-
ibly returned.

Author(s)

Aaron Lun

See Also

extractCached, which calls this function.

Examples

tmp <- tempfile(fileext=".Rmd")
write(file=tmp, "~ ~{r, echo=FALSE, results='asis'}
rebook: :chapterPreamble()

)
rodan <- 1

SRR

compileChapter (tmp)

file.exists(sub(”.Rmd$", ".html"”, tmp)) # output HTML exists.
file.exists(sub(”.Rmd$"”, "_cache”, tmp)) # output cache exists.

exists("rodan"”) # FALSE



configureBook 9

configureBook Helper configuration function for books

Description
Helper function to run at the top-level directory of Bioconductor book packages, to prepare for book
compilation and to set up install-time resources for 1inking from other books.

Usage

configureBook(prefix = NULL, input = "index.Rmd", redirect = NULL)

Arguments
prefix Optional string containing the prefix to be used when 1inking from other books.
input Name of the index file for the book, see scrapeReferences.
redirect Optional name of the file containing redirection information, to be passed to
createRedirects.
Details

This function assumes that the bookdown-formatted book is located at inst/book inside the pack-
age. input is interpreted relative to this location, e.g., if input="index.Rmd", the file should be
located at inst/book/index.Rmd.

Similarly, redirect is provided, the file should already be present in vignettes/. For example, if
redirect="redirect.txt", the file should be located at vignettes/redirect. txt.

Value

A number of files are created in the package directory.
* A "references.csv” file is created in the inst/rebook directory, containing the table of
references from scrapeReferences.

» If prefixis specified, a "prefix.csv” file is also created in inst/rebook. This contains the
preferred prefix of the book.

* A Makefile is created in vignettes/ that triggers book compilation. This will also generate
HTMLs for redirection via createRedirects if redirect is provided.

* A stub vignette at vignettes/stub.Rmd is created that redirects to the deployed book loca-
tion.

Author(s)

Aaron Lun

See Also

scrapeReferences, which is called by this function to create the reference table.

link, which is used by other books to link to the configured book.



10 createMakefile

createMakefile Create a compilation Makefile

Description

Create a Makefile for compiling individual chapters, in a manner that respects the dependencies
between chapters.

Usage
createMakefile(dir = ".", pattern = "\\.Rmd$", ..., fname = "Makefile")
Arguments
dir String containing the path to the directory containing Rmarkdown reports. This
is searched recursively for all files ending in " .Rmd".
Further arguments to pass to buildChapterGraph.
fname String containing the name of the output Makefile.
Details

The main benefit of using a Makefile is that the generation of the chapter caches can be done in
parallel. Then, the bookdown step can just serially retrieve the cache contents for rapid rendering.

The Makefile uses the markdown output file as an indicator of successful knitting of a chapter.
Caches are left in the current working directory after the compilation of each report. It is assumed
that bookdown’s render_book is smart enough to find and use these caches.

Value

A Makefile is created in dir with the name fname and a NULL is invisibly returned.

Author(s)

Aaron Lun

See Also

buildChapterGraph, to detect dependencies between chapters.

Examples

dir <- tempfile()
dir.create(dir)

tmp1 <- file.path(dir, "alpha.Rmd")
write(file=tmpl1, "~ ~~{r, echo=FALSE, results='asis'}
rebook: :chapterPreamble()

Nty

rodan <- 1

~~~u)



createRedirects 11

tmp2 <- file.path(dir, "bravo.Rmd")
write(file=tmp2, "~ ~~{r, echo=FALSE, results='asis'}
rebook: :chapterPreamble()

{rd
extractCached('alpha.Rmd")

TN

# Creating the Makefile:
createMakefile(dir)
cat(readLines(file.path(dir, "Makefile")), sep="\n")

createRedirects Create redirection pages

Description

Create HTML pages to redirect users to the latest version of the relevant Bioconductor book. This
is useful for preserving compatibility with old links when reorganizing the contents of a book.

Usage
createRedirects(
name,
pkg,
page,
dir = "../inst/doc/book",
file = NULL,

check = FALSE,
include.gif = TRUE

)
Arguments

name Character vector containing the name of each HTML.

pkg Character vector containing the name of the Bioconductor book package to redi-
rect to.

page Character vector containing the name of the new chapter to redirect to.

dir String containing the path to the output directory for the HTMLs.

file String containing the name of a comma-separate file with three unnamed columns,
from which to derive name, pkg and page.

check Logical scalar indicating whether to check if the destination URL exists.

include.gif Logical scalar indicating whether a GIF should be included in the redirection

notice.



12 deployCustomCSS

Details

This function is intended to be called inside the Makefile generated by configureBook, which
will create the necessary HTMLs at package build time. The expectation is that there is a file like
redirect. txt that can be passed in as the file argument. The default dir is the same as the final
destination for all HTMLs that is defined in the Makefile.

In file, the last column can be left empty for any row. This will instruct createRedirects to re-
use name as page, which is convenient when a chapter is simply moved to another package without
a change in the HTML file name.

It is probably a good idea to run with check=TRUE on occasion, to verify that the redirections are
working. This is not done by default to avoid a chicken-and-egg situation where two books cannot
build because they redirect to each other.

Value

HTMLs of the specified name are created in dir, redirected to the sites defined by their respective
pkg and page entries. A NULL is invisibly returned.

Author(s)

Aaron Lun

Examples

tmp <- tempfile()
dir.create(tmp)
createRedirects(”"BLAH.html"”, pkg="0SCA.intro"”, page="installation.html”, dir=tmp)

if (interactive()) {
browseURL(file.path(tmp, "BLAH.html"))

}

deployCustomCSS Deploy a custom CSS

Description

Deploy a custom CSS to change the colors of the book’s section headers, mostly to add some flavor
to the book.

Usage

deployCustomCSS(path = "style.css”, h2.col = "#87b13f", h3.col = "#1a81c2")

Arguments
path String containing the path to the output CSS file.
h2.col String containing the color to use for the section headers.

h3.col String containing the color to use for the subsection headers.



extractCached 13

Details

We quickly learned that it was unwise to be too adventurous with the colors. In particular, changing
the colors of the table of contents was quite distracting. Altering the colors of the section headers
provides a tasteful level of customization, with the default colors set (almost) to the Bioconductor
color palette.

Value

The CSS file is overwritten at path. A NULL is invisibly returned.

Author(s)

Aaron Lun, based on work by Rob Amezquita and Kevin Rue-Albrecht

Examples

fname <- tempfile(fileext=".css")
deployCustomCSS(fname)
cat(readLines(fname), sep="\n")

extractCached Extract cached objects

Description

Extract specific R objects from the knitr cache of a previously compiled Rmarkdown file (the
“donor”) so that it can be used in the compilation process of another Rmarkdown file (the “accep-
tor”).

Usage

extractCached(path, chunk, objects, envir = parent.frame(1), link.text = NULL)

Arguments

path String containing the path to the donor Rmarkdown file.

chunk String containing the name of the requested chunk.

objects Character vector containing variable names for one or more objects to be ex-
tracted.

envir Environment where the loaded objects should be stored. Defaults to the envi-
ronment in which this function is called.

link.text String containing an Rmarkdown-formatted link to the donor file, to be inserted

in the collapsible element’s title. If NULL, we attempt to construct this automati-
cally from path using rmd2id. If NA, no link text is inserted.



14 extractCached

Details

Each R object is extracted in its state at the requested chunk and inserted into envir. Note that
the object does not have to be generated or even referenced in the requested chunk, provided it was
generated in a previous named chunk.

The parser in this function is rather limited, so the donor Rmarkdown file is subject to several
constraints:

* All chunks involved in generating the requested objects (indirectly or otherwise) should be
named.

* All named chunks should be executed; eval=FALSE is not respected.

* All relevant code occurs within triple backticks, i.e., any inline code should be read-only.

Unnamed chunks are allowed but cannot be referenced and will not be used for searching for objects.
Chunks with names starting with unref- are considered to be the same as unnamed chunks and will
be ignored; this is useful for figure-generating chunks that need to be referenced inside the donor
report. In general, neither of these should be used for code that might affect variables in the named
chunks, i.e., code in unnamed chunks should be “read-only” with respect to variables in the named
chunks.

Obviously, this entire process assumes that donor report has already been compiled with cache=TRUE.
If not, extractCached will compile it (and thus generate the cache) using compileChapter. A
report-specific lock is applied during this process to avoid problems with concurrent compilation.

Value

Variables with names objects are created in envir. A markdown chunk (wrapped in a collapsible
element) is printed that contains all commands needed to generate those objects, based on the code
in the named chunks of the donor Rmarkdown file.

Author(s)

Aaron Lun

See Also

setupHTML and chapterPreamble, to set up the code for the collapsible element.

compileChapter, to compile a Rmarkdown report to generate the cache.

Examples

# Mocking up an Rmarkdown report.

donor <- tempfile(fileext=".Rmd")
write(file=donor, """ "{r some-monsters}
destoroyah <- 1

mecha.king.ghidorah <- 2

{r more-monsters}
space.godzilla <- 3

iy

msg <- 'I am not referenced.'



extractFromPackage 15

{r unref-figure}
plot(1, 1, main="I am also not referenced.')

{r even-more-monsters}
megalon <- 4

~~~u)

# Extracting stuff from it in another report.

acceptor <- tempfile(fileext=".Rmd")

dpb <- deparse(basename(donor))

write(file=acceptor, sprintf(” " {r, echo=FALSE, results='asis'}
chapterPreamble()

***{r, results='asis', echo=FALSE}
extractCached(%s, chunk='more-monsters',
objects=c('space.godzilla', 'destoroyah'))

T}

space.godzilla * destoroyah

> {r, results='asis', echo=FALSE}
extractCached(%s, chunk='even-more-monsters',
objects=c('megalon', 'mecha.king.ghidorah'))

T {r}
mecha.king.ghidorah * megalon
ST, dpb, dpb))

rmarkdown: : render (acceptor)

if (interactive()) browseURL(sub("”.Rmd$"”, ".html", acceptor))
extractFromPackage Extract cached objects from package’s Rmarkdown files
Description

Extract and compile Rmarkdown files from a “donor” package’s installation directory, extracting
cached objects from the subsequent knitr cache.

Usage

extractFromPackage (
rmd.name,
package,
envir = parent.frame(1),
src.name = "book”,



16 extractFromPackage

work.dir = bookCache(package)

)
Arguments
rmd. name String containing the path to the donor Rmarkdown file, relative to work.
...,envir Further arguments to pass to extractCached.
package String containing the name of the donor package.
src.name String containing the name or relative path of the subdirectory in the donor pack-
age’s installation directory that contains all the Rmarkdown files.
work.dir String containing the path to a versioned cache directory to hold the contents of
donor book, see the dir.expiry package for details.
Details

This function assumes that all potential donor Rmarkdown files for package are present in the
directory src.name. It copies the contents of src.name into work.dir and calls extractCached on
the rmd . name inside. The desired objects are then extracted from the subsequent knitr cache.

The work.dir directory should be set to a persistent cache to enable greater re-use of the cache
across calls and R sessions. Indeed, the default here is the same as that used by preCompileBook,
so we can avoid recopmilation if the donor book has already been compiled via the latter function.
This function will respect any global locks imposed by other functions in the process of performing
the copy (or other rearrangements).

Value

A NULL is invisibly returned. Objects are created in envir and a code chunk is printed; see
extractCached for more details.

Author(s)

Aaron Lun

Examples

# Only specifyin 'work.dir' here for demonstration purposes.
# For actual use, just leave it as the default.
tmp <- file.path(tempfile(), "1.0.0")

extractFromPackage("test.Rmd"”, chunk="ghidorah-1964", src.name="example",
objects="godzilla", package="rebook”, work.dir=tmp)

list.files(tmp)
godzilla



link

17

link

Create a link to a different book

Description

From another Rmarkdown file, create a link to a section or figure of a rebook-configured book.

Usage

link(id, package, type = NULL, prefix = NULL, df = NULL, error = TRUE)

Arguments
id
package

type

prefix

df

error

Details

String containing an identifier for a section or figure.
String containing the name of the package containing the target book.

String containing the type of the link, e.g., "Section” or "Figure”, to be added
to the link text. This is automatically determined if not provided. If NA, the type
is not added to the link text.

String specifying the prefix to use on type. This is automatically determined
from package’s chosen prefix or, if that is not provided, using the package name
itself. If NA, no prefix is added. Only used if type is not NA.

A data.frame containing all links for package. Only used for testing.

Logical scalar indicating whether an error should be raised if the link cannot be
found.

We expect that the target book is set up as a Bioconductor package with a configure file that
runs configureBook. This function will then retrieve install-time information from that package to
create necessary hyperlinks to the Bioconductor-hosted book content.

Value

String containing a markdown-formatted link to the relevant part of the target book. If the link
cannot be constructed and error=FALSE, a NULL is instead returned.

Author(s)

Aaron Lun

See Also

configureBook, which should be run by the authors of package.

scrapeReferences, to generate a df for testing.



18 openingDetails

Examples

# Only using 'df=' here because 'testpackage' doesn't actually exist.
link("fig:xxx", package="testpackage”,
df=data.frame(id='fig:xxx', file='whee.html', text='3.1"'))

link("fig:xxx", package="testpackage"”, type=NA,
df=data.frame(id='fig:xxx', file='whee.html', text='3.1"'))

link("fig:xxx", package="testpackage”, prefix=NA,
df=data.frame(id="'fig:xxx', file='whee.html', text='3.1"'))

openingDetails Report opening details about the book

Description

Report opening details about the book, to be executed as an R expression in the Date: field.

Usage
openingDetails(..., Copyright = NULL)
Arguments
e Further named strings to be included in the opening details.
Copyright String containing copyright information; defaults to "Bioconductor, <current
year>".
Details

It is usually sufficient to set something like

~n

date: "°r rebook::openingDetails()

in the YAML header of the book, thereby ensuring that the book details are printed after the title but
before any contents. This assumes that none of the details have problematic characters, particularly
double quotes.

Details are extracted from a DESCRIPTION file in the current or any parent directory. This assumes
that authors are formatted as AuthorseR and the License and Date fields are specified.
Value

A string containing the formatted details for inclusion into a YAML header.

Author(s)

Aaron Lun

Examples

wd <- getwd()
setwd(system.file(package="rebook"))
cat(openingDetails(), '\n')
setwd(wd)



prettySessionlnfo 19

prettySessionInfo Pretty session info

Description
Wraps the session information output chunk in a collapsible HTML element so that it doesn’t dom-
inate the compiled chapter.

Usage

prettySessionInfo()

Value

Prints a HTML block containing a collapsible section with session information.

Author(s)

Aaron Lun

See Also

setupHTML and chapterPreamble, to set up the code for the collapsible element.

Examples

tmp <- tempfile(fileext=".Rmd")
write(file=tmp, "~ {r, echo=FALSE, results='asis'}
rebook: : setupHTML ()

7 {r, results='asis'}
prettySessionInfo()
)

rmarkdown: : render (tmp)

if (interactive()) browseURL(sub(”.Rmd$", ".html"”, tmp))
rmd2id Get the chapter identifier
Description

Get the identifier for a book chapter given the Rmarkdown source code. This is usually derived
from the chapter title but can also be explicitly specified.

Usage
rmd2id(path)



20 scrapeDependencies

Arguments

path String containing the path to the Rmarkdown file for a chapter.

Value

String containing the identifier for this chapter. If no identifier can be determined, NULL is returned.

Author(s)

Aaron Lun

Examples
tmp <- tempfile(fileext='.Rmd')

write('# some chapter name

blah', file=tmp)
rmd2id(tmp)

tmp2 <- tempfile(fileext='.Rmd")
write('# some chapter name {#chapter-id}

blah', file=tmp2)
rmd2id(tmp2)

scrapeDependencies Scrape dependencies

Description

Scrape Rmarkdown reports in the book for all required dependencies.

Usage
scrapeDependencies(dir, recursive = TRUE, pattern = "\\.Rmd$")
Arguments
dir String containing the path to the directory containing Rmarkdown reports. This

is searched recursively for all files ending in " .Rmd".
recursive, pattern

Further arguments to pass to 1list.files when searching for Rmarkdown re-
ports.

Details
The output of this should be added to the Suggests field of the book’s DESCRIPTION, to make it
easier to simply install all of its required dependencies.

Note that dependencies in inline code sections are not detected, so these should be explicitly men-
tioned in a standalone code chunk to be captured.



scrapeReferences 21

Value

Character vector of required packages.

Author(s)

Aaron Lun

Examples

tmp <- tempfile(fileext=".Rmd")
write(file=tmp, "~ ~~{r}
A::a()

{r}
library(B)
require(C)

ey

scrapeDependencies(tempdir())

scrapeReferences Scrape references from a bookdown directory

Description

Scrape references to sections and figures from all Rmarkdown files in a bookdown directory.

Usage
scrapeReferences(dir, input = "index.Rmd”, workdir = tempfile(), clean = TRUE)
Arguments
dir String containing a path to a bookdown-containing directory.
input String containing the name of the file to use in the render_book statement.
workdir String containing a path to a working directory to use to store bits and pieces.
clean Logical scalar indicating whether the working directory should be removed upon
function completion.
Details

This function works by performing a quick dummy compilation of the book, turning off all evalua-
tions with a global eval=FALSE. It then trawls the set of newly created HTML files, pulling out the
section/figure identifiers and collating them into a data.frame.

The goal is to facilitate convenient linking between books by automatically filling in the file and text
for a given link. Packages that deploy books should run this in their configure scripts to obtain a
reference mapping that they can serve to other packages via link.

Extraction of the figure text assumes that the figure prefix ends with a non-numeric character, e.g.,
"Figure " or "Figure S".



22 setupHTML

Value

A data.frame where each row corresponds to a reference. It has id, the name of the reference; file,
the compiled HTML file that the reference comes from; and text, the text to be associated with
that reference.

Author(s)

Aaron Lun

See Also

1ink, to create links given a package name and identifier.

Examples

book.dir <- system.file("example"”, package="rebook")
df <- scrapeReferences(book.dir)
df

setupHTML Set up HTML elements

Description

Set up Javascript and CSS elements for each chapter, primarily for the custom collapsible class.

Usage
setupHTML ()

Details

The custom collapsible class allows us to hide details until requested by the user. This improves
readability by reducing the clutter in the compiled chapter.

Value

Prints HTML to standard output set up JS and CSS elements.

Author(s)

Aaron Lun

See Also

chapterPreamble, which calls this function.

extractCached and prettySessionInfo, which use the custom collapsible class.

Examples

setupHTML ()



updateDependencies 23

updateDependencies Update the dependencies

Description

Update the book package’s DESCRIPTION file with the latest dependencies.

Usage

updateDependencies(
dir = ".",
path = file.path(dir, "DESCRIPTION"),
extra = NULL,
indent = 4,
field = "Depends”,

Arguments
dir String containing the path to the directory containing the book.
path String containing the path to the DESCRIPTION file.
extra Character vector of extra packages to be added to imports, usually from pack-
ages that are in Suggests and thus not caught directly by scrapeDependencies.
indent Integer scalar specifying the size of the indent to use when listing packages.
field String specifying the dependency field to store the packages in. Defaults to
"Suggests” by convention.
Further arguments to pass to scrapeDependencies.
Details

The book DESCRIPTION is useful for quick installation of all packages required across all chapters.
For example, it is used by https://github.com/LTLA/TrojanBookBuilder to populate a trojan
package’s dependencies, ensuring that all packages are available when the book itself is compiled.

Value

The specified field in the DESCRIPTION file in dir is updated. NULL is invisibly returned.

Author(s)

Aaron Lun

Examples

dir <- tempfile()
dir.create(dir)

write(file=file.path(dir, "DESCRIPTION"),
"Package: son.of.godzilla
Version: 0.0.1


https://github.com/LTLA/TrojanBookBuilder

24

Description: Like godzilla, but smaller.")

tmp <- file.path(dir, "alpha.Rmd")
write(file=tmp, "~ ~{r, echo=FALSE, results='asis'}
rebook: :chapterPreamble()

)
A::func
library(C)
~~~u)

tmp <- file.path(dir, "bravo.Rmd")
write(file=tmp, "~ " {r, echo=FALSE, results='asis'}
rebook: :chapterPreamble()

)
require(D)
B::more
sy

updateDependencies(dir)

cat(readLines(file.path(dir, "DESCRIPTION")), sep="\n")

updateDependencies



Index

bioc-images, 2

BiocFavicon (bioc-images), 2
Biocpkg, 5

BiocSticker (bioc-images), 2
bookCache, 3, 7
bookCacheExpiry (bookCache), 3
buildChapterGraph, 4, 10

cat, 6
chapterPreamble, 5, 14, 19, 22
collapseEnd (collapseStart), 6
collapseStart, 6
compileBook, 6
compileChapter, 7, 8, 14
configureBook, 3, 7,9, 12,17
createMakefile, 10
createRedirects, 9, 11

deployCustomCSS, 12

extractCached, 4, 8, 13, 16, 22
extractFromPackage, 3, 7, 15

graph, 4
knit, 10

link, 9,17, 21, 22
list.files, 4, 20

openingDetails, 18

postCompileBook (compileBook), 6
preCompileBook, 16
preCompileBook (compileBook), 6
prettySessionInfo, 19, 22

render, 8
render_book, 7, 21
rmd2id, /3, 19

scrapeDependencies, 20, 23
scrapeReferences, 9, 17, 21
setupHTML, 5, 14, 19, 22

updateDependencies, 23

25



	bioc-images
	bookCache
	buildChapterGraph
	chapterPreamble
	collapseStart
	compileBook
	compileChapter
	configureBook
	createMakefile
	createRedirects
	deployCustomCSS
	extractCached
	extractFromPackage
	link
	openingDetails
	prettySessionInfo
	rmd2id
	scrapeDependencies
	scrapeReferences
	setupHTML
	updateDependencies
	Index

