
Package ‘impute’
October 16, 2025

Title impute: Imputation for microarray data

Version 1.82.0

Author Trevor Hastie, Robert Tibshirani, Balasubramanian Narasimhan,
Gilbert Chu

Description Imputation for microarray data (currently KNN only)

Maintainer Balasubramanian Narasimhan <naras@stat.Stanford.EDU>

Depends R (>= 2.10)

License GPL-2

biocViews Microarray

git_url https://git.bioconductor.org/packages/impute

git_branch RELEASE_3_21

git_last_commit 3e54bd4

git_last_commit_date 2025-04-15

Repository Bioconductor 3.21

Date/Publication 2025-10-15

Contents
impute.knn . 1
khanmiss . 4

Index 5

impute.knn A function to impute missing expression data

Description

A function to impute missing expression data, using nearest neighbor averaging.

1

2 impute.knn

Usage

impute.knn(data ,k = 10, rowmax = 0.5, colmax = 0.8, maxp = 1500, rng.seed=362436069)

Arguments

data An expression matrix with genes in the rows, samples in the columns

k Number of neighbors to be used in the imputation (default=10)

rowmax The maximum percent missing data allowed in any row (default 50%). For any
rows with more than rowmax% missing are imputed using the overall mean per
sample.

colmax The maximum percent missing data allowed in any column (default 80%). If
any column has more than colmax% missing data, the program halts and reports
an error.

maxp The largest block of genes imputed using the knn algorithm inside impute.knn
(default 1500); larger blocks are divided by two-means clustering (recursively)
prior to imputation. If maxp=p, only knn imputation is done.

rng.seed The seed used for the random number generator (default 362436069) for repro-
ducibility.

Details

impute.knn uses k-nearest neighbors in the space of genes to impute missing expression values.

For each gene with missing values, we find the k nearest neighbors using a Euclidean metric, con-
fined to the columns for which that gene is NOT missing. Each candidate neighbor might be missing
some of the coordinates used to calculate the distance. In this case we average the distance from
the non-missing coordinates. Having found the k nearest neighbors for a gene, we impute the miss-
ing elements by averaging those (non-missing) elements of its neighbors. This can fail if ALL the
neighbors are missing in a particular element. In this case we use the overall column mean for that
block of genes.

Since nearest neighbor imputation costs O(p log(p)) operations per gene, where p is the number
of rows, the computational time can be excessive for large p and a large number of missing rows.
Our strategy is to break blocks with more than maxp genes into two smaller blocks using two-mean
clustering. This is done recursively till all blocks have less than maxp genes. For each block, k-
nearest neighbor imputation is done separately. We have set the default value of maxp to 1500.
Depending on the speed of the machine, and number of samples, this number might be increased.
Making it too small is counter-productive, because the number of two-mean clustering algorithms
will increase.

For reproducibility, this function reseeds the random number generator using the seed provided or
the default seed (362436069).

Value

data the new imputed data matrix

rng.seed the rng.seed that can be used to reproduce the imputation. This should be saved
by any prudent user if different from the default.

impute.knn 3

rng.state the state of the random number generator, if available, prior to the call to set.seed.
Otherwise, it is NULL. If necessary, this can be used in the calling code to undo
the side-effect of changing the random number generator sequence.

Note

A bug in the function knnimp.split was fixed in version 1.18.0. This means that results from
earlier versions may not be exactly reproducible. We apologize for this inconvenience.

Author(s)

Trevor Hastie, Robert Tibshirani, Balasubramanian Narasimhan, and Gilbert Chu

References

Hastie, T., Tibshirani, R., Sherlock, G., Eisen, M., Brown, P. and Botstein, D., Imputing Miss-
ing Data for Gene Expression Arrays, Stanford University Statistics Department Technical report
(1999), http://www-stat.stanford.edu/~hastie/Papers/missing.pdf

Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshi-
rani, David Botstein and Russ B. Altman, Missing value estimation methods for DNA microarrays
BIOINFORMATICS Vol. 17 no. 6, 2001 Pages 520-525

See Also

set.seed, save

Examples

data(khanmiss)
khan.expr <- khanmiss[-1, -(1:2)]
##
First example
##
if(exists(".Random.seed")) rm(.Random.seed)
khan.imputed <- impute.knn(as.matrix(khan.expr))
##
khan.imputed$data should now contain the imputed data matrix
khan.imputed$rng.seed should contain the random number seed used
in imputation. In the above invocation, it is the default seed.
##
khan.imputed$rng.seed # should be 362436069
khan.imputed$rng.state # should be NULL
##
Second example
##
set.seed(12345)
saved.state <- .Random.seed
khan.imputed <- impute.knn(as.matrix(khan.expr))
Assuming all goes well with no guarantees in case of error...
.Random.seed <- khan.imputed$rng.state
sum(saved.state - khan.imputed$rng.state) # should be zero!

4 khanmiss

save(khan.imputed, file="khanimputation.Rda")

khanmiss Khan microarray data with random missing values

Description

A text file containing the Khan micorarray data with random missing values introduced for illustra-
tive purposes

Usage

data(khanmiss)

Format

The data set khanmiss consists of 2310 rows and 65 columns. Row 1 has the sample labels, Row 2
has the class labels. The remaining rows are gene expression. Column 1 is a dummy gene number.
Column 2 is the gene name. Remaining columns are gene expression.

Please note that this dataset was derived from the original by introducing some random missing
values purely for the purpose of illustration.

Source

Khan, J. and Wei, J.S. and Ringner, M. and Saal, L. and Ladanyi, M. and Westermann, F. and
Berthold, F. and Schwab, M. and Antonescu, C. and Peterson, C. and and Meltzer, P. (2001) Clas-
sification and diagnostic prediction of cancers using gene expression profiling and artificial neural
network. Nature Medicine 7, 673-679.

References

Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert Chu (2002). Diagnosis
of multiple cancer types by shrunken centroids of gene expression PNAS 99: 6567-6572. Available
at www.pnas.org

Examples

data(khanmiss)

Index

∗ datasets
khanmiss, 4

∗ data
impute.knn, 1

∗ impute, k-nearest neighbor, two-means
clustering

impute.knn, 1

impute.knn, 1

khanmiss, 4

5

	impute.knn
	khanmiss
	Index

