
Package ‘SNPRelate’
January 2, 2026

Type Package

Title Parallel Computing Toolset for Relatedness and Principal
Component Analysis of SNP Data

Version 1.44.0

Date 2025-09-26

Depends R (>= 2.15), gdsfmt (>= 1.8.3)

LinkingTo gdsfmt

Imports methods, RhpcBLASctl

Suggests parallel, Matrix, RUnit, knitr, markdown, rmarkdown, MASS,
BiocGenerics

Enhances SeqArray (>= 1.12.0)

Description Genome-wide association studies (GWAS) are widely used to
investigate the genetic basis of diseases and traits, but they pose many
computational challenges. We developed an R package SNPRelate to provide
a binary format for single-nucleotide polymorphism (SNP) data in GWAS
utilizing CoreArray Genomic Data Structure (GDS) data files. The GDS
format offers the efficient operations specifically designed for
integers with two bits, since a SNP could occupy only two bits.
SNPRelate is also designed to accelerate two key computations on SNP
data using parallel computing for multi-core symmetric multiprocessing
computer architectures: Principal Component Analysis (PCA) and
relatedness analysis using Identity-By-Descent measures. The SNP GDS
format is also used by the GWASTools package with the support of S4
classes and generic functions. The extended GDS format is implemented
in the SeqArray package to support the storage of single nucleotide
variations (SNVs), insertion/deletion polymorphism (indel) and
structural variation calls in whole-genome and whole-exome variant data.

License GPL-3

VignetteBuilder knitr

LazyData true

URL https://github.com/zhengxwen/SNPRelate

BugReports https://github.com/zhengxwen/SNPRelate/issues

biocViews Infrastructure, Genetics, StatisticalMethod,
PrincipalComponent

1

https://github.com/zhengxwen/SNPRelate
https://github.com/zhengxwen/SNPRelate/issues

2 Contents

git_url https://git.bioconductor.org/packages/SNPRelate

git_branch RELEASE_3_22

git_last_commit 50237e4

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-01

Author Xiuwen Zheng [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-1390-0708>),

Stephanie Gogarten [ctb],
Cathy Laurie [ctb],
Bruce Weir [ctb, ths] (ORCID: <https://orcid.org/0000-0002-4883-1247>)

Maintainer Xiuwen Zheng <zhengx@u.washington.edu>

Contents
SNPRelate-package . 3
hapmap_geno . 5
snpgdsAdmixPlot . 6
snpgdsAdmixProp . 7
snpgdsAlleleSwitch . 9
snpgdsApartSelection . 10
snpgdsBED2GDS . 11
snpgdsClose . 13
snpgdsCombineGeno . 14
snpgdsCreateGeno . 16
snpgdsCreateGenoSet . 17
snpgdsCutTree . 19
snpgdsDiss . 21
snpgdsDrawTree . 23
snpgdsEIGMIX . 24
snpgdsErrMsg . 26
snpgdsExampleFileName . 27
SNPGDSFileClass . 28
snpgdsFst . 28
snpgdsGDS2BED . 30
snpgdsGDS2Eigen . 31
snpgdsGDS2PED . 32
snpgdsGEN2GDS . 34
snpgdsGetGeno . 35
snpgdsGRM . 36
snpgdsHCluster . 38
snpgdsHWE . 40
snpgdsIBDKING . 41
snpgdsIBDMLE . 44
snpgdsIBDMLELogLik . 46
snpgdsIBDMoM . 48
snpgdsIBDSelection . 51
snpgdsIBS . 52
snpgdsIBSNum . 54

https://orcid.org/0000-0002-1390-0708
https://orcid.org/0000-0002-4883-1247

SNPRelate-package 3

snpgdsIndInb . 55
snpgdsIndInbCoef . 56
snpgdsIndivBeta . 58
snpgdsLDMat . 59
snpgdsLDpair . 61
snpgdsLDpruning . 62
snpgdsMergeGRM . 64
snpgdsOpen . 66
snpgdsOption . 67
snpgdsPairIBD . 68
snpgdsPairIBDMLELogLik . 70
snpgdsPairScore . 73
snpgdsPCA . 75
snpgdsPCACorr . 78
snpgdsPCASampLoading . 80
snpgdsPCASNPLoading . 82
snpgdsPED2GDS . 83
snpgdsSampMissRate . 85
snpgdsSelectSNP . 86
snpgdsSlidingWindow . 87
snpgdsSNPList . 88
snpgdsSNPListClass . 89
snpgdsSNPListIntersect . 90
snpgdsSNPRateFreq . 91
snpgdsSummary . 92
snpgdsTranspose . 93
snpgdsVCF2GDS . 94
snpgdsVCF2GDS_R . 97

Index 99

SNPRelate-package Parallel Computing Toolset for Genome-Wide Association Studies

Description

Genome-wide association studies are widely used to investigate the genetic basis of diseases and
traits, but they pose many computational challenges. We developed SNPRelate (R package for
multi-core symmetric multiprocessing computer architectures) to accelerate two key computations
on SNP data: principal component analysis (PCA) and relatedness analysis using identity-by-
descent measures. The kernels of our algorithms are written in C/C++ and highly optimized.

Details

Package: SNPRelate
Type: Package
License: GPL version 3
Depends: gdsfmt (>= 1.0.4)

4 SNPRelate-package

The genotypes stored in GDS format can be analyzed by the R functions in SNPRelate, which
utilize the multi-core feature of machine for a single computer.

Webpage: https://github.com/zhengxwen/SNPRelate, http://corearray.sourceforge.net/

Tutorial: http://corearray.sourceforge.net/tutorials/SNPRelate/

Author(s)

Xiuwen Zheng <zhengxwen@gmail.com>

References

Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A High-performance Computing
Toolset for Relatedness and Principal Component Analysis of SNP Data. Bioinformatics (2012);
doi: 10.1093/bioinformatics/bts610

Examples

##
Convert the PLINK BED file to the GDS file
#

PLINK BED files
bed.fn <- system.file("extdata", "plinkhapmap.bed.gz", package="SNPRelate")
fam.fn <- system.file("extdata", "plinkhapmap.fam.gz", package="SNPRelate")
bim.fn <- system.file("extdata", "plinkhapmap.bim.gz", package="SNPRelate")

convert
snpgdsBED2GDS(bed.fn, fam.fn, bim.fn, "HapMap.gds")

##
Principal Component Analysis
#

open
genofile <- snpgdsOpen("HapMap.gds")

RV <- snpgdsPCA(genofile)
plot(RV$eigenvect[,2], RV$eigenvect[,1], xlab="PC 2", ylab="PC 1",

col=rgb(0,0,150, 50, maxColorValue=255), pch=19)

close the file
snpgdsClose(genofile)

##
Identity-By-Descent (IBD) Analysis
#

open
genofile <- snpgdsOpen(snpgdsExampleFileName())

RV <- snpgdsIBDMoM(genofile)
flag <- lower.tri(RV$k0)
plot(RV$k0[flag], RV$k1[flag], xlab="k0", ylab="k1",

col=rgb(0,0,150, 50, maxColorValue=255), pch=19)

https://github.com/zhengxwen/SNPRelate
http://corearray.sourceforge.net/
http://corearray.sourceforge.net/tutorials/SNPRelate/

hapmap_geno 5

abline(1, -1, col="red", lty=4)

close the file
snpgdsClose(genofile)

##
Identity-By-State (IBS) Analysis
#

open
genofile <- snpgdsOpen(snpgdsExampleFileName())

RV <- snpgdsIBS(genofile)
m <- 1 - RV$ibs
colnames(m) <- rownames(m) <- RV$sample.id
GeneticDistance <- as.dist(m[1:45, 1:45])
HC <- hclust(GeneticDistance, "ave")
plot(HC)

close the file
snpgdsClose(genofile)

##
Linkage Disequilibrium (LD) Analysis
#

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

snpset <- read.gdsn(index.gdsn(genofile, "snp.id"))[1:200]
L1 <- snpgdsLDMat(genofile, snp.id=snpset, method="composite", slide=-1)

plot
image(abs(L1$LD), col=terrain.colors(64))

close the file
snpgdsClose(genofile)

hapmap_geno SNP genotypes of HapMap samples

Description

A list object including the following components:

sample.id – a vector of sample ids;

snp.id – a vector of SNP ids;

snp.position – a vector of SNP positions;

snp.chromosome – a vector of chromosome indices;

snp.allele – a character vector of “reference / non-reference”;

genotype – a “# of SNPs” X “# of samples” genotype matrix.

6 snpgdsAdmixPlot

Usage

hapmap_geno

Value

A list

snpgdsAdmixPlot Plot Ancestry Proportions

Description

Plot the admixture proportions according to their ancestries.

Usage

snpgdsAdmixPlot(propmat, group=NULL, col=NULL, multiplot=TRUE, showgrp=TRUE,
shownum=TRUE, ylim=TRUE, na.rm=TRUE)

snpgdsAdmixTable(propmat, group, sort=FALSE)

Arguments

propmat a sample-by-ancestry matrix of proportion estimates, returned from snpgdsAdmixProp()

group a character vector of a factor according to the rows in propmat

col specify colors; if group is not specified, it is a color for each sample; otherwise
specify colors for the groups

multiplot single plot or multiple plots

showgrp show group names in the plot; applicable when group is used

shownum TRUE: show the number of each group on the X-axis in the figure; applicable
when group is used

ylim TRUE: y-axis is limited to [0, 1]; FALSE: ylim <- range(propmat); a 2-length
numeric vector: ylim used in plot()

na.rm TRUE: remove the sample(s) according to the missing value(s) in group

sort TRUE: rearranges the rows of proportion matrices into descending order

Details

The minor allele frequency and missing rate for each SNP passed in snp.id are calculated over all
the samples in sample.id.

Value

snpgdsAdmixPlot(): none.

snpgdsAdmixTable(): a list of data.frame consisting of group, num, mean, sd, min, max

Author(s)

Xiuwen Zheng

snpgdsAdmixProp 7

References

Zheng X, Weir BS. Eigenanalysis on SNP Data with an Interpretation of Identity by Descent. Theo-
retical Population Biology. 2015 Oct 23. pii: S0040-5809(15)00089-1. doi: 10.1016/j.tpb.2015.09.004.

See Also

snpgdsEIGMIX, snpgdsAdmixProp

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

get population information
or pop_code <- scan("pop.txt", what=character())
if it is stored in a text file "pop.txt"
pop_code <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))

get sample id
samp.id <- read.gdsn(index.gdsn(genofile, "sample.id"))

run eigen-analysis
RV <- snpgdsEIGMIX(genofile)

define groups
groups <- list(CEU = samp.id[pop_code == "CEU"],

YRI = samp.id[pop_code == "YRI"],
CHB = samp.id[is.element(pop_code, c("HCB", "JPT"))])

prop <- snpgdsAdmixProp(RV, groups=groups, bound=TRUE)

draw
snpgdsAdmixPlot(prop, group=pop_code)

use user-defined colors for the groups
snpgdsAdmixPlot(prop, group=pop_code, multiplot=FALSE, col=c(3,2,4))

snpgdsAdmixTable(prop, group=pop_code)

close the genotype file
snpgdsClose(genofile)

snpgdsAdmixProp Estimate ancestral proportions from the eigen-analysis

Description

Estimate ancestral (admixture) proportions based on the eigen-analysis.

Usage

snpgdsAdmixProp(eigobj, groups, bound=FALSE)

8 snpgdsAdmixProp

Arguments

eigobj an object of snpgdsEigMixClass from snpgdsEIGMIX, or an object of snpgdsPCAClass
from snpgdsPCA

groups a list of sample IDs, such like groups = list(CEU = c("NA0101", "NA1022",
...), YRI = c("NAxxxx", ...), Asia = c("NA1234", ...))

bound if TRUE, the estimates are bounded in [0, 1], and the sum of proportions is one;
bound=FALSE for unbiased estimates

Details

The minor allele frequency and missing rate for each SNP passed in snp.id are calculated over all
the samples in sample.id.

Value

Return a matrix of ancestral proportions with rows for study individuals (rownames() is sample
ID).

Author(s)

Xiuwen Zheng

References

Zheng X, Weir BS. Eigenanalysis on SNP Data with an Interpretation of Identity by Descent. Theo-
retical Population Biology. 2015 Oct 23. pii: S0040-5809(15)00089-1. doi: 10.1016/j.tpb.2015.09.004.
[Epub ahead of print]

See Also

snpgdsEIGMIX, snpgdsPCA, snpgdsAdmixPlot

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

get population information
or pop_code <- scan("pop.txt", what=character())
if it is stored in a text file "pop.txt"
pop_code <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))

get sample id
samp.id <- read.gdsn(index.gdsn(genofile, "sample.id"))

run eigen-analysis
RV <- snpgdsEIGMIX(genofile)

eigenvalues
RV$eigenval

make a data.frame
tab <- data.frame(sample.id = samp.id, pop = factor(pop_code),

EV1 = RV$eigenvect[,1], # the first eigenvector

snpgdsAlleleSwitch 9

EV2 = RV$eigenvect[,2], # the second eigenvector
stringsAsFactors = FALSE)

head(tab)

draw
plot(tab$EV2, tab$EV1, col=as.integer(tab$pop),

xlab="eigenvector 2", ylab="eigenvector 1")
legend("bottomleft", legend=levels(tab$pop), pch="o", col=1:4)

define groups
groups <- list(CEU = samp.id[pop_code == "CEU"],

YRI = samp.id[pop_code == "YRI"],
CHB = samp.id[is.element(pop_code, c("HCB", "JPT"))])

prop <- snpgdsAdmixProp(RV, groups=groups)
head(prop)

draw
plot(prop[, "YRI"], prop[, "CEU"], col=as.integer(tab$pop),

xlab = "Admixture Proportion from YRI",
ylab = "Admixture Proportion from CEU")

abline(v=0, col="gray25", lty=2)
abline(h=0, col="gray25", lty=2)
abline(a=1, b=-1, col="gray25", lty=2)
legend("topright", legend=levels(tab$pop), pch="o", col=1:4)

draw
snpgdsAdmixPlot(prop, group=pop_code)

close the genotype file
snpgdsClose(genofile)

snpgdsAlleleSwitch Allele-switching

Description

Switch alleles according to the reference if needed.

Usage

snpgdsAlleleSwitch(gdsobj, A.allele, verbose=TRUE)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

A.allele characters, referring to A allele

verbose if TRUE, show information

10 snpgdsApartSelection

Value

A logical vector with TRUE indicating allele-switching and NA when it is unable to determine. NA
occurs when A.allele = NA or A.allele is not in the list of alleles.

Author(s)

Xiuwen Zheng

Examples

the file name of SNP GDS
(fn <- snpgdsExampleFileName())

copy the file
file.copy(fn, "test.gds", overwrite=TRUE)

open the SNP GDS file
genofile <- snpgdsOpen("test.gds", readonly=FALSE)

allelic information
allele <- read.gdsn(index.gdsn(genofile, "snp.allele"))
allele.list <- strsplit(allele, "/")

A.allele <- sapply(allele.list, function(x) { x[1] })
B.allele <- sapply(allele.list, function(x) { x[2] })

set.seed(1000)
flag <- rep(FALSE, length(A.allele))
flag[sample.int(length(A.allele), 50, replace=TRUE)] <- TRUE

A.allele[flag] <- B.allele[flag]
A.allele[sample.int(length(A.allele), 10, replace=TRUE)] <- NA
table(A.allele, exclude=NULL)

allele switching
z <- snpgdsAlleleSwitch(genofile, A.allele)

table(z, exclude=NULL)

close the file
snpgdsClose(genofile)

delete the temporary file
unlink("test.gds", force=TRUE)

snpgdsApartSelection Select SNPs with a basepair distance

Description

Randomly selects SNPs for which each pair is at least as far apart as the specified basepair distance.

snpgdsBED2GDS 11

Usage

snpgdsApartSelection(chromosome, position, min.dist=100000,
max.n.snp.perchr=-1, verbose=TRUE)

Arguments

chromosome chromosome codes

position SNP positions in base pair

min.dist A numeric value to specify minimum distance required (in basepairs)
max.n.snp.perchr

A numeric value specifying the maximum number of SNPs to return per chro-
mosome, "-1" means no number limit

verbose if TRUE, show information

Value

A logical vector indicating which SNPs were selected.

Author(s)

Xiuwen Zheng

See Also

snpgdsLDpruning

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())
genofile

chr <- read.gdsn(index.gdsn(genofile, "snp.chromosome"))
pos <- read.gdsn(index.gdsn(genofile, "snp.position"))

set.seed(1000)
flag <- snpgdsApartSelection(chr, pos, min.dist=250000, verbose=TRUE)
table(flag)

close the genotype file
snpgdsClose(genofile)

snpgdsBED2GDS Conversion from PLINK BED to GDS

Description

Convert a PLINK binary ped file to a GDS file.

12 snpgdsBED2GDS

Usage

snpgdsBED2GDS(bed.fn, fam.fn, bim.fn, out.gdsfn, family=FALSE,
snpfirstdim=NA, compress.annotation="LZMA_RA", compress.geno="",
option=NULL, cvt.chr=c("int", "char"), cvt.snpid=c("auto", "int"),
verbose=TRUE)

Arguments

bed.fn the file name of binary file, genotype information

fam.fn the file name of first six columns of ".ped"; if it is missing, ".fam" is added to
bed.fn

bim.fn the file name of extended MAP file: two extra columns = allele names; if it is
missing, ".bim" is added to bim.fn

out.gdsfn the output file name of GDS file

family if TRUE, to include family information in the sample annotation

snpfirstdim if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs
for the first individual, and then list all SNPs for the second individual, etc); NA,
the dimension is determined by the BED file

compress.annotation

the compression method for the GDS variables, except "genotype"; optional
values are defined in the function add.gdsn

compress.geno the compression method for "genotype"; optional values are defined in the func-
tion add.gdsn

option NULL or an object from snpgdsOption, see details

cvt.chr "int" – chromosome code in the GDS file is integer; "char" – chromosome
code in the GDS file is character

cvt.snpid "int" – to create an integer snp.id starting from 1; "auto" – if SNP IDs in the
PLINK file are not unique, to create an an integer snp.id, otherwise to use SNP
IDs for snp.id

verbose if TRUE, show information

Details

GDS – Genomic Data Structures, the extended file name used for storing genetic data, and the file
format is used in the gdsfmt package.

BED – the PLINK binary ped format.

The user could use option to specify the range of code for autosomes. For humans there are 22
autosomes (from 1 to 22), but dogs have 38 autosomes. Note that the default settings are used for
humans. The user could call option = snpgdsOption(autosome.end=38) for importing the BED
file of dog. It also allow define new chromosome coding, e.g., option = snpgdsOption(Z=27).

Value

Return the file name of GDS format with an absolute path.

Author(s)

Xiuwen Zheng

snpgdsClose 13

References

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de
Bakker PIW, Daly MJ & Sham PC. 2007. PLINK: a toolset for whole-genome association and
population-based linkage analysis. American Journal of Human Genetics, 81.

See Also

snpgdsOption, snpgdsPED2GDS, snpgdsGDS2PED

Examples

PLINK BED files
bed.fn <- system.file("extdata", "plinkhapmap.bed.gz", package="SNPRelate")
fam.fn <- system.file("extdata", "plinkhapmap.fam.gz", package="SNPRelate")
bim.fn <- system.file("extdata", "plinkhapmap.bim.gz", package="SNPRelate")

convert
snpgdsBED2GDS(bed.fn, fam.fn, bim.fn, "HapMap.gds")

open
genofile <- snpgdsOpen("HapMap.gds")
genofile

close
snpgdsClose(genofile)

delete the temporary file
unlink("HapMap.gds", force=TRUE)

snpgdsClose Close the SNP GDS File

Description

Close the SNP GDS file

Usage

snpgdsClose(gdsobj)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

Details

It is suggested to call snpgdsClose instead of closefn.gds.

Value

None.

14 snpgdsCombineGeno

Author(s)

Xiuwen Zheng

See Also

snpgdsOpen

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

genofile

close the file
snpgdsClose(genofile)

snpgdsCombineGeno Merge SNP datasets

Description

To merge GDS files of SNP genotypes into a single GDS file

Usage

snpgdsCombineGeno(gds.fn, out.fn, method=c("position", "exact"),
compress.annotation="ZIP_RA.MAX", compress.geno="ZIP_RA",
same.strand=FALSE, snpfirstdim=FALSE, verbose=TRUE)

Arguments

gds.fn a character vector of GDS file names to be merged

out.fn the name of output GDS file

method "exact": matching by all snp.id, chromosomes, positions and alleles; "position":
matching by chromosomes and positions

compress.annotation

the compression method for the variables except genotype

compress.geno the compression method for the variable genotype

same.strand if TRUE, assuming the alleles on the same strand

snpfirstdim if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs
for the first individual, and then list all SNPs for the second individual, etc)

verbose if TRUE, show information

Details

This function calls snpgdsSNPListIntersect internally to determine the common SNPs. Allele
definitions are taken from the first GDS file.

snpgdsCombineGeno 15

Value

None.

Author(s)

Xiuwen Zheng

See Also

snpgdsCreateGeno, snpgdsCreateGenoSet, snpgdsSNPList, snpgdsSNPListIntersect

Examples

get the file name of a gds file
fn <- snpgdsExampleFileName()

f <- snpgdsOpen(fn)
samp_id <- read.gdsn(index.gdsn(f, "sample.id"))
snp_id <- read.gdsn(index.gdsn(f, "snp.id"))
geno <- read.gdsn(index.gdsn(f, "genotype"), start=c(1,1), count=c(-1, 3000))
snpgdsClose(f)

split the GDS file with different samples
snpgdsCreateGenoSet(fn, "t1.gds", sample.id=samp_id[1:10],

snp.id=snp_id[1:3000])
snpgdsCreateGenoSet(fn, "t2.gds", sample.id=samp_id[11:30],

snp.id=snp_id[1:3000])

combine with different samples
snpgdsCombineGeno(c("t1.gds", "t2.gds"), "test.gds", same.strand=TRUE)
f <- snpgdsOpen("test.gds")
g <- read.gdsn(index.gdsn(f, "genotype"))
snpgdsClose(f)

identical(geno[1:30,], g) # TRUE

split the GDS file with different SNPs
snpgdsCreateGenoSet(fn, "t1.gds", snp.id=snp_id[1:100])
snpgdsCreateGenoSet(fn, "t2.gds", snp.id=snp_id[101:300])

combine with different SNPs
snpgdsCombineGeno(c("t1.gds", "t2.gds"), "test.gds")
f <- snpgdsOpen("test.gds")
g <- read.gdsn(index.gdsn(f, "genotype"))
snpgdsClose(f)

identical(geno[, 1:300], g) # TRUE

delete the temporary files
unlink(c("t1.gds", "t2.gds", "t3.gds", "t4.gds", "test.gds"), force=TRUE)

16 snpgdsCreateGeno

snpgdsCreateGeno Create a SNP genotype dataset from a matrix

Description

To create a GDS file of genotypes from a matrix.

Usage

snpgdsCreateGeno(gds.fn, genmat, sample.id=NULL, snp.id=NULL, snp.rs.id=NULL,
snp.chromosome=NULL, snp.position=NULL, snp.allele=NULL, snpfirstdim=TRUE,
compress.annotation="ZIP_RA.max", compress.geno="", other.vars=NULL)

Arguments

gds.fn the file name of gds

genmat a matrix of genotypes

sample.id the sample ids, which should be unique

snp.id the SNP ids, which should be unique

snp.rs.id the rs ids for SNPs, which can be not unique

snp.chromosome the chromosome indices

snp.position the SNP positions in basepair

snp.allele the reference/non-reference alleles

snpfirstdim if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs
for the first individual, and then list all SNPs for the second individual, etc)

compress.annotation

the compression method for the variables except genotype

compress.geno the compression method for the variable genotype

other.vars a list object storing other variables

Details

There are possible values stored in the variable genmat: 0, 1, 2 and other values. “0” indicates two
B alleles, “1” indicates one A allele and one B allele, “2” indicates two A alleles, and other values
indicate a missing genotype.

If snpfirstdim is TRUE, then genmat should be “# of SNPs X # of samples”; if snpfirstdim is
FALSE, then genmat should be “# of samples X # of SNPs”.

The typical variables specified in other.vars are “sample.annot” and “snp.annot”, which are
data.frame objects.

Value

None.

Author(s)

Xiuwen Zheng

snpgdsCreateGenoSet 17

See Also

snpgdsCreateGenoSet, snpgdsCombineGeno

Examples

load data
data(hapmap_geno)

create a gds file
with(hapmap_geno, snpgdsCreateGeno("test.gds", genmat=genotype,

sample.id=sample.id, snp.id=snp.id, snp.chromosome=snp.chromosome,
snp.position=snp.position, snp.allele=snp.allele, snpfirstdim=TRUE))

open the gds file
genofile <- snpgdsOpen("test.gds")

RV <- snpgdsPCA(genofile)
plot(RV$eigenvect[,2], RV$eigenvect[,1], xlab="PC 2", ylab="PC 1")

close the file
snpgdsClose(genofile)

snpgdsCreateGenoSet Create a SNP genotype dataset from a GDS file

Description

To create a GDS file of genotypes from a specified GDS file.

Usage

snpgdsCreateGenoSet(src.fn, dest.fn, sample.id=NULL, snp.id=NULL,
snpfirstdim=NULL, compress.annotation="ZIP_RA.max", compress.geno="",
verbose=TRUE)

Arguments

src.fn the file name of a specified GDS file

dest.fn the file name of output GDS file

sample.id a vector of sample id specifying selected samples; if NULL, all samples are used

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

snpfirstdim if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs
for the first individual, and then list all SNPs for the second individual, etc)

compress.annotation

the compression method for the variables except genotype

compress.geno the compression method for the variable genotype

verbose if TRUE, show information

Value

None.

18 snpgdsCreateGenoSet

Author(s)

Xiuwen Zheng

See Also

snpgdsCreateGeno, snpgdsCombineGeno

Examples

open an example dataset (HapMap)
(genofile <- snpgdsOpen(snpgdsExampleFileName()))
+ [] *
|--+ sample.id { VStr8 279 ZIP(29.9%), 679B }
|--+ snp.id { Int32 9088 ZIP(34.8%), 12.3K }
|--+ snp.rs.id { VStr8 9088 ZIP(40.1%), 36.2K }
|--+ snp.position { Int32 9088 ZIP(94.7%), 33.6K }
|--+ snp.chromosome { UInt8 9088 ZIP(0.94%), 85B } *
|--+ snp.allele { VStr8 9088 ZIP(11.3%), 4.0K }
|--+ genotype { Bit2 279x9088, 619.0K } *
\--+ sample.annot [data.frame] *
|--+ family.id { VStr8 279 ZIP(34.4%), 514B }
|--+ father.id { VStr8 279 ZIP(31.5%), 220B }
|--+ mother.id { VStr8 279 ZIP(30.9%), 214B }
|--+ sex { VStr8 279 ZIP(17.0%), 95B }
\--+ pop.group { VStr8 279 ZIP(6.18%), 69B }

set.seed(1000)
snpset <- unlist(snpgdsLDpruning(genofile))
length(snpset)
6547

close the file
snpgdsClose(genofile)

snpgdsCreateGenoSet(snpgdsExampleFileName(), "test.gds", snp.id=snpset)

##
check

(gfile <- snpgdsOpen("test.gds"))
+ [] *
|--+ sample.id { Str8 279 ZIP_ra(31.2%), 715B }
|--+ snp.id { Int32 6547 ZIP_ra(34.9%), 8.9K }
|--+ snp.rs.id { Str8 6547 ZIP_ra(41.5%), 27.1K }
|--+ snp.position { Int32 6547 ZIP_ra(94.9%), 24.3K }
|--+ snp.chromosome { Int32 6547 ZIP_ra(0.45%), 124B }
|--+ snp.allele { Str8 6547 ZIP_ra(11.5%), 3.0K }
\--+ genotype { Bit2 279x6547, 446.0K } *

close the file
snpgdsClose(gfile)

unlink("test.gds", force=TRUE)

snpgdsCutTree 19

snpgdsCutTree Determine clusters of individuals

Description

To determine sub groups of individuals using a specified dendrogram from hierarchical cluster
analysis

Usage

snpgdsCutTree(hc, z.threshold=15, outlier.n=5, n.perm = 5000, samp.group=NULL,
col.outlier="red", col.list=NULL, pch.outlier=4, pch.list=NULL,
label.H=FALSE, label.Z=TRUE, verbose=TRUE)

Arguments

hc an object of snpgdsHCluster
z.threshold the threshold of Z score to determine whether split the node or not
outlier.n the cluster with size less than or equal to outlier.n is considered as outliers
n.perm the times for permutation
samp.group if NULL, determine groups by Z score; if a vector of factor, assign each individual

in dendrogram with respect to samp.group

col.outlier the color of outlier
col.list the list of colors for different clusters
pch.outlier plotting ’character’ for outliers
pch.list plotting ’character’ for different clusters
label.H if TRUE, plotting heights in a dendrogram
label.Z if TRUE, plotting Z scores in a dendrogram
verbose if TRUE, show information

Details

The details will be described in future.

Value

Return a list:

sample.id the sample ids used in the analysis
z.threshold the threshold of Z score to determine whether split the node or not
outlier.n the cluster with size less than or equal to outlier.n is considered as outliers
samp.order the order of samples in the dendrogram
samp.group a vector of factor, indicating the group of each individual
dmat a matrix of pairwise group dissimilarity
dendrogram the dendrogram of individuals
merge a data.frame of (z, n1, n2) describing each combination: z, the Z score; n1,

the size of the first cluster; n2, the size of the second cluster
clust.count the counts for clusters

20 snpgdsCutTree

Author(s)

Xiuwen Zheng

See Also

snpgdsHCluster, snpgdsDrawTree, snpgdsIBS, snpgdsDiss

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

pop.group <- as.factor(read.gdsn(index.gdsn(
genofile, "sample.annot/pop.group")))

pop.level <- levels(pop.group)

diss <- snpgdsDiss(genofile)
hc <- snpgdsHCluster(diss)

close the genotype file
snpgdsClose(genofile)

###
cluster individuals
#

set.seed(100)
rv <- snpgdsCutTree(hc, label.H=TRUE, label.Z=TRUE)

the distribution of Z scores
snpgdsDrawTree(rv, type="z-score", main="HapMap Phase II")

draw dendrogram
snpgdsDrawTree(rv, main="HapMap Phase II",

edgePar=list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"))

###
or cluster individuals by ethnic information
#

rv2 <- snpgdsCutTree(hc, samp.group=pop.group)

cluster individuals by Z score, specifying 'clust.count'
snpgdsDrawTree(rv2, rv$clust.count, main="HapMap Phase II",

edgePar = list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"),
labels = c("YRI", "CHB/JPT", "CEU"), y.label=0.1)

legend("bottomleft", legend=levels(pop.group), col=1:nlevels(pop.group),
pch=19, ncol=4, bg="white")

###
zoom in ...

snpgdsDiss 21

#

snpgdsDrawTree(rv2, rv$clust.count, dend.idx = c(1),
main="HapMap Phase II -- YRI",
edgePar=list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"),
y.label.kinship=TRUE)

snpgdsDrawTree(rv2, rv$clust.count, dend.idx = c(2,2),
main="HapMap Phase II -- CEU",
edgePar=list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"),
y.label.kinship=TRUE)

snpgdsDrawTree(rv2, rv$clust.count, dend.idx = c(2,1),
main="HapMap Phase II -- CHB/JPT",
edgePar=list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"),
y.label.kinship=TRUE)

snpgdsDiss Individual dissimilarity analysis

Description

Calculate the individual dissimilarities for each pair of individuals.

Usage

snpgdsDiss(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=NaN, missing.rate=0.01, num.thread=1,
verbose=TRUE)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

sample.id a vector of sample id specifying selected samples; if NULL, all samples are used

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

remove.monosnp if TRUE, remove monomorphic SNPs

maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold

missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold

num.thread the number of (CPU) cores used; if NA, detect the number of cores automatically

verbose if TRUE, show information

Details

The minor allele frequency and missing rate for each SNP passed in snp.id are calculated over all
the samples in sample.id.

snpgdsDiss() returns 1 - beta_ij which is formally described in Weir&Goudet (2017).

22 snpgdsDiss

Value

Return a class "snpgdsDissClass":

sample.id the sample ids used in the analysis

snp.id the SNP ids used in the analysis

diss a matrix of individual dissimilarity

Author(s)

Xiuwen Zheng

References

Zheng, Xiuwen. 2013. Statistical Prediction of HLA Alleles and Relatedness Analysis in Genome-
Wide Association Studies. PhD dissertation, the department of Biostatistics, University of Wash-
ington.

Weir BS, Zheng X. SNPs and SNVs in Forensic Science. 2015. Forensic Science International:
Genetics Supplement Series.

Weir BS, Goudet J. A Unified Characterization of Population Structure and Relatedness. Genetics.
2017 Aug;206(4):2085-2103. doi: 10.1534/genetics.116.198424.

See Also

snpgdsHCluster

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

pop.group <- as.factor(read.gdsn(index.gdsn(
genofile, "sample.annot/pop.group")))

pop.level <- levels(pop.group)

diss <- snpgdsDiss(genofile)
diss
hc <- snpgdsHCluster(diss)
names(hc)
plot(hc$dendrogram)

close the genotype file
snpgdsClose(genofile)

split
set.seed(100)
rv <- snpgdsCutTree(hc, label.H=TRUE, label.Z=TRUE)

draw dendrogram
snpgdsDrawTree(rv, main="HapMap Phase II",

edgePar=list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"))

snpgdsDrawTree 23

snpgdsDrawTree Draw a dendrogram

Description

To draw a dendrogram or the distribution of Z scores

Usage

snpgdsDrawTree(obj, clust.count=NULL, dend.idx=NULL,
type=c("dendrogram", "z-score"), yaxis.height=TRUE, yaxis.kinship=TRUE,
y.kinship.baseline=NaN, y.label.kinship=FALSE, outlier.n=NULL,
shadow.col=c(rgb(0.5, 0.5, 0.5, 0.25), rgb(0.5, 0.5, 0.5, 0.05)),
outlier.col=rgb(1, 0.50, 0.50, 0.5), leaflab="none",
labels=NULL, y.label=0.2, ...)

Arguments

obj an object returned by snpgdsCutTree

clust.count the counts for clusters, drawing shadows

dend.idx the index of sub tree, plot obj$dendrogram[[dend.idx]], or NULL for the whole
tree

type "dendrogram", draw a dendrogram; or "z-score", draw the distribution of Z score

yaxis.height if TRUE, draw the left Y axis: height of tree

yaxis.kinship if TRUE, draw the right Y axis: kinship coefficient
y.kinship.baseline

the baseline value of kinship; if NaN, it is the height of the first split from top in
a dendrogram; only works when yaxis.kinship = TRUE

y.label.kinship

if TRUE, show ’PO/FS’ etc on the right axis

outlier.n the cluster with size less than or equal to outlier.n is considered as outliers; if
NULL, let outlier.n = obj$outlier.n

shadow.col two colors for shadow

outlier.col the colors for outliers

leaflab a string specifying how leaves are labeled. The default "perpendicular" write
text vertically (by default). "textlike" writes text horizontally (in a rectangle),
and "none" suppresses leaf labels.

labels the legend for different regions

y.label y positions of labels

... Arguments to be passed to the method "plot(, ...)", such as graphical pa-
rameters.

Details

The details will be described in future.

24 snpgdsEIGMIX

Value

None.

Author(s)

Xiuwen Zheng

See Also

snpgdsCutTree

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

pop.group <- as.factor(read.gdsn(index.gdsn(
genofile, "sample.annot/pop.group")))

pop.level <- levels(pop.group)

diss <- snpgdsDiss(genofile)
hc <- snpgdsHCluster(diss)

close the genotype file
snpgdsClose(genofile)

split
set.seed(100)
rv <- snpgdsCutTree(hc, label.H=TRUE, label.Z=TRUE)

draw dendrogram
snpgdsDrawTree(rv, main="HapMap Phase II",

edgePar=list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"))

snpgdsEIGMIX Eigen-analysis on SNP genotype data

Description

Eigen-analysis on IBD matrix based SNP genotypes.

Usage

snpgdsEIGMIX(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=NaN, missing.rate=0.01, num.thread=1L,
eigen.cnt=32L, diagadj=TRUE, ibdmat=FALSE, verbose=TRUE)

S3 method for class 'snpgdsEigMixClass'
plot(x, eig=c(1L,2L), ...)

snpgdsEIGMIX 25

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

sample.id a vector of sample id specifying selected samples; if NULL, all samples are used

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

remove.monosnp if TRUE, remove monomorphic SNPs

maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold

missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold

num.thread the number of (CPU) cores used; if NA, detect the number of cores automatically

eigen.cnt output the number of eigenvectors; if eigen.cnt < 0, returns all eigenvectors; if
eigen.cnt==0, no eigen calculation

diagadj TRUE for diagonal adjustment by default

ibdmat if TRUE, returns the IBD matrix

verbose if TRUE, show information

x a snpgdsEigMixClass object

eig indices of eigenvectors, like 1:2 or 1:4

... the arguments passed to or from other methods, like pch, col

Value

Return a snpgdsEigMixClass object, and it is a list:

sample.id the sample ids used in the analysis

snp.id the SNP ids used in the analysis

eigenval eigenvalues

eigenvect eigenvactors, "# of samples" x "eigen.cnt"

afreq allele frequencies

ibd the IBD matrix when ibdmat=TRUE

diagadj the argument diagadj

Author(s)

Xiuwen Zheng

References

Zheng X, Weir BS. Eigenanalysis on SNP Data with an Interpretation of Identity by Descent. The-
oretical Population Biology. 2016 Feb;107:65-76. doi: 10.1016/j.tpb.2015.09.004

See Also

snpgdsAdmixProp, snpgdsAdmixPlot, snpgdsPCA, snpgdsPCASNPLoading, snpgdsPCASampLoading

26 snpgdsErrMsg

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

get population information
or pop_code <- scan("pop.txt", what=character())
if it is stored in a text file "pop.txt"
pop_code <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))

get sample id
samp.id <- read.gdsn(index.gdsn(genofile, "sample.id"))

run eigen-analysis
RV <- snpgdsEIGMIX(genofile)
RV

eigenvalues
RV$eigenval

make a data.frame
tab <- data.frame(sample.id = samp.id, pop = factor(pop_code),

EV1 = RV$eigenvect[,1], # the first eigenvector
EV2 = RV$eigenvect[,2], # the second eigenvector
stringsAsFactors = FALSE)

head(tab)

draw
plot(tab$EV2, tab$EV1, col=as.integer(tab$pop),

xlab="eigenvector 2", ylab="eigenvector 1")
legend("topleft", legend=levels(tab$pop), pch="o", col=1:4)

define groups
groups <- list(CEU = samp.id[pop_code == "CEU"],

YRI = samp.id[pop_code == "YRI"],
CHB = samp.id[is.element(pop_code, c("HCB", "JPT"))])

prop <- snpgdsAdmixProp(RV, groups=groups)

draw
plot(prop[, "YRI"], prop[, "CEU"], col=as.integer(tab$pop),

xlab = "Admixture Proportion from YRI",
ylab = "Admixture Proportion from CEU")

abline(v=0, col="gray25", lty=2)
abline(h=0, col="gray25", lty=2)
abline(a=1, b=-1, col="gray25", lty=2)
legend("topright", legend=levels(tab$pop), pch="o", col=1:4)

close the genotype file
snpgdsClose(genofile)

snpgdsErrMsg Get the last error information

snpgdsExampleFileName 27

Description

Return the last error message.

Usage

snpgdsErrMsg()

Value

Characters

Author(s)

Xiuwen Zheng

Examples

snpgdsErrMsg()

snpgdsExampleFileName Example GDS file

Description

Return the file name of example data

Usage

snpgdsExampleFileName()

Details

A GDS genotype file was created from a subset of HapMap Phase II dataset consisting of 270
individuals and duplicates.

Value

Characters

Author(s)

Xiuwen Zheng

Examples

snpgdsExampleFileName()

28 snpgdsFst

SNPGDSFileClass SNPGDSFileClass

Description

A SNPGDSFileClass object provides access to a GDS file containing genome-wide SNP data. It
extends the class gds.class in the gdsfmt package.

Author(s)

Xiuwen Zheng

See Also

snpgdsOpen, snpgdsClose

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())
genofile

class(genofile)
"SNPGDSFileClass" "gds.class"

close the file
snpgdsClose(genofile)

snpgdsFst F-statistics (fixation indices)

Description

Calculate relatedness measures F-statistics (also known as fixation indices) for given populations

Usage

snpgdsFst(gdsobj, population, method=c("W&C84", "W&H02"), sample.id=NULL,
snp.id=NULL, autosome.only=TRUE, remove.monosnp=TRUE, maf=NaN,
missing.rate=0.01, with.id=FALSE, verbose=TRUE)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

population a factor, indicating population information for each individual

method "W&C84" – Fst estimator in Weir & Cockerham 1984 (by default), "W&H02" –
relative beta estimator in Weir & Hill 2002, see details

sample.id a vector of sample id specifying selected samples; if NULL, all samples are used

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

snpgdsFst 29

autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

remove.monosnp if TRUE, remove monomorphic SNPs

maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold

missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold

with.id if TRUE, the returned value with sample.id and snp.id

verbose if TRUE, show information

Details

The minor allele frequency and missing rate for each SNP passed in snp.id are calculated over all
the samples in sample.id.

The "W&H02" option implements the calculation in Buckleton et. al. 2016.

Value

Return a list:

sample.id the sample ids used in the analysis

snp.id the SNP ids used in the analysis

Fst weighted Fst estimate

MeanFst the average of Fst estimates across SNPs

FstSNP a vector of Fst for each SNP

Beta Beta matrix

Author(s)

Xiuwen Zheng

References

Weir, BS. & Cockerham, CC. Estimating F-statistics for the analysis of population structure. (1984).

Weir, BS. & Hill, WG. Estimating F-statistics. Annual review of genetics 36, 721-50 (2002).

Population-specific FST values for forensic STR markers: A worldwide survey. Buckleton J, Cur-
ran J, Goudet J, Taylor D, Thiery A, Weir BS. Forensic Sci Int Genet. 2016 Jul;23:91-100. doi:
10.1016/j.fsigen.2016.03.004.

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

group <- as.factor(read.gdsn(index.gdsn(
genofile, "sample.annot/pop.group")))

Fst estimation
v <- snpgdsFst(genofile, population=group, method="W&C84")
v$Fst
v$MeanFst
summary(v$FstSNP)

30 snpgdsGDS2BED

or
v <- snpgdsFst(genofile, population=group, method="W&H02")
v$Fst
v$MeanFst
v$Beta
summary(v$FstSNP)

close the genotype file
snpgdsClose(genofile)

snpgdsGDS2BED Conversion from GDS to PLINK BED

Description

Convert a GDS file to a PLINK binary ped (BED) file.

Usage

snpgdsGDS2BED(gdsobj, bed.fn, sample.id=NULL, snp.id=NULL, snpfirstdim=NULL,
verbose=TRUE)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file; or characters, the file
name of GDS

bed.fn the file name of output, without the filename extension ".bed"

sample.id a vector of sample id specifying selected samples; if NULL, all samples are used

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

snpfirstdim if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs
for the first individual, and then list all SNPs for the second individual, etc); if
NULL, determine automatically

verbose if TRUE, show information

Details

GDS – Genomic Data Structures, the extended file name used for storing genetic data, and the file
format used in the gdsfmt package.

BED – the PLINK binary ped format.

Value

None.

Author(s)

Xiuwen Zheng

snpgdsGDS2Eigen 31

References

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de
Bakker PIW, Daly MJ & Sham PC. 2007. PLINK: a toolset for whole-genome association and
population-based linkage analysis. American Journal of Human Genetics, 81.

http://corearray.sourceforge.net/

See Also

snpgdsBED2GDS, snpgdsGDS2PED

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

snpset <- snpgdsSelectSNP(genofile, missing.rate=0.95)
snpgdsGDS2BED(genofile, bed.fn="test", snp.id=snpset)

close the genotype file
snpgdsClose(genofile)

delete the temporary files
unlink(c("test.bed", "test.bim", "test.fam"), force=TRUE)

snpgdsGDS2Eigen Conversion from GDS to Eigen (EIGENSTRAT)

Description

Convert a GDS file to an EIGENSTRAT file.

Usage

snpgdsGDS2Eigen(gdsobj, eigen.fn, sample.id=NULL, snp.id=NULL, verbose=TRUE)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

eigen.fn the file name of EIGENSTRAT

sample.id a vector of sample id specifying selected samples; if NULL, all samples are used

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

verbose if TRUE, show information

Details

GDS – Genomic Data Structures, the extended file name used for storing genetic data, and the file
format used in the gdsfmt package.

Eigen – the text format used in EIGENSTRAT.

http://corearray.sourceforge.net/

32 snpgdsGDS2PED

Value

None.

Author(s)

Xiuwen Zheng

References

Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genetics
2:e190.

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal com-
ponents analysis corrects for stratification in genome-wide association studies. Nat Genet. 38,
904-909.

http://corearray.sourceforge.net/

See Also

snpgdsGDS2PED

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

snpset <- snpgdsSelectSNP(genofile, missing.rate=0.95)
snpgdsGDS2Eigen(genofile, eigen.fn="tmpeigen", snp.id=snpset)

close the genotype file
snpgdsClose(genofile)

delete the temporary files
unlink(c("tmpeigen.eigenstratgeno", "tmpeigen.ind", "tmpeigen.snp"), force=TRUE)

snpgdsGDS2PED Conversion from GDS to PED

Description

Convert a GDS file to a PLINK text ped file.

Usage

snpgdsGDS2PED(gdsobj, ped.fn, sample.id=NULL, snp.id=NULL, use.snp.rsid=TRUE,
format=c("A/G/C/T", "A/B", "1/2"), verbose=TRUE)

http://corearray.sourceforge.net/

snpgdsGDS2PED 33

Arguments

gdsobj a GDS file object (gds.class)

ped.fn the file name of output

sample.id a vector of sample id specifying selected samples; if NULL, all samples are used

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

use.snp.rsid if TRUE, use "snp.rs.id" instead of "snp.id" if available

format specify the coding: "A/G/C/T" – allelic codes stored in "snp.allele" of the GDS
file; "A/B" – A and B codes; "1/2" – 1 and 2 codes

verbose if TRUE, show information

Details

GDS – Genomic Data Structures, the extended file name used for storing genetic data, and the file
format used in the gdsfmt package.

PED – the PLINK text ped format.

Value

None.

Author(s)

Xiuwen Zheng

References

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de
Bakker PIW, Daly MJ & Sham PC. 2007. PLINK: a toolset for whole-genome association and
population-based linkage analysis. American Journal of Human Genetics, 81.

http://corearray.sourceforge.net/

See Also

snpgdsGDS2BED

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

GDS ==> PED
snpgdsGDS2PED(genofile, ped.fn="tmp")

close the GDS file
snpgdsClose(genofile)

http://corearray.sourceforge.net/

34 snpgdsGEN2GDS

snpgdsGEN2GDS Conversion from Oxford GEN format to GDS

Description

Convert an Oxford GEN file (text format) to a GDS file.

Usage

snpgdsGEN2GDS(gen.fn, sample.fn, out.fn, chr.code=NULL,
call.threshold=0.9, version=c(">=2.0", "<=1.1.5"),
snpfirstdim=FALSE, compress.annotation="ZIP_RA.max", compress.geno="",
verbose=TRUE)

Arguments

gen.fn the file name of Oxford GEN text file(s), it could be a vector indicate merging
all files

sample.fn the file name of sample annotation

out.fn the output GDS file

chr.code a vector of chromosome code according to gen.fn, indicating chromosomes. It
could be either numeric or character-type

call.threshold the threshold to determine missing genotypes

version either ">=2.0" or "<=1.1.5", see details

snpfirstdim if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs
for the first individual, and then list all SNPs for the second individual, etc)

compress.annotation

the compression method for the GDS variables, except "genotype"; optional
values are defined in the function add.gdsn

compress.geno the compression method for "genotype"; optional values are defined in the func-
tion add.gdsn

verbose if TRUE, show information

Details

GDS – Genomic Data Structures, the extended file name used for storing genetic data, and the file
format is used in the gdsfmt package.

NOTE : the sample file format (sample.fn) has changed with the release of SNPTEST v2. Specif-
ically, the way in which covariates and phenotypes are coded on the second line of the header file
has changed. version has to be specified, and the function uses ">=2.0" by default.

Value

Return the file name of GDS format with an absolute path.

Author(s)

Xiuwen Zheng

snpgdsGetGeno 35

References

https://code.enkre.net/bgen

See Also

snpgdsBED2GDS, snpgdsVCF2GDS

Examples

cat("running snpgdsGEN2GDS ...\n")
Not run:
snpgdsGEN2GDS("test.gen", "test.sample", "output.gds", chr.code=1)

End(Not run)

snpgdsGetGeno To get a genotype matrix

Description

To get a genotype matrix from a specified GDS file

Usage

snpgdsGetGeno(gdsobj, sample.id=NULL, snp.id=NULL, snpfirstdim=NA,
.snpread=NA, with.id=FALSE, verbose=TRUE)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file; or characters to specify
the file name of SNP GDS

sample.id a vector of sample id specifying selected samples; if NULL, all samples are used

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

snpfirstdim if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs for
the first individual, and then list all SNPs for the second individual, etc); FALSE
for snp-major mode; if NA, determine automatically

.snpread internal use

with.id if TRUE, return sample.id and snp.id

verbose if TRUE, show information

Value

The function returns an integer matrix with values 0, 1, 2 or NA representing the number of refer-
ence allele when with.id=FALSE; or list(genotype, sample.id, snp.id) when with.id=TRUE.
The orders of sample and SNP IDs in the genotype matrix are actually consistent with sample.id
and snp.id in the GDS file, which may not be as the same as the arguments sampel.id and snp.id
specified by users.

Author(s)

Xiuwen Zheng

https://code.enkre.net/bgen

36 snpgdsGRM

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

set.seed(1000)
snpset <- sample(read.gdsn(index.gdsn(genofile, "snp.id")), 1000)

mat1 <- snpgdsGetGeno(genofile, snp.id=snpset, snpfirstdim=TRUE)
dim(mat1)
1000 279
table(c(mat1), exclude=NULL)

mat2 <- snpgdsGetGeno(genofile, snp.id=snpset, snpfirstdim=FALSE)
dim(mat2)
279 1000
table(c(mat2), exclude=NULL)

identical(t(mat1), mat2)
TRUE

close the file
snpgdsClose(genofile)

snpgdsGRM Genetic Relationship Matrix (GRM) for SNP genotype data

Description

Calculate Genetic Relationship Matrix (GRM) using SNP genotype data.

Usage

snpgdsGRM(gdsobj, sample.id=NULL, snp.id=NULL,
autosome.only=TRUE, remove.monosnp=TRUE, maf=NaN, missing.rate=0.01,
method=c("GCTA", "Eigenstrat", "EIGMIX", "Weighted", "Corr", "IndivBeta"),
num.thread=1L, useMatrix=FALSE, out.fn=NULL, out.prec=c("double", "single"),
out.compress="LZMA_RA", with.id=TRUE, verbose=TRUE)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

sample.id a vector of sample id specifying selected samples; if NULL, all samples are used

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

remove.monosnp if TRUE, remove monomorphic SNPs

maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold

missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold

snpgdsGRM 37

method "GCTA" – genetic relationship matrix defined in CGTA; "Eigenstrat" – genetic
covariance matrix in EIGENSTRAT; "EIGMIX" – two times coancestry ma-
trix defined in Zheng&Weir (2016), "Weighted" – weighted GCTA, as the same
as "EIGMIX", "Corr" – Scaled GCTA GRM (dividing each i,j element by the
product of the square root of the i,i and j,j elements), "IndivBeta" – two times
individual beta estimate relative to the minimum of beta; see details

num.thread the number of (CPU) cores used; if NA, detect the number of cores automatically

useMatrix if TRUE, use Matrix::dspMatrix to store the output square matrix to save mem-
ory

out.fn NULL for no GDS output, or a file name

out.prec double or single precision for storage

out.compress the compression method for storing the GRM matrix in the GDS file

with.id if TRUE, the returned value with sample.id and sample.id

verbose if TRUE, show information

Details

"GCTA": the genetic relationship matrix in GCTA is defined as $G_ij = avg_l [(g_il - 2*p_l*(g_jl -
2*p_l) / 2*p_l*(1 - p_l)]$ for individuals i,j and locus l;

"Eigenstrat": the genetic covariance matrix in EIGENSTRAT $G_ij = avg_l [(g_il - 2*p_l)*(g_jl
- 2*p_l) / 2*p_l*(1 - p_l)]$ for individuals i,j and locus l; the missing genotype is imputed by the
dosage mean of that locus.

"EIGMIX" / "Weighted": it is the same as ‘2 * snpgdsEIGMIX(, ibdmat=TRUE, diagadj=FALSE)$ibd‘:
$G_ij = [sum_l (g_il - 2*p_l)*(g_jl - 2*p_l)] / [sum_l 2*p_l*(1 - p_l)]$ for individuals i,j and locus
l;

"IndivBeta": ‘beta = snpgdsIndivBeta(, inbreeding=TRUE)‘ (Weir&Goudet, 2017), and beta-based
GRM is $grm_ij = 2 * (beta_ij - beta_min) / (1 - beta_min)$ for $i!=j$, $grm_ij = 1 + (beta_i -
beta_min) / (1 - beta_min)$ for $i=j$. It is relative to the minimum value of beta estimates.

Value

Return a list if with.id = TRUE:

sample.id the sample ids used in the analysis

snp.id the SNP ids used in the analysis

method characters, the method used

grm the genetic relationship matrix; different methods might have different meanings
and interpretation for estimates

If with.id = FALSE, this function returns the genetic relationship matrix (GRM) without sample
and SNP IDs.

Author(s)

Xiuwen Zheng

38 snpgdsHCluster

References

Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2,
e190 (2006).

Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex
trait analysis. American journal of human genetics 88, 76-82 (2011).

Zheng X, Weir BS. Eigenanalysis on SNP Data with an Interpretation of Identity by Descent. The-
oretical Population Biology. 2016 Feb;107:65-76. doi: 10.1016/j.tpb.2015.09.004

Weir BS, Zheng X. SNPs and SNVs in Forensic Science. Forensic Science International: Genetics
Supplement Series. 2015. doi:10.1016/j.fsigss.2015.09.106

Weir BS, Goudet J. A Unified Characterization of Population Structure and Relatedness. Genetics.
2017 Aug;206(4):2085-2103. doi: 10.1534/genetics.116.198424.

See Also

snpgdsPCA, snpgdsEIGMIX, snpgdsIndivBeta, snpgdsIndInb, snpgdsFst, snpgdsMergeGRM

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

rv <- snpgdsGRM(genofile, method="GCTA")
eig <- eigen(rv$grm) # Eigen-decomposition

output to a GDS file
snpgdsGRM(genofile, method="GCTA", out.fn="test.gds")

pop <- factor(read.gdsn(index.gdsn(genofile, "sample.annot/pop.group")))
plot(eig$vectors[,1], eig$vectors[,2], col=pop)
legend("topleft", legend=levels(pop), pch=19, col=1:4)

close the file
snpgdsClose(genofile)

delete the temporary file
unlink("test.gds", force=TRUE)

snpgdsHCluster Hierarchical cluster analysis

Description

Perform hierarchical cluster analysis on the dissimilarity matrix.

Usage

snpgdsHCluster(dist, sample.id=NULL, need.mat=TRUE, hang=0.25)

snpgdsHCluster 39

Arguments

dist an object of "snpgdsDissClass" from snpgdsDiss, an object of "snpgdsIBSClass"
from snpgdsIBS, or a square matrix for dissimilarity

sample.id to specify sample id, only work if dist is a matrix

need.mat if TRUE, store the dissimilarity matrix in the result

hang The fraction of the plot height by which labels should hang below the rest of the
plot. A negative value will cause the labels to hang down from 0.

Details

Call the function hclust to perform hierarchical cluster analysis, using method="average".

Value

Return a list (class "snpgdsHCClass"):

sample.id the sample ids used in the analysis

hclust an object returned from hclust

dendrogram

dist the dissimilarity matrix, if need.mat = TRUE

Author(s)

Xiuwen Zheng

See Also

snpgdsIBS, snpgdsDiss, snpgdsCutTree

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

pop.group <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))
pop.group <- as.factor(pop.group)
pop.level <- levels(pop.group)

diss <- snpgdsDiss(genofile)
hc <- snpgdsHCluster(diss)
rv <- snpgdsCutTree(hc)
rv

call 'plot' to draw a dendrogram
plot(rv$dendrogram, leaflab="none", main="HapMap Phase II")

the distribution of Z scores
snpgdsDrawTree(rv, type="z-score", main="HapMap Phase II")

draw dendrogram
snpgdsDrawTree(rv, main="HapMap Phase II",

edgePar=list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"))

40 snpgdsHWE

close the file
snpgdsClose(genofile)

snpgdsHWE Statistical test of Hardy-Weinberg Equilibrium

Description

Calculate the p-values for the exact SNP test of Hardy-Weinberg Equilibrium.

Usage

snpgdsHWE(gdsobj, sample.id=NULL, snp.id=NULL, with.id=FALSE)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

sample.id a vector of sample id specifying selected samples; if NULL, all samples will be
used

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs will be used

with.id if TRUE, the returned value with sample and SNP IDs

Value

If with.id=FALSE, return a vector of numeric values (p-value); otherwise, return a list with three
components "pvalue", "sample.id" and "snp.id".

Author(s)

Xiuwen Zheng, Janis E. Wigginton

References

Wigginton, J. E., Cutler, D. J. & Abecasis, G. R. A note on exact tests of Hardy-Weinberg equilib-
rium. Am. J. Hum. Genet. 76, 887-93 (2005).

See Also

snpgdsSNPRateFreq

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

Japanese samples
sample.id <- read.gdsn(index.gdsn(genofile, "sample.id"))
pop <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))
(samp.sel <- sample.id[pop=="JPT"])
samp.sel <- samp.sel[nchar(samp.sel) == 7]

snpgdsIBDKING 41

chromosome 1
snp.id <- snpgdsSelectSNP(genofile, sample.id=samp.sel, autosome.only=1L)

HWE test
p <- snpgdsHWE(genofile, sample.id=samp.sel, snp.id=snp.id)
summary(p)

QQ plot
plot(-log10((1:length(p))/length(p)), -log10(p[order(p)]),
xlab="-log10(expected P)", ylab="-log10(observed P)", main="QQ plot")

abline(a=0, b=1, col="blue")

close the genotype file
snpgdsClose(genofile)

snpgdsIBDKING KING method of moment for the identity-by-descent (IBD) analysis

Description

Calculate IBD coefficients by KING method of moment.

Usage

snpgdsIBDKING(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=NaN, missing.rate=0.01,
type=c("KING-robust", "KING-homo"), family.id=NULL, num.thread=1L,
useMatrix=FALSE, verbose=TRUE)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep

SNPs according to the specified chromosome
remove.monosnp if TRUE, remove monomorphic SNPs
maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold
missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold
type "KING-robust" – relationship inference in the presence of population stratifi-

cation (by default); "KING-homo" – relationship inference in a homogeneous
population

family.id if NULL, all individuals are treated as singletons; if family id is given, within-
and between-family relationship are estimated differently. If sample.id=NULL,
family.id should have the same length as "sample.id" in the GDS file, other-
wise family.id should have the same length and order as the argument sample.id

num.thread the number of (CPU) cores used; if NA, detect the number of cores automatically
useMatrix if TRUE, use Matrix::dspMatrix to store the output square matrix to save mem-

ory
verbose if TRUE, show information

42 snpgdsIBDKING

Details

KING IBD estimator is a moment estimator, and it is computationally efficient relative to MLE
method. The approaches include "KING-robust" – robust relationship inference within or across
families in the presence of population substructure, and "KING-homo" – relationship inference in a
homogeneous population.

With "KING-robust", the function would return the proportion of SNPs with zero IBS (IBS0) and
kinship coefficient (kinship). With "KING-homo" it would return the probability of sharing one
IBD (k1) and the probability of sharing zero IBD (k0).

The minor allele frequency and missing rate for each SNP passed in snp.id are calculated over all
the samples in sample.id.

Value

Return a list:

sample.id the sample ids used in the analysis

snp.id the SNP ids used in the analysis

k0 a matrix for IBD coefficients, the probability of sharing zero IBD, if type="KING-homo"

k1 a matrix for IBD coefficients, the probability of sharing one IBD, if type="KING-homo"

IBS0 a matrix for the proportions of SNPs with zero IBS, if type="KING-robust"

kinship a matrix for the estimated kinship coefficients, if type="KING-robust"

Author(s)

Xiuwen Zheng

References

Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship infer-
ence in genome-wide association studies. Bioinformatics. 2010 Nov 15;26(22):2867-73.

See Also

snpgdsIBDMLE, snpgdsIBDMoM

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

CEU population
samp.id <- read.gdsn(index.gdsn(genofile, "sample.id"))
CEU.id <- samp.id[

read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))=="CEU"]

KING-robust:
relationship inference in the presence of population stratification
robust relationship inference across family

ibd.robust <- snpgdsIBDKING(genofile, sample.id=CEU.id)

snpgdsIBDKING 43

names(ibd.robust)
[1] "sample.id" "snp.id" "afreq" "IBS0" "kinship"

select a set of pairs of individuals
dat <- snpgdsIBDSelection(ibd.robust, 1/32)
head(dat)

plot(dat$IBS0, dat$kinship, xlab="Proportion of Zero IBS",
ylab="Estimated Kinship Coefficient (KING-robust)")

using Matrix
ibd.robust <- snpgdsIBDKING(genofile, sample.id=CEU.id, useMatrix=TRUE)
is(ibd.robust$IBS0) # dspMatrix
is(ibd.robust$kinship) # dspMatrix

KING-robust:
relationship inference in the presence of population stratification
within- and between-family relationship inference

incorporate with pedigree information
family.id <- read.gdsn(index.gdsn(genofile, "sample.annot/family.id"))
family.id <- family.id[match(CEU.id, samp.id)]

ibd.robust2 <- snpgdsIBDKING(genofile, sample.id=CEU.id, family.id=family.id)
names(ibd.robust2)

select a set of pairs of individuals
dat <- snpgdsIBDSelection(ibd.robust2, 1/32)
head(dat)

plot(dat$IBS0, dat$kinship, xlab="Proportion of Zero IBS",
ylab="Estimated Kinship Coefficient (KING-robust)")

KING-homo: relationship inference in a homogeneous population

ibd.homo <- snpgdsIBDKING(genofile, sample.id=CEU.id, type="KING-homo")
names(ibd.homo)
"sample.id" "snp.id" "afreq" "k0" "k1"

select a subset of pairs of individuals
dat <- snpgdsIBDSelection(ibd.homo, 1/32)
head(dat)

plot(dat$k0, dat$kinship, xlab="Pr(IBD=0)",
ylab="Estimated Kinship Coefficient (KING-homo)")

using Matrix
ibd.homo <- snpgdsIBDKING(genofile, sample.id=CEU.id, type="KING-homo",

useMatrix=TRUE)
is(ibd.homo$k0) # dspMatrix
is(ibd.homo$k1) # dspMatrix

44 snpgdsIBDMLE

close the genotype file
snpgdsClose(genofile)

snpgdsIBDMLE Maximum likelihood estimation (MLE) for the Identity-By-Descent
(IBD) Analysis

Description

Calculate the three IBD coefficients (k0, k1, k2) for non-inbred individual pairs by Maximum Like-
lihood Estimation.

Usage

snpgdsIBDMLE(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=NaN, missing.rate=0.01, kinship=FALSE,
kinship.constraint=FALSE, allele.freq=NULL,
method=c("EM", "downhill.simplex", "Jacquard"), max.niter=1000L,
reltol=sqrt(.Machine$double.eps), coeff.correct=TRUE,
out.num.iter=TRUE, num.thread=1, verbose=TRUE)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep

SNPs according to the specified chromosome
remove.monosnp if TRUE, remove monomorphic SNPs
maf to use the SNPs with ">= maf" only; if NaN, no any MAF threshold
missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no any missing threshold
kinship if TRUE, output the estimated kinship coefficients
kinship.constraint

if TRUE, constrict IBD coefficients (k_0,k_1,k_2) in the geneloical region
($2 k_0 k_1 >= k_2^2$)

allele.freq to specify the allele frequencies; if NULL, determine the allele frequencies from
gdsobj using the specified samples; if snp.id is specified, allele.freq should
have the same order as snp.id

method "EM", "downhill.simplex", "Jacquard", see details
max.niter the maximum number of iterations
reltol relative convergence tolerance; the algorithm stops if it is unable to reduce the

value of log likelihood by a factor of $reltol * (abs(log likelihood with the initial
parameters) + reltol)$ at a step.

coeff.correct TRUE by default, see details
out.num.iter if TRUE, output the numbers of iterations
num.thread the number of (CPU) cores used; if NA, detect the number of cores automatically
verbose if TRUE, show information

snpgdsIBDMLE 45

Details

The minor allele frequency and missing rate for each SNP passed in snp.id are calculated over all
the samples in sample.id.

The PLINK moment estimates are used as the initial values in the algorithm of searching maxi-
mum value of log likelihood function. Two numeric approaches can be used: one is Expectation-
Maximization (EM) algorithm, and the other is Nelder-Mead method or downhill simplex method.
Generally, EM algorithm is more robust than downhill simplex method. "Jacquard" refers to the
estimation of nine Jacquard’s coefficients.

If coeff.correct is TRUE, the final point that is found by searching algorithm (EM or downhill
simplex) is used to compare the six points (fullsib, offspring, halfsib, cousin, unrelated), since any
numeric approach might not reach the maximum position after a finit number of steps. If any of
these six points has a higher value of log likelihood, the final point will be replaced by the best one.

Although MLE estimates are more reliable than MoM, MLE is much more computationally inten-
sive than MoM, and might not be feasible to estimate pairwise relatedness for a large dataset.

Value

Return a snpgdsIBDClass object, which is a list:

sample.id the sample ids used in the analysis

snp.id the SNP ids used in the analysis

afreq the allele frequencies used in the analysis

k0 IBD coefficient, the probability of sharing ZERO IBD, if method="EM" or "downhill.simplex"

k1 IBD coefficient, the probability of sharing ONE IBD, if method="EM" or "downhill.simplex"

D1, ..., D8 Jacquard’s coefficients, if method="Jacquard", D9 = 1 - D1 - ... - D8

kinship the estimated kinship coefficients, if the parameter kinship=TRUE

Author(s)

Xiuwen Zheng

References

Milligan BG. 2003. Maximum-likelihood estimation of relatedness. Genetics 163:1153-1167.

Weir BS, Anderson AD, Hepler AB. 2006. Genetic relatedness analysis: modern data and new
challenges. Nat Rev Genet. 7(10):771-80.

Choi Y, Wijsman EM, Weir BS. 2009. Case-control association testing in the presence of unknown
relationships. Genet Epidemiol 33(8):668-78.

Jacquard, A. Structures Genetiques des Populations (Masson & Cie, Paris, 1970); English trans-
lation available in Charlesworth, D. & Chalesworth, B. Genetics of Human Populations (Springer,
New York, 1974).

See Also

snpgdsIBDMLELogLik, snpgdsIBDMoM

46 snpgdsIBDMLELogLik

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

YRI.id <- read.gdsn(index.gdsn(genofile, "sample.id"))[
read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))=="YRI"]

YRI.id <- YRI.id[1:30]

SNP pruning
set.seed(10)
snpset <- snpgdsLDpruning(genofile, sample.id=YRI.id, maf=0.05,

missing.rate=0.05)
snpset <- sample(unlist(snpset), 250)
mibd <- snpgdsIBDMLE(genofile, sample.id=YRI.id, snp.id=snpset)
mibd

select a set of pairs of individuals
d <- snpgdsIBDSelection(mibd, kinship.cutoff=1/8)
head(d)

log likelihood

loglik <- snpgdsIBDMLELogLik(genofile, mibd)
loglik0 <- snpgdsIBDMLELogLik(genofile, mibd, relatedness="unrelated")

likelihood ratio test
p.value <- pchisq(loglik - loglik0, 1, lower.tail=FALSE)

flag <- lower.tri(mibd$k0)
plot(NaN, xlim=c(0,1), ylim=c(0,1), xlab="k0", ylab="k1")
lines(c(0,1), c(1,0), col="red", lty=3)
points(mibd$k0[flag], mibd$k1[flag])

specify the allele frequencies
afreq <- snpgdsSNPRateFreq(genofile, sample.id=YRI.id,

snp.id=snpset)$AlleleFreq
subibd <- snpgdsIBDMLE(genofile, sample.id=YRI.id[1:25], snp.id=snpset,

allele.freq=afreq)
summary(c(subibd$k0 - mibd$k0[1:25, 1:25]))
ZERO
summary(c(subibd$k1 - mibd$k1[1:25, 1:25]))
ZERO

close the genotype file
snpgdsClose(genofile)

snpgdsIBDMLELogLik Log likelihood for MLE method in the Identity-By-Descent (IBD) Anal-
ysis

snpgdsIBDMLELogLik 47

Description

Calculate the log likelihood values from maximum likelihood estimation.

Usage

snpgdsIBDMLELogLik(gdsobj, ibdobj, k0 = NaN, k1 = NaN,
relatedness=c("", "self", "fullsib", "offspring",
"halfsib", "cousin", "unrelated"))

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

ibdobj the snpgdsIBDClass object returned from snpgdsIBDMLE

k0 specified IBD coefficient

k1 specified IBD coefficient

relatedness specify a relatedness, otherwise use the values of k0 and k1

Details

If (relatedness == "") and (k0 == NaN or k1 == NaN), then return the log likelihood values for
each (k0, k1) stored in ibdobj. \ If (relatedness == "") and (k0 != NaN) and (k1 != NaN), then
return the log likelihood values for a specific IBD coefficient (k0, k1). \ If relatedness is: "self",
then k0 = 0, k1 = 0; "fullsib", then k0 = 0.25, k1 = 0.5; "offspring", then k0 = 0, k1 = 1; "halfsib",
then k0 = 0.5, k1 = 0.5; "cousin", then k0 = 0.75, k1 = 0.25; "unrelated", then k0 = 1, k1 = 0.

Value

Return a n-by-n matrix of log likelihood values, where n is the number of samples.

Author(s)

Xiuwen Zheng

References

Milligan BG. 2003. Maximum-likelihood estimation of relatedness. Genetics 163:1153-1167.

Weir BS, Anderson AD, Hepler AB. 2006. Genetic relatedness analysis: modern data and new
challenges. Nat Rev Genet. 7(10):771-80.

Choi Y, Wijsman EM, Weir BS. 2009. Case-control association testing in the presence of unknown
relationships. Genet Epidemiol 33(8):668-78.

See Also

snpgdsIBDMLE, snpgdsIBDMoM

48 snpgdsIBDMoM

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

YRI.id <- read.gdsn(index.gdsn(genofile, "sample.id"))[
read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))=="YRI"]

YRI.id <- YRI.id[1:30]

SNP pruning
set.seed(10)
snpset <- snpgdsLDpruning(genofile, sample.id=YRI.id, maf=0.05,

missing.rate=0.05)
snpset <- sample(unlist(snpset), 250)
mibd <- snpgdsIBDMLE(genofile, sample.id=YRI.id, snp.id=snpset)
names(mibd)

select a set of pairs of individuals
d <- snpgdsIBDSelection(mibd, kinship.cutoff=1/8)
head(d)

log likelihood

loglik <- snpgdsIBDMLELogLik(genofile, mibd)
loglik0 <- snpgdsIBDMLELogLik(genofile, mibd, relatedness="unrelated")

likelihood ratio test
p.value <- pchisq(loglik - loglik0, 1, lower.tail=FALSE)

flag <- lower.tri(mibd$k0)
plot(NaN, xlim=c(0,1), ylim=c(0,1), xlab="k0", ylab="k1")
lines(c(0,1), c(1,0), col="red", lty=3)
points(mibd$k0[flag], mibd$k1[flag])

specify the allele frequencies
afreq <- snpgdsSNPRateFreq(genofile, sample.id=YRI.id,

snp.id=snpset)$AlleleFreq
subibd <- snpgdsIBDMLE(genofile, sample.id=YRI.id[1:25], snp.id=snpset,

allele.freq=afreq)
summary(c(subibd$k0 - mibd$k0[1:25, 1:25]))
ZERO
summary(c(subibd$k1 - mibd$k1[1:25, 1:25]))
ZERO

close the genotype file
snpgdsClose(genofile)

snpgdsIBDMoM PLINK method of moment (MoM) for the Identity-By-Descent (IBD)
Analysis

snpgdsIBDMoM 49

Description

Calculate three IBD coefficients for non-inbred individual pairs by PLINK method of moment
(MoM).

Usage

snpgdsIBDMoM(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=NaN, missing.rate=0.01, allele.freq=NULL,
kinship=FALSE, kinship.constraint=FALSE, num.thread=1L, useMatrix=FALSE,
verbose=TRUE)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep

SNPs according to the specified chromosome
remove.monosnp if TRUE, remove monomorphic SNPs
maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold
missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold
allele.freq to specify the allele frequencies; if NULL, determine the allele frequencies from

gdsobj using the specified samples; if snp.id is specified, allele.freq should
have the same order as snp.id

kinship if TRUE, output the estimated kinship coefficients
kinship.constraint

if TRUE, constrict IBD coefficients (k_0,k_1,k_2) in the geneloical region
($2 k_0 k_1 >= k_2^2$)

num.thread the number of (CPU) cores used; if NA, detect the number of cores automatically
useMatrix if TRUE, use Matrix::dspMatrix to store the output square matrix to save mem-

ory
verbose if TRUE, show information

Details

PLINK IBD estimator is a moment estimator, and it is computationally efficient relative to MLE
method. In the PLINK method of moment, a correction factor based on allele counts is used to
adjust for sampling. However, if allele frequencies are specified, no correction factor is conducted
since the specified allele frequencies are assumed to be known without sampling.
The minor allele frequency and missing rate for each SNP passed in snp.id are calculated over all
the samples in sample.id.

Value

Return a list:

sample.id the sample ids used in the analysis
snp.id the SNP ids used in the analysis
k0 IBD coefficient, the probability of sharing ZERO IBD
k1 IBD coefficient, the probability of sharing ONE IBD
kinship the estimated kinship coefficients, if the parameter kinship=TRUE

50 snpgdsIBDMoM

Author(s)

Xiuwen Zheng

References

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de
Bakker PIW, Daly MJ & Sham PC. 2007. PLINK: a toolset for whole-genome association and
population-based linkage analysis. American Journal of Human Genetics, 81.

See Also

snpgdsIBDMLE, snpgdsIBDMLELogLik

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

###
CEU population

CEU.id <- read.gdsn(index.gdsn(genofile, "sample.id"))[
read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))=="CEU"]

pibd <- snpgdsIBDMoM(genofile, sample.id=CEU.id)
names(pibd)

flag <- lower.tri(pibd$k0)
plot(NaN, xlim=c(0,1), ylim=c(0,1), xlab="k0", ylab="k1")
lines(c(0,1), c(1,0), col="red", lty=3)
points(pibd$k0[flag], pibd$k1[flag])

select a set of pairs of individuals
d <- snpgdsIBDSelection(pibd, kinship.cutoff=1/8)
head(d)

###
YRI population

YRI.id <- read.gdsn(index.gdsn(genofile, "sample.id"))[
read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))=="YRI"]

pibd <- snpgdsIBDMoM(genofile, sample.id=YRI.id)
flag <- lower.tri(pibd$k0)
plot(NaN, xlim=c(0,1), ylim=c(0,1), xlab="k0", ylab="k1")
lines(c(0,1), c(1,0), col="red", lty=3)
points(pibd$k0[flag], pibd$k1[flag])

specify the allele frequencies
afreq <- snpgdsSNPRateFreq(genofile, sample.id=YRI.id)$AlleleFreq
aibd <- snpgdsIBDMoM(genofile, sample.id=YRI.id, allele.freq=afreq)
flag <- lower.tri(aibd$k0)
plot(NaN, xlim=c(0,1), ylim=c(0,1), xlab="k0", ylab="k1")
lines(c(0,1), c(1,0), col="red", lty=3)
points(aibd$k0[flag], aibd$k1[flag])

snpgdsIBDSelection 51

analysis on a subset
subibd <- snpgdsIBDMoM(genofile, sample.id=YRI.id[1:25], allele.freq=afreq)
summary(c(subibd$k0 - aibd$k0[1:25, 1:25]))
ZERO
summary(c(subibd$k1 - aibd$k1[1:25, 1:25]))
ZERO

close the genotype file
snpgdsClose(genofile)

snpgdsIBDSelection Get a table of IBD coefficients

Description

Return a data frame with IBD coefficients.

Usage

snpgdsIBDSelection(ibdobj, kinship.cutoff=NaN, samp.sel=NULL)

Arguments

ibdobj an object of snpgdsIBDClass returned by snpgdsIBDMLE or snpgdsIBDMoM

kinship.cutoff select the individual pairs with kinship coefficients >= kinship.cutoff; no filter if
kinship.cutoff = NaN

samp.sel a logical vector or integer vector to specify selection of samples

Value

Return a data.frame:

ID1 the id of the first individual

ID2 the id of the second individual

k0 the probability of sharing ZERO alleles

k1 the probability of sharing ONE alleles

kinship kinship coefficient

Author(s)

Xiuwen Zheng

See Also

snpgdsIBDMLE, snpgdsIBDMoM, snpgdsIBDKING

52 snpgdsIBS

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

YRI population
YRI.id <- read.gdsn(index.gdsn(genofile, "sample.id"))[

read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))=="YRI"]
pibd <- snpgdsIBDMoM(genofile, sample.id=YRI.id)
flag <- lower.tri(pibd$k0)
plot(NaN, xlim=c(0,1), ylim=c(0,1), xlab="k0", ylab="k1")
lines(c(0,1), c(1,0), col="red", lty=3)
points(pibd$k0[flag], pibd$k1[flag])

close the genotype file
snpgdsClose(genofile)

IBD coefficients
dat <- snpgdsIBDSelection(pibd, 1/32)
head(dat)
ID1 ID2 k0 k1 kinship
1 NA19152 NA19154 0.010749154 0.9892508 0.24731271
2 NA19152 NA19093 0.848207777 0.1517922 0.03794806
3 NA19139 NA19138 0.010788047 0.9770181 0.25035144
4 NA19139 NA19137 0.012900661 0.9870993 0.24677483
5 NA18912 NA18914 0.008633077 0.9913669 0.24784173
6 NA19160 NA19161 0.008635754 0.9847777 0.24948770

snpgdsIBS Identity-By-State (IBS) proportion

Description

Calculate the fraction of identity by state for each pair of samples

Usage

snpgdsIBS(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=NaN, missing.rate=0.01, num.thread=1L,
useMatrix=FALSE, verbose=TRUE)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

sample.id a vector of sample id specifying selected samples; if NULL, all samples are used

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

remove.monosnp if TRUE, remove monomorphic SNPs

maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold

missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold

num.thread the number of (CPU) cores used; if NA, detect the number of cores automatically

snpgdsIBS 53

useMatrix if TRUE, use Matrix::dspMatrix to store the output square matrix to save mem-
ory

verbose if TRUE, show information

Details

The minor allele frequency and missing rate for each SNP passed in snp.id are calculated over all
the samples in sample.id.

The values of the IBS matrix range from ZERO to ONE, and it is defined as the average of 1 - |
g_{1,i} - g_{2,i} | / 2 across the genome for the first and second individuals and SNP i.

Value

Return a list (class "snpgdsIBSClass"):

sample.id the sample ids used in the analysis

snp.id the SNP ids used in the analysis

ibs a matrix of IBS proportion, "# of samples" x "# of samples"

Author(s)

Xiuwen Zheng

See Also

snpgdsIBSNum

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

perform identity-by-state calculations
ibs <- snpgdsIBS(genofile)

perform multidimensional scaling analysis on
the genome-wide IBS pairwise distances:
loc <- cmdscale(1 - ibs$ibs, k = 2)
x <- loc[, 1]; y <- loc[, 2]
race <- as.factor(read.gdsn(index.gdsn(genofile, "sample.annot/pop.group")))
plot(x, y, col=race, xlab = "", ylab = "", main = "cmdscale(IBS Distance)")
legend("topleft", legend=levels(race), text.col=1:nlevels(race))

close the file
snpgdsClose(genofile)

54 snpgdsIBSNum

snpgdsIBSNum Identity-By-State (IBS)

Description

Calculate the number of SNPs for identity by state for each pair of samples.

Usage

snpgdsIBSNum(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=NaN, missing.rate=0.01, num.thread=1L,
verbose=TRUE)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

sample.id a vector of sample id specifying selected samples; if NULL, all samples are used

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

remove.monosnp if TRUE, remove monomorphic SNPs

maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold

missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold

num.thread the number of (CPU) cores used; if NA, detect the number of cores automatically

verbose if TRUE, show information

Details

The minor allele frequency and missing rate for each SNP passed in snp.id are calculated over all
the samples in sample.id.

Value

Return a list (n is the number of samples):

sample.id the sample ids used in the analysis

snp.id the SNP ids used in the analysis

ibs0 a n-by-n matrix, the number of SNPs sharing 0 IBS

ibs1 a n-by-n matrix, the number of SNPs sharing 1 IBS

ibs2 a n-by-n matrix, the number of SNPs sharing 2 IBS

Author(s)

Xiuwen Zheng

See Also

snpgdsIBS

snpgdsIndInb 55

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

RV <- snpgdsIBSNum(genofile)
pop <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))
L <- order(pop)
image(RV$ibs0[L, L]/length(RV$snp.id))

close the genotype file
snpgdsClose(genofile)

snpgdsIndInb Individual Inbreeding Coefficients

Description

To calculate individual inbreeding coefficients using SNP genotype data

Usage

snpgdsIndInb(gdsobj, sample.id=NULL, snp.id=NULL,
autosome.only=TRUE, remove.monosnp=TRUE, maf=NaN, missing.rate=NaN,
method=c("mom.weir", "mom.visscher", "mle", "gcta1", "gcta2", "gcta3"),
allele.freq=NULL, out.num.iter=TRUE, reltol=.Machine$double.eps^0.75,
verbose=TRUE)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

sample.id a vector of sample id specifying selected samples; if NULL, all samples are used

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

remove.monosnp if TRUE, remove monomorphic SNPs

maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold

missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold

method see details

allele.freq to specify the allele frequencies; if NULL, the allele frequencies are estimated
from the given samples

out.num.iter output the numbers of iterations

reltol relative convergence tolerance used in MLE; the algorithm stops if it is unable
to reduce the value of log likelihood by a factor of $reltol * (abs(log likelihood
with the initial parameters) + reltol)$ at a step.

verbose if TRUE, show information

56 snpgdsIndInbCoef

Details

The method can be: "mom.weir": a modified Visscher’s estimator, proposed by Bruce Weir; "mom.visscher":
Visscher’s estimator described in Yang et al. (2010); "mle": the maximum likelihood estimation;
"gcta1": F^I in GCTA, avg [(g_i - 2p_i)^2 / (2*p_i*(1-p_i)) - 1]; "gcta2": F^II in GCTA, avg [1 -
g_i*(2 - g_i) / (2*p_i*(1-p_i))]; "gcta3": F^III in GCTA, the same as "mom.visscher", avg [g_i^2 -
(1 + 2p_i)*g_i + 2*p_i^2] / (2*p_i*(1-p_i)).

Value

Return estimated inbreeding coefficient.

Author(s)

Xiuwen Zheng

References

Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC,
Martin NG, Montgomery GW, Goddard ME, Visscher PM. 2010. Common SNPs explain a large
proportion of the heritability for human height. Nat Genet. 42(7):565-9. Epub 2010 Jun 20.

Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex
trait analysis. American journal of human genetics 88, 76-82 (2011).

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

rv <- snpgdsIndInb(genofile, method="mom.visscher")
head(rv$inbreeding)
summary(rv$inbreeding)

close the genotype file
snpgdsClose(genofile)

snpgdsIndInbCoef Individual Inbreeding Coefficient

Description

To calculate an individual inbreeding coefficient using SNP genotype data

Usage

snpgdsIndInbCoef(x, p, method = c("mom.weir", "mom.visscher", "mle"),
reltol=.Machine$double.eps^0.75)

snpgdsIndInbCoef 57

Arguments

x SNP genotypes

p allele frequencies

method see details

reltol relative convergence tolerance used in MLE; the algorithm stops if it is unable
to reduce the value of log likelihood by a factor of $reltol * (abs(log likelihood
with the initial parameters) + reltol)$ at a step.

Details

The method can be: "mom.weir": a modified Visscher’s estimator, proposed by Bruce Weir;
"mom.visscher": Visscher’s estimator described in Yang et al. (2010); "mle": the maximum
likelihood estimation.

Value

Return estimated inbreeding coefficient.

Author(s)

Xiuwen Zheng

References

Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC,
Martin NG, Montgomery GW, Goddard ME, Visscher PM. 2010. Common SNPs explain a large
proportion of the heritability for human height. Nat Genet. 42(7):565-9. Epub 2010 Jun 20.

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

chr1 <- read.gdsn(index.gdsn(genofile, "snp.id"))[
read.gdsn(index.gdsn(genofile, "snp.chromosome"))==1]

chr1idx <- match(chr1, read.gdsn(index.gdsn(genofile, "snp.id")))

AF <- snpgdsSNPRateFreq(genofile)
g <- read.gdsn(index.gdsn(genofile, "genotype"), start=c(1,1), count=c(-1,1))

snpgdsIndInbCoef(g[chr1idx], AF$AlleleFreq[chr1idx], method="mom.weir")
snpgdsIndInbCoef(g[chr1idx], AF$AlleleFreq[chr1idx], method="mom.visscher")
snpgdsIndInbCoef(g[chr1idx], AF$AlleleFreq[chr1idx], method="mle")

close the genotype file
snpgdsClose(genofile)

58 snpgdsIndivBeta

snpgdsIndivBeta Individual inbreeding and relatedness estimation (beta estimator)

Description

Calculate individual inbreeding and relatedness estimation (beta estimator) using SNP genotype
data.

Usage

snpgdsIndivBeta(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=NaN, missing.rate=0.01, method=c("weighted"),
inbreeding=TRUE, num.thread=1L, with.id=TRUE, useMatrix=FALSE, verbose=TRUE)

snpgdsIndivBetaRel(beta, beta_rel, verbose=TRUE)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep

SNPs according to the specified chromosome
remove.monosnp if TRUE, remove monomorphic SNPs
maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold
missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold
method "weighted" estimator
inbreeding TRUE, the diagonal is a vector of inbreeding coefficients; otherwise, individual

variance estimates
num.thread the number of (CPU) cores used; if NA, detect the number of cores automatically
with.id if TRUE, the returned value with sample.id and sample.id

useMatrix if TRUE, use Matrix::dspMatrix to store the output square matrix to save mem-
ory

beta the object returned from snpgdsIndivBeta()

beta_rel the beta-based matrix is generated relative to beta_rel

verbose if TRUE, show information

Value

Return a list if with.id = TRUE:

sample.id the sample ids used in the analysis
snp.id the SNP ids used in the analysis
inbreeding a logical value; TRUE, the diagonal is a vector of inbreeding coefficients; other-

wise, individual variance estimates
beta beta estimates
avg_val the average of M_B among all loci, it could be used to calculate each M_ij

If with.id = FALSE, this function returns the genetic relationship matrix without sample and SNP
IDs.

snpgdsLDMat 59

Author(s)

Xiuwen Zheng

References

Weir BS, Zheng X. SNPs and SNVs in Forensic Science. Forensic Science International: Genetics
Supplement Series. 2015. doi:10.1016/j.fsigss.2015.09.106

Weir BS, Goudet J. A Unified Characterization of Population Structure and Relatedness. Genetics.
2017 Aug;206(4):2085-2103. doi: 10.1534/genetics.116.198424.

See Also

snpgdsGRM, snpgdsIndInb, snpgdsFst

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

b <- snpgdsIndivBeta(genofile, inbreeding=FALSE)
b$beta[1:10, 1:10]

z <- snpgdsIndivBetaRel(b, min(b$beta))

close the file
snpgdsClose(genofile)

snpgdsLDMat Linkage Disequilibrium (LD) analysis

Description

Return a LD matrix for SNP pairs.

Usage

snpgdsLDMat(gdsobj, sample.id=NULL, snp.id=NULL, slide=250L,
method=c("composite", "r", "dprime", "corr", "cov"), mat.trim=FALSE,
num.thread=1L, with.id=TRUE, verbose=TRUE)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

sample.id a vector of sample id specifying selected samples; if NULL, all samples are used

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

slide # of SNPs, the size of sliding window; if slide < 0, return a full LD matrix; see
details

method "composite", "r", "dprime", "corr", "cov", see details

mat.trim if TRUE, trim the matrix when slide > 0: the function returns a "num_slide x
(n_snp - slide)" matrix

60 snpgdsLDMat

num.thread the number of (CPU) cores used; if NA, detect the number of cores automatically

with.id if TRUE, the returned value with sample.id and sample.id

verbose if TRUE, show information

Details

Four methods can be used to calculate linkage disequilibrium values: "composite" for LD composite
measure, "r" for R coefficient (by EM algorithm assuming HWE, it could be negative), "dprime"
for D’, and "corr" for correlation coefficient. The method "corr" is equivalent to "composite", when
SNP genotypes are coded as: 0 – BB, 1 – AB, 2 – AA.

If slide <= 0, the function returns a n-by-n LD matrix where the value of i row and j column is LD
of i and j SNPs. If slide > 0, it returns a m-by-n LD matrix where n is the number of SNPs, m is
the size of sliding window, and the value of i row and j column is LD of j and j+i SNPs.

Value

Return a list:

sample.id the sample ids used in the analysis

snp.id the SNP ids used in the analysis

LD a matrix of LD values

slide the size of sliding window

Author(s)

Xiuwen Zheng

References

Weir B: Inferences about linkage disequilibrium. Biometrics 1979; 35: 235-254.

Weir B: Genetic Data Analysis II. Sunderland, MA: Sinauer Associates, 1996.

Weir BS, Cockerham CC: Complete characterization of disequilibrium at two loci; in Feldman MW
(ed): Mathematical Evolutionary Theory. Princeton, NJ: Princeton University Press, 1989.

See Also

snpgdsLDpair, snpgdsLDpruning

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

missing proportion and MAF
ff <- snpgdsSNPRateFreq(genofile)

chromosome 15
snpset <- read.gdsn(index.gdsn(genofile, "snp.id"))[

ff$MissingRate==0 & ff$MinorFreq>0 &
read.gdsn(index.gdsn(genofile, "snp.chromosome"))==15]

length(snpset)

snpgdsLDpair 61

LD matrix without sliding window
ld.noslide <- snpgdsLDMat(genofile, snp.id=snpset, slide=-1, method="composite")
plot
image(t(ld.noslide$LD^2), col=terrain.colors(16))

LD matrix with a sliding window
ld.slide <- snpgdsLDMat(genofile, snp.id=snpset, method="composite")
plot
image(t(ld.slide$LD^2), col=terrain.colors(16))

close the genotype file
snpgdsClose(genofile)

snpgdsLDpair Linkage Disequilibrium (LD)

Description

Return a LD value between snp1 and snp2.

Usage

snpgdsLDpair(snp1, snp2, method = c("composite", "r", "dprime", "corr"))

Arguments

snp1 a vector of SNP genotypes (0 – BB, 1 – AB, 2 – AA)

snp2 a vector of SNP genotypes (0 – BB, 1 – AB, 2 – AA)

method "composite", "r", "dprime", "corr", see details

Details

Four methods can be used to calculate linkage disequilibrium values: "composite" for LD composite
measure, "r" for R coefficient (by EM algorithm assuming HWE, it could be negative), "dprime"
for D’, and "corr" for correlation coefficient. The method "corr" is equivalent to "composite", when
SNP genotypes are coded as: 0 – BB, 1 – AB, 2 – AA.

Value

Return a numeric vector:

ld a measure of linkage disequilibrium

if method = "r" or "dprime",

pA_A haplotype frequency of AA, the first locus is A and the second locus is A

pA_B haplotype frequency of AB, the first locus is A and the second locus is B

pB_A haplotype frequency of BA, the first locus is B and the second locus is A

pB_B haplotype frequency of BB, the first locus is B and the second locus is B

62 snpgdsLDpruning

Author(s)

Xiuwen Zheng

References

Weir B: Inferences about linkage disequilibrium. Biometrics 1979; 35: 235-254.

Weir B: Genetic Data Analysis II. Sunderland, MA: Sinauer Associates, 1996.

Weir BS, Cockerham CC: Complete characterization of disequilibrium at two loci; in Feldman MW
(ed): Mathematical Evolutionary Theory. Princeton, NJ: Princeton University Press, 1989.

See Also

snpgdsLDMat, snpgdsLDpruning

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

snp1 <- read.gdsn(index.gdsn(genofile, "genotype"), start=c(1,1), count=c(1,-1))
snp2 <- read.gdsn(index.gdsn(genofile, "genotype"), start=c(2,1), count=c(1,-1))

snpgdsLDpair(snp1, snp2, method = "composite")
snpgdsLDpair(snp1, snp2, method = "r")
snpgdsLDpair(snp1, snp2, method = "dprime")
snpgdsLDpair(snp1, snp2, method = "corr")

close the genotype file
snpgdsClose(genofile)

snpgdsLDpruning Linkage Disequilibrium (LD) based SNP pruning

Description

Recursively removes SNPs within a sliding window

Usage

snpgdsLDpruning(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=0.005, missing.rate=0.01,
method=c("composite", "r", "dprime", "corr"), slide.max.bp=500000L,
slide.max.n=NA, ld.threshold=0.2,
start.pos=c("random.f500", "random", "first", "last"),
num.thread=1L, autosave=NULL, verbose=TRUE)

snpgdsLDpruning 63

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

sample.id a vector of sample id specifying selected samples; if NULL, all samples are used

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

remove.monosnp if TRUE, remove monomorphic SNPs

maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold

missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold

method "composite", "r", "dprime", "corr", see details

slide.max.bp the maximum basepairs in the sliding window

slide.max.n the maximum number of SNPs in the sliding window

ld.threshold the LD threshold

start.pos "random.f500", a starting postion randomly selected from the first 500 markers
(by default); "random": a random starting position; "first": start from the first
position; "last": start from the last position. "random.f500" is applicable for >=
v1.37.2

num.thread the number of (CPU) cores used; if NA, detect the number of cores automatically

autosave NULL or a file name for autosaving a single R object (saving via saveRDS)

verbose if TRUE, show information

Details

The minor allele frequency and missing rate for each SNP passed in snp.id are calculated over all
the samples in sample.id.

Four methods can be used to calculate linkage disequilibrium values: "composite" for LD composite
measure, "r" for R coefficient (by EM algorithm assuming HWE, it could be negative), "dprime"
for D’, and "corr" for correlation coefficient. The method "corr" is equivalent to "composite", when
SNP genotypes are coded as: 0 – BB, 1 – AB, 2 – AA. The argument ld.threshold is the absolute
value of measurement.

It is useful to generate a pruned subset of SNPs that are in approximate linkage equilibrium with
each other. The function snpgdsLDpruning recursively removes SNPs within a sliding window
based on the pairwise genotypic correlation. SNP pruning is conducted chromosome by chromo-
some, since SNPs in a chromosome can be considered to be independent with the other chromo-
somes.

The pruning algorithm on a chromosome is described as follows (n is the total number of SNPs on
that chromosome):

1) Randomly select a starting position i (start.pos="random"), i=1 if start.pos="first", or
i=last if start.pos="last"; and let the current SNP set S={ i };

2) For each right position j from i+1 to n: if any LD between j and k is greater than ld.threshold,
where k belongs to S, and both of j and k are in the sliding window, then skip j; otherwise, let S be
S + { j };

3) For each left position j from i-1 to 1: if any LD between j and k is greater than ld.threshold,
where k belongs to S, and both of j and k are in the sliding window, then skip j; otherwise, let S be
S + { j };

4) Output S, the final selection of SNPs.

64 snpgdsMergeGRM

Value

Return a list of SNP IDs stratified by chromosomes.

Author(s)

Xiuwen Zheng

References

Weir B: Inferences about linkage disequilibrium. Biometrics 1979; 35: 235-254.

Weir B: Genetic Data Analysis II. Sunderland, MA: Sinauer Associates, 1996.

Weir BS, Cockerham CC: Complete characterization of disequilibrium at two loci; in Feldman MW
(ed): Mathematical Evolutionary Theory. Princeton, NJ: Princeton University Press, 1989.

See Also

snpgdsLDMat, snpgdsLDpair

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

set.seed(1000)
snpset <- snpgdsLDpruning(genofile)
str(snpset)
names(snpset)
[1] "chr1" "chr2" "chr3" "chr4" "chr5" "chr6" "chr7" "chr8" "chr9"
[10] "chr10" "chr11" "chr12" "chr13" "chr14" "chr15" "chr16" "chr17" "chr18"
......

get SNP ids
snp.id <- unlist(unname(snpset))

close the genotype file
snpgdsClose(genofile)

snpgdsMergeGRM Merge Multiple Genetic Relationship Matrices (GRM)

Description

Combine multiple genetic relationship matrices with weighted averaging.

Usage

snpgdsMergeGRM(filelist, out.fn=NULL, out.prec=c("double", "single"),
out.compress="LZMA_RA", weight=NULL, verbose=TRUE)

snpgdsMergeGRM 65

Arguments

filelist a character vector, list of GDS file names

out.fn NULL, return a GRM object; or characters, the output GDS file name

out.prec double or single precision for storage

out.compress the compression method for storing the GRM matrix in the GDS file

weight NULL, weights proportional to the numbers of SNPs; a numeric vector, or a log-
ical vector (FALSE for excluding some GRMs with a negative weight, weights
proportional to the numbers of SNPs)

verbose if TRUE, show information

Details

The final GRM is the weighted averaged matrix combining multiple GRMs. The merged GRM may
not be identical to the GRM calculated using full SNPs, due to missing genotypes or the internal
weighting strategy of the specified GRM calculation.

Value

None or a GRM object if out.fn=NULL.

Author(s)

Xiuwen Zheng

See Also

snpgdsGRM

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

snpid <- read.gdsn(index.gdsn(genofile, "snp.id"))
snpid <- snpid[snpgdsSNPRateFreq(genofile)$MissingRate == 0]

there is no missing genotype
grm <- snpgdsGRM(genofile, snp.id=snpid, method="GCTA")

save two GRMs
set1 <- grm$snp.id[1:(length(grm$snp.id)/2)]
set2 <- setdiff(grm$snp.id, set1)
snpgdsGRM(genofile, method="GCTA", snp.id=set1, out.fn="tmp1.gds")
snpgdsGRM(genofile, method="GCTA", snp.id=set2, out.fn="tmp2.gds")

merge GRMs and export to a new GDS file
snpgdsMergeGRM(c("tmp1.gds", "tmp2.gds"), "tmp.gds")

return the GRM
grm2 <- snpgdsMergeGRM(c("tmp1.gds", "tmp2.gds"))

66 snpgdsOpen

check
f <- openfn.gds("tmp.gds")
m <- read.gdsn(index.gdsn(f, "grm"))
closefn.gds(f)

summary(c(m - grm$grm)) # ~zero
summary(c(m - grm2$grm)) # zero

close the file
snpgdsClose(genofile)

delete the temporary file
unlink(c("tmp1.gds", "tmp2.gds", "tmp.gds"), force=TRUE)

snpgdsOpen Open a SNP GDS File

Description

Open a SNP GDS file

Usage

snpgdsOpen(filename, readonly=TRUE, allow.duplicate=FALSE, allow.fork=TRUE)

Arguments

filename the file name

readonly whether read-only or not
allow.duplicate

if TRUE, it is allowed to open a GDS file with read-only mode when it has been
opened in the same R session, see openfn.gds

allow.fork TRUE for parallel environment using forking, see openfn.gds

Details

It is strongly suggested to call snpgdsOpen instead of openfn.gds, since snpgdsOpen will perform
internal checking for data integrality.

Value

Return an object of class SNPGDSFileClass.

Author(s)

Xiuwen Zheng

See Also

snpgdsClose

snpgdsOption 67

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

genofile

close the file
snpgdsClose(genofile)

snpgdsOption Option settings: chromosome coding, etc

Description

Return an option list used by the SNPRelate package or a GDS file

Usage

snpgdsOption(gdsobj=NULL, autosome.start=1L, autosome.end=22L, ...)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

autosome.start the starting index of autosome

autosome.end the ending index of autosome

... optional arguments for new chromosome coding

Value

A list

Author(s)

Xiuwen Zheng

Examples

define the new chromosomes 'Z' and 'W'
snpgdsOption(Z=27L, W=28L)

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

snpgdsOption(genofile)

close the genotype file
snpgdsClose(genofile)

68 snpgdsPairIBD

snpgdsPairIBD Calculate Identity-By-Descent (IBD) Coefficients

Description

Calculate the three IBD coefficients (k0, k1, k2) for non-inbred individual pairs by Maximum Like-
lihood Estimation (MLE) or PLINK Method of Moment (MoM).

Usage

snpgdsPairIBD(geno1, geno2, allele.freq,
method=c("EM", "downhill.simplex", "MoM", "Jacquard"),
kinship.constraint=FALSE, max.niter=1000L, reltol=sqrt(.Machine$double.eps),
coeff.correct=TRUE, out.num.iter=TRUE, verbose=TRUE)

Arguments

geno1 the SNP genotypes for the first individual, 0 – BB, 1 – AB, 2 – AA, other values
– missing

geno2 the SNP genotypes for the second individual, 0 – BB, 1 – AB, 2 – AA, other
values – missing

allele.freq the allele frequencies

method "EM", "downhill.simplex", "MoM" or "Jacquard", see details

kinship.constraint

if TRUE, constrict IBD coefficients (k_0,k_1,k_2) in the genealogical region
($2 k_0 k_1 >= k_2^2$)

max.niter the maximum number of iterations

reltol relative convergence tolerance; the algorithm stops if it is unable to reduce the
value of log likelihood by a factor of $reltol * (abs(log likelihood with the initial
parameters) + reltol)$ at a step.

coeff.correct TRUE by default, see details

out.num.iter if TRUE, output the numbers of iterations

verbose if TRUE, show information

Details

If method = "MoM", then PLINK Method of Moment without a allele-count-based correction fac-
tor is conducted. Otherwise, two numeric approaches for maximum likelihood estimation can be
used: one is Expectation-Maximization (EM) algorithm, and the other is Nelder-Mead method or
downhill simplex method. Generally, EM algorithm is more robust than downhill simplex method.
"Jacquard" refers to the estimation of nine Jacquard’s coefficients.

If coeff.correct is TRUE, the final point that is found by searching algorithm (EM or downhill
simplex) is used to compare the six points (fullsib, offspring, halfsib, cousin, unrelated), since any
numeric approach might not reach the maximum position after a finit number of steps. If any of
these six points has a higher value of log likelihood, the final point will be replaced by the best one.

snpgdsPairIBD 69

Value

Return a data.frame:

k0 IBD coefficient, the probability of sharing ZERO IBD

k1 IBD coefficient, the probability of sharing ONE IBD

loglik the value of log likelihood

niter the number of iterations

Author(s)

Xiuwen Zheng

References

Milligan BG. 2003. Maximum-likelihood estimation of relatedness. Genetics 163:1153-1167.

Weir BS, Anderson AD, Hepler AB. 2006. Genetic relatedness analysis: modern data and new
challenges. Nat Rev Genet. 7(10):771-80.

Choi Y, Wijsman EM, Weir BS. 2009. Case-control association testing in the presence of unknown
relationships. Genet Epidemiol 33(8):668-78.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de
Bakker PIW, Daly MJ & Sham PC. 2007. PLINK: a toolset for whole-genome association and
population-based linkage analysis. American Journal of Human Genetics, 81.

See Also

snpgdsPairIBDMLELogLik, snpgdsIBDMLE, snpgdsIBDMLELogLik, snpgdsIBDMoM

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

YRI.id <- read.gdsn(index.gdsn(genofile, "sample.id"))[
read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))=="YRI"]

SNP pruning
set.seed(10)
snpset <- snpgdsLDpruning(genofile, sample.id=YRI.id, maf=0.05,

missing.rate=0.05)
snpset <- unname(sample(unlist(snpset), 250))

the number of samples
n <- 25

specify allele frequencies
RF <- snpgdsSNPRateFreq(genofile, sample.id=YRI.id, snp.id=snpset,

with.id=TRUE)
summary(RF$AlleleFreq)

subMLE <- snpgdsIBDMLE(genofile, sample.id=YRI.id[1:n], snp.id=RF$snp.id,
allele.freq=RF$AlleleFreq)

subMoM <- snpgdsIBDMoM(genofile, sample.id=YRI.id[1:n], snp.id=RF$snp.id,
allele.freq=RF$AlleleFreq)

70 snpgdsPairIBDMLELogLik

subJac <- snpgdsIBDMLE(genofile, sample.id=YRI.id[1:n], snp.id=RF$snp.id,
allele.freq=RF$AlleleFreq, method="Jacquard")

########################

genotype matrix
mat <- snpgdsGetGeno(genofile, sample.id=YRI.id[1:n], snp.id=snpset,

snpfirstdim=TRUE)

rv <- NULL
for (i in 2:n)
{

rv <- rbind(rv, snpgdsPairIBD(mat[,1], mat[,i], RF$AlleleFreq, "EM"))
print(snpgdsPairIBDMLELogLik(mat[,1], mat[,i], RF$AlleleFreq,

relatedness="unrelated", verbose=TRUE))
}
rv
summary(rv$k0 - subMLE$k0[1, 2:n])
summary(rv$k1 - subMLE$k1[1, 2:n])
ZERO

rv <- NULL
for (i in 2:n)

rv <- rbind(rv, snpgdsPairIBD(mat[,1], mat[,i], RF$AlleleFreq, "MoM"))
rv
summary(rv$k0 - subMoM$k0[1, 2:n])
summary(rv$k1 - subMoM$k1[1, 2:n])
ZERO

rv <- NULL
for (i in 2:n)

rv <- rbind(rv, snpgdsPairIBD(mat[,1], mat[,i], RF$AlleleFreq, "Jacquard"))
rv
summary(rv$D1 - subJac$D1[1, 2:n])
summary(rv$D2 - subJac$D2[1, 2:n])
ZERO

close the genotype file
snpgdsClose(genofile)

snpgdsPairIBDMLELogLik

Log likelihood for MLE method in the Identity-By-Descent (IBD) Anal-
ysis

Description

Calculate the log likelihood values from maximum likelihood estimation.

Usage

snpgdsPairIBDMLELogLik(geno1, geno2, allele.freq, k0=NaN, k1=NaN,

snpgdsPairIBDMLELogLik 71

relatedness=c("", "self", "fullsib", "offspring", "halfsib",
"cousin", "unrelated"), verbose=TRUE)

Arguments

geno1 the SNP genotypes for the first individual, 0 – BB, 1 – AB, 2 – AA, other values
– missing

geno2 the SNP genotypes for the second individual, 0 – BB, 1 – AB, 2 – AA, other
values – missing

allele.freq the allele frequencies

k0 specified IBD coefficient

k1 specified IBD coefficient

relatedness specify a relatedness, otherwise use the values of k0 and k1

verbose if TRUE, show information

Details

If (relatedness == "") and (k0 == NaN or k1 == NaN), then return the log likelihood values for
each (k0, k1) stored in ibdobj.

If (relatedness == "") and (k0 != NaN) and (k1 != NaN), then return the log likelihood values for
a specific IBD coefficient (k0, k1).

If relatedness is: "self", then k0 = 0, k1 = 0; "fullsib", then k0 = 0.25, k1 = 0.5; "offspring", then
k0 = 0, k1 = 1; "halfsib", then k0 = 0.5, k1 = 0.5; "cousin", then k0 = 0.75, k1 = 0.25; "unrelated",
then k0 = 1, k1 = 0.

Value

The value of log likelihood.

Author(s)

Xiuwen Zheng

References

Milligan BG. 2003. Maximum-likelihood estimation of relatedness. Genetics 163:1153-1167.

Weir BS, Anderson AD, Hepler AB. 2006. Genetic relatedness analysis: modern data and new
challenges. Nat Rev Genet. 7(10):771-80.

Choi Y, Wijsman EM, Weir BS. 2009. Case-control association testing in the presence of unknown
relationships. Genet Epidemiol 33(8):668-78.

See Also

snpgdsPairIBD, snpgdsIBDMLE, snpgdsIBDMLELogLik, snpgdsIBDMoM

72 snpgdsPairIBDMLELogLik

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

YRI.id <- read.gdsn(index.gdsn(genofile, "sample.id"))[
read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))=="YRI"]

SNP pruning
set.seed(10)
snpset <- snpgdsLDpruning(genofile, sample.id=YRI.id, maf=0.05,

missing.rate=0.05)
snpset <- unname(sample(unlist(snpset), 250))

the number of samples
n <- 25

specify allele frequencies
RF <- snpgdsSNPRateFreq(genofile, sample.id=YRI.id, snp.id=snpset,

with.id=TRUE)
summary(RF$AlleleFreq)

subMLE <- snpgdsIBDMLE(genofile, sample.id=YRI.id[1:n], snp.id=RF$snp.id,
allele.freq=RF$AlleleFreq)

subMoM <- snpgdsIBDMoM(genofile, sample.id=YRI.id[1:n], snp.id=RF$snp.id,
allele.freq=RF$AlleleFreq)

genotype matrix
mat <- snpgdsGetGeno(genofile, sample.id=YRI.id[1:n], snp.id=snpset,

snpfirstdim=TRUE)

########################

rv <- NULL
for (i in 2:n)
{

rv <- rbind(rv, snpgdsPairIBD(mat[,1], mat[,i], RF$AlleleFreq, "EM"))
print(snpgdsPairIBDMLELogLik(mat[,1], mat[,i], RF$AlleleFreq,

relatedness="unrelated", verbose=TRUE))
}
rv
summary(rv$k0 - subMLE$k0[1, 2:n])
summary(rv$k1 - subMLE$k1[1, 2:n])
ZERO

rv <- NULL
for (i in 2:n)

rv <- rbind(rv, snpgdsPairIBD(mat[,1], mat[,i], RF$AlleleFreq, "MoM"))
rv
summary(rv$k0 - subMoM$k0[1, 2:n])
summary(rv$k1 - subMoM$k1[1, 2:n])
ZERO

close the genotype file
snpgdsClose(genofile)

snpgdsPairScore 73

snpgdsPairScore Genotype Score for Pairs of Individuals

Description

Calculate the genotype score for pairs of individuals based on identity-by-state (IBS) measure

Usage

snpgdsPairScore(gdsobj, sample1.id, sample2.id, snp.id=NULL,
method=c("IBS", "GVH", "HVG", "GVH.major", "GVH.minor", "GVH.major.only",
"GVH.minor.only"), type=c("per.pair", "per.snp", "matrix", "gds.file"),
dosage=TRUE, with.id=TRUE, output=NULL, verbose=TRUE)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

sample1.id a vector of sample id specifying selected samples; if NULL, all samples are used

sample2.id a vector of sample id specifying selected samples; if NULL, all samples are used

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

method "IBS" – identity-by-state score, "GVH" or "HVG", see Details

type "per.pair", "per.snp" or "matrix", see Value

dosage TRUE, uses dosages 0, 1, 2; FALSE, uses 0, 1 (changing a return value of 1 or
2 to be 1)

with.id if TRUE, returns "sample.id" and "snp.id"; see Value

output if type="gds.file", the file name

verbose if TRUE, show information

Details

sample1.id sample2.id
Patient Donor IBS GVH HVG GVH.major GVH.minor GVH.major.only GVH.minor.only
AA / 2 AA / 2 2 0 0 0 0 0 0
AA / 2 AB / 1 1 0 1 0 0 0 0
AA / 2 BB / 0 0 2 2 1 0 1 NA
AB / 1 AA / 2 1 1 0 0 1 NA 1
AB / 1 AB / 1 2 0 0 0 0 0 0
AB / 1 BB / 0 1 1 0 1 0 1 NA
BB / 0 AA / 2 0 2 2 0 1 NA 1
BB / 0 AB / 1 1 0 1 0 0 0 0
BB / 0 BB / 0 2 0 0 0 0 0 0

74 snpgdsPairScore

Value

Return a list:

sample.id the sample ids used in the analysis, if with.id=TRUE

snp.id the SNP ids used in the analysis, if with.id=TRUE

score a matrix of genotype score: if type="per.pair", a data.frame with the first
column for average scores, the second column for standard deviation and the
third column for the valid number of SNPs; the additional columns for pairs
of samples. if type="per.snp", a 3-by-# of SNPs matrix with the first row for
average scores, the second row for standard deviation and the third row for the
valid number of individual pairs; if type="matrix", a # of pairs-by-# of SNPs
matrix with rows for pairs of individuals

Author(s)

Xiuwen Zheng

References

Warren, E. H., Zhang, X. C., Li, S., Fan, W., Storer, B. E., Chien, J. W., Boeckh, M. J., et al. (2012).
Effect of MHC and non-MHC donor/recipient genetic disparity on the outcome of allogeneic HCT.
Blood, 120(14), 2796-806. doi:10.1182/blood-2012-04-347286

See Also

snpgdsIBS

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

autosomal SNPs
selsnp <- snpgdsSelectSNP(genofile, autosome.only=TRUE, remove.monosnp=FALSE)

sample ID
sample.id <- read.gdsn(index.gdsn(genofile, "sample.id"))
father.id <- read.gdsn(index.gdsn(genofile, "sample.annot/father.id"))

offspring.id <- sample.id[father.id != ""]
father.id <- father.id[father.id != ""]

calculate average genotype scores
z1 <- snpgdsPairScore(genofile, offspring.id, father.id, snp.id=selsnp,

method="IBS", type="per.pair")
str(z1)
head(z1$score)

calculate average genotype scores
z1 <- snpgdsPairScore(genofile, offspring.id, father.id, snp.id=selsnp,

method="IBS", type="per.pair", dosage=FALSE)
str(z1)
head(z1$score)

snpgdsPCA 75

calculate average genotype scores
z2 <- snpgdsPairScore(genofile, offspring.id, father.id, snp.id=selsnp,

method="IBS", type="per.snp")
str(z2)
z2$score[, 1:4]
mean(z2$score["Avg",])
mean(z2$score["SD",])

plot(z2$score["Avg",], pch=20, cex=0.75, xlab="SNP Index", ylab="IBS score")

calculate a matrix of genotype scores over samples and SNPs
z3 <- snpgdsPairScore(genofile, offspring.id, father.id, snp.id=selsnp,

method="IBS", type="matrix")
str(z3)

output the score matrix to a GDS file
snpgdsPairScore(genofile, offspring.id, father.id, snp.id=selsnp,

method="IBS", type="gds.file", output="tmp.gds")
(f <- snpgdsOpen("tmp.gds"))
snpgdsClose(f)

close the file
snpgdsClose(genofile)

unlink("tmp.gds", force=TRUE)

snpgdsPCA Principal Component Analysis (PCA) on SNP genotype data

Description

To calculate the eigenvectors and eigenvalues for principal component analysis in GWAS.

Usage

snpgdsPCA(gdsobj, sample.id=NULL, snp.id=NULL,
autosome.only=TRUE, remove.monosnp=TRUE, maf=NaN, missing.rate=0.01,
algorithm=c("exact", "randomized"),
eigen.cnt=ifelse(identical(algorithm, "randomized"), 16L, 32L),
num.thread=1L, bayesian=FALSE, need.genmat=FALSE,
genmat.only=FALSE, eigen.method=c("DSPEVX", "DSPEV"),
aux.dim=eigen.cnt*2L, iter.num=10L, verbose=TRUE)

S3 method for class 'snpgdsPCAClass'
plot(x, eig=c(1L,2L), ...)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

sample.id a vector of sample id specifying selected samples; if NULL, all samples are used

76 snpgdsPCA

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

remove.monosnp if TRUE, remove monomorphic SNPs

maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold

missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold

eigen.cnt output the number of eigenvectors; if eigen.cnt <= 0, then return all eigenvectors

algorithm "exact", traditional exact calculation; "randomized", fast PCA with randomized
algorithm introduced in Galinsky et al. 2016

num.thread the number of (CPU) cores used; if NA, detect the number of cores automatically

bayesian if TRUE, use bayesian normalization

need.genmat if TRUE, return the genetic covariance matrix

genmat.only return the genetic covariance matrix only, do not compute the eigenvalues and
eigenvectors

eigen.method "DSPEVX" – compute the top eigen.cnt eigenvalues and eigenvectors using
LAPACK::DSPEVX; "DSPEV" – to be compatible with SNPRelate_1.1.6 or
earlier, using LAPACK::DSPEV; "DSPEVX" is significantly faster than "DSPEV"
if only top principal components are of interest

aux.dim auxiliary dimension used in fast randomized algorithm

iter.num iteration number used in fast randomized algorithm

verbose if TRUE, show information

x a snpgdsPCAClass object

eig indices of eigenvectors, like 1:2 or 1:4

... the arguments passed to or from other methods, like pch, col

Details

The minor allele frequency and missing rate for each SNP passed in snp.id are calculated over all
the samples in sample.id.

Value

Return a snpgdsPCAClass object, and it is a list:

sample.id the sample ids used in the analysis

snp.id the SNP ids used in the analysis

eigenval eigenvalues

eigenvect eigenvactors, "# of samples" x "eigen.cnt"

varprop variance proportion for each principal component

TraceXTX the trace of the genetic covariance matrix

Bayesian whether use bayerisan normalization

genmat the genetic covariance matrix

Author(s)

Xiuwen Zheng

snpgdsPCA 77

References

Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006
Dec;2(12):e190.

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. Am J
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

See Also

snpgdsPCACorr, snpgdsPCASNPLoading, snpgdsPCASampLoading, snpgdsAdmixProp, snpgdsEIGMIX

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

run PCA
RV <- snpgdsPCA(genofile)
RV

eigenvalues
head(RV$eigenval)

variance proportion (%)
head(round(RV$varprop*100, 2))
[1] 12.23 5.84 1.01 0.95 0.84 0.74

draw
plot(RV)
plot(RV, 1:4)

there is no population information

make a data.frame
tab <- data.frame(sample.id = RV$sample.id,

EV1 = RV$eigenvect[,1], # the first eigenvector
EV2 = RV$eigenvect[,2], # the second eigenvector
stringsAsFactors = FALSE)

head(tab)
sample.id EV1 EV2
1 NA19152 -0.08411287 -0.01226860
2 NA19139 -0.08360644 -0.01085849
3 NA18912 -0.08110808 -0.01184524
4 NA19160 -0.08680864 -0.01447106
5 NA07034 0.03109761 0.07709255
6 NA07055 0.03228450 0.08155730

draw
plot(tab$EV2, tab$EV1, xlab="eigenvector 2", ylab="eigenvector 1")

there are population information

get population information

78 snpgdsPCACorr

or pop_code <- scan("pop.txt", what=character())
if it is stored in a text file "pop.txt"
pop_code <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))

get sample id
samp.id <- read.gdsn(index.gdsn(genofile, "sample.id"))

assume the order of sample IDs is as the same as population codes
cbind(samp.id, pop_code)
samp.id pop_code
[1,] "NA19152" "YRI"
[2,] "NA19139" "YRI"
[3,] "NA18912" "YRI"
[4,] "NA19160" "YRI"
[5,] "NA07034" "CEU"
...

make a data.frame
tab <- data.frame(sample.id = RV$sample.id,

pop = factor(pop_code)[match(RV$sample.id, samp.id)],
EV1 = RV$eigenvect[,1], # the first eigenvector
EV2 = RV$eigenvect[,2], # the second eigenvector
stringsAsFactors = FALSE)

head(tab)
sample.id pop EV1 EV2
1 NA19152 YRI -0.08411287 -0.01226860
2 NA19139 YRI -0.08360644 -0.01085849
3 NA18912 YRI -0.08110808 -0.01184524
4 NA19160 YRI -0.08680864 -0.01447106
5 NA07034 CEU 0.03109761 0.07709255
6 NA07055 CEU 0.03228450 0.08155730

draw
plot(tab$EV2, tab$EV1, col=as.integer(tab$pop),

xlab="eigenvector 2", ylab="eigenvector 1")
legend("bottomright", legend=levels(tab$pop), pch="o", col=1:4)

close the file
snpgdsClose(genofile)

snpgdsPCACorr PC-correlated SNPs in principal component analysis

Description

To calculate the SNP correlations between eigenvactors and SNP genotypes

Usage

snpgdsPCACorr(pcaobj, gdsobj, snp.id=NULL, eig.which=NULL, num.thread=1L,
with.id=TRUE, outgds=NULL, verbose=TRUE)

snpgdsPCACorr 79

Arguments

pcaobj a snpgdsPCAClass object returned from the function snpgdsPCA, a snpgdsEigMixClass
from snpgdsEIGMIX, or an eigenvector matrix with row names (sample id)

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

eig.which a vector of integers, to specify which eigenvectors to be used

num.thread the number of (CPU) cores used; if NA, detect the number of cores automatically

with.id if TRUE, the returned value with sample.id and sample.id

outgds NULL or a character of file name for exporting correlations to a GDS file, see
details

verbose if TRUE, show information

Details

If an output file name is specified via outgds, "sample.id", "snp.id" and "correlation" will be stored
in the GDS file. The GDS node "correlation" is a matrix of correlation coefficients, and it is stored
with the format of packed real number ("packedreal16" preserving 4 digits, 0.0001 is the smallest
number greater zero, see add.gdsn).

Value

Return a list if outgds=NULL,

sample.id the sample ids used in the analysis

snp.id the SNP ids used in the analysis

snpcorr a matrix of correlation coefficients, "# of eigenvectors" x "# of SNPs"

Author(s)

Xiuwen Zheng

References

Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genetics
2:e190.

See Also

snpgdsPCA, snpgdsPCASampLoading, snpgdsPCASNPLoading

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())
get chromosome index
chr <- read.gdsn(index.gdsn(genofile, "snp.chromosome"))

pca <- snpgdsPCA(genofile)
cr <- snpgdsPCACorr(pca, genofile, eig.which=1:4)
plot(abs(cr$snpcorr[3,]), xlab="SNP Index", ylab="PC 3", col=chr)

80 snpgdsPCASampLoading

output to a gds file if limited memory
snpgdsPCACorr(pca, genofile, eig.which=1:4, outgds="test.gds")

(f <- openfn.gds("test.gds"))
m <- read.gdsn(index.gdsn(f, "correlation"))
closefn.gds(f)

check
summary(c(m - cr$snpcorr)) # should < 1e-4

close the file
snpgdsClose(genofile)

delete the temporary file
unlink("test.gds", force=TRUE)

snpgdsPCASampLoading Project individuals onto existing principal component axes

Description

To calculate the sample eigenvectors using the specified SNP loadings

Usage

snpgdsPCASampLoading(loadobj, gdsobj, sample.id=NULL, num.thread=1L,
verbose=TRUE)

Arguments

loadobj a snpgdsPCASNPLoadingClass or snpgdsEigMixSNPLoadingClass object re-
turned from snpgdsPCASNPLoading

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

sample.id a vector of sample id specifying selected samples; if NULL, all samples are used

num.thread the number of CPU cores used

verbose if TRUE, show information

Details

The sample.id are usually different from the samples used in the calculation of SNP loadings.

Value

Returns a snpgdsPCAClass object, and it is a list:

sample.id the sample ids used in the analysis

snp.id the SNP ids used in the analysis

eigenval eigenvalues

eigenvect eigenvactors, “# of samples” x “eigen.cnt”

TraceXTX the trace of the genetic covariance matrix

snpgdsPCASampLoading 81

Bayesian whether use bayerisan normalization

Or returns a snpgdsEigMixClass object, and it is a list:

sample.id the sample ids used in the analysis

snp.id the SNP ids used in the analysis

eigenval eigenvalues

eigenvect eigenvactors, “# of samples” x “eigen.cnt”

afreq allele frequencies

Author(s)

Xiuwen Zheng

References

Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genetics
2:e190.

Zhu, X., Li, S., Cooper, R. S., and Elston, R. C. (2008). A unified association analysis approach for
family and unrelated samples correcting for stratification. Am J Hum Genet, 82(2), 352-365.

See Also

snpgdsPCA, snpgdsPCACorr, snpgdsPCASNPLoading

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

sample.id <- read.gdsn(index.gdsn(genofile, "sample.id"))

first PCA
pca <- snpgdsPCA(genofile, eigen.cnt=8)
snp_load <- snpgdsPCASNPLoading(pca, genofile)

calculate sample eigenvectors from SNP loadings
samp_load <- snpgdsPCASampLoading(snp_load, genofile, sample.id=sample.id[1:100])

diff <- pca$eigenvect[1:100,] - samp_load$eigenvect
summary(c(diff))
~ ZERO

combine eigenvectors
allpca <- list(

sample.id = c(pca$sample.id, samp_load$sample.id),
snp.id = pca$snp.id,
eigenval = c(pca$eigenval, samp_load$eigenval),
eigenvect = rbind(pca$eigenvect, samp_load$eigenvect),
varprop = c(pca$varprop, samp_load$varprop),
TraceXTX = pca$TraceXTX

)
class(allpca) <- "snpgdsPCAClass"
allpca

82 snpgdsPCASNPLoading

close the genotype file
snpgdsClose(genofile)

snpgdsPCASNPLoading SNP loadings in principal component analysis

Description

To calculate the SNP loadings in Principal Component Analysis

Usage

snpgdsPCASNPLoading(pcaobj, gdsobj, num.thread=1L, verbose=TRUE)

Arguments

pcaobj a snpgdsPCAClass object returned from the function snpgdsPCA or a snpgdsEigMixClass
from snpgdsEIGMIX

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

num.thread the number of (CPU) cores used; if NA, detect the number of cores automatically

verbose if TRUE, show information

Details

Calculate the SNP loadings (or SNP eigenvectors) from the principal component analysis conducted
in snpgdsPCA.

Value

Returns a snpgdsPCASNPLoading object if pcaobj is snpgdsPCAClass, which is a list:

sample.id the sample ids used in the analysis

snp.id the SNP ids used in the analysis

eigenval eigenvalues

snploading SNP loadings, or SNP eigenvectors

TraceXTX the trace of the genetic covariance matrix

Bayesian whether use bayerisan normalization

avgfreq two times allele frequency used in snpgdsPCA

scale internal parameter

Or returns a snpgdsEigMixSNPLoadingClass object if pcaobj is snpgdsEigMixClass, which is a
list:

sample.id the sample ids used in the analysis

snp.id the SNP ids used in the analysis

eigenval eigenvalues

snploading SNP loadings, or SNP eigenvectors

afreq allele frequency

snpgdsPED2GDS 83

Author(s)

Xiuwen Zheng

References

Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genetics
2:e190.

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal com-
ponents analysis corrects for stratification in genome-wide association studies. Nat Genet. 38,
904-909.

Zhu, X., Li, S., Cooper, R. S., and Elston, R. C. (2008). A unified association analysis approach for
family and unrelated samples correcting for stratification. Am J Hum Genet, 82(2), 352-365.

See Also

snpgdsPCA, snpgdsEIGMIX, snpgdsPCASampLoading, snpgdsPCACorr

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

PCARV <- snpgdsPCA(genofile, eigen.cnt=8)
SnpLoad <- snpgdsPCASNPLoading(PCARV, genofile)

names(SnpLoad)
[1] "sample.id" "snp.id" "eigenval" "snploading" "TraceXTX"
[6] "Bayesian" "avgfreq" "scale"
dim(SnpLoad$snploading)
[1] 8 8722

plot(SnpLoad$snploading[1,], type="h", ylab="PC 1")

close the genotype file
snpgdsClose(genofile)

snpgdsPED2GDS Conversion from PLINK PED to GDS

Description

Convert a PLINK PED text file to a GDS file.

Usage

snpgdsPED2GDS(ped.fn, map.fn, out.gdsfn, family=TRUE, snpfirstdim=FALSE,
compress.annotation="ZIP_RA.max", compress.geno="", verbose=TRUE)

84 snpgdsPED2GDS

Arguments

ped.fn the file name of PED file, genotype information

map.fn the file name of MAP file

out.gdsfn the output GDS file

family if TRUE, to include family information in the sample annotation

snpfirstdim if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs
for the first individual, and then list all SNPs for the second individual, etc)

compress.annotation

the compression method for the GDS variables, except "genotype"; optional
values are defined in the function add.gdsn

compress.geno the compression method for "genotype"; optional values are defined in the func-
tion add.gdsn

verbose if TRUE, show information

Details

GDS – Genomic Data Structures, the extended file name used for storing genetic data, and the file
format is used in the gdsfmt package.

PED – PLINK PED format.

Value

None.

Author(s)

Xiuwen Zheng

References

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de
Bakker PIW, Daly MJ & Sham PC. 2007. PLINK: a toolset for whole-genome association and
population-based linkage analysis. American Journal of Human Genetics, 81.

See Also

snpgdsGDS2PED, snpgdsBED2GDS, snpgdsGDS2BED

Examples

open
genofile <- snpgdsOpen(snpgdsExampleFileName())

snpgdsGDS2PED(genofile, "tmp")

close
snpgdsClose(genofile)

PED ==> GDS
snpgdsPED2GDS("tmp.ped", "tmp.map", "test.gds")

snpgdsSampMissRate 85

delete the temporary file
unlink(c("tmp.ped", "tmp.map", "test.gds"), force=TRUE)

snpgdsSampMissRate Missing Rate of Samples

Description

Return the missing fraction for each sample

Usage

snpgdsSampMissRate(gdsobj, sample.id=NULL, snp.id=NULL, with.id=FALSE)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

sample.id a vector of sample id specifying selected samples; if NULL, all samples will be
used

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs will be used

with.id if TRUE, the returned value with sample id

Value

A vector of numeric values.

Author(s)

Xiuwen Zheng

See Also

snpgdsSNPRateFreq

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

RV <- snpgdsSampMissRate(genofile)
summary(RV)

close the genotype file
snpgdsClose(genofile)

86 snpgdsSelectSNP

snpgdsSelectSNP SNP selection

Description

Create a list of candidate SNPs based on specified criteria

Usage

snpgdsSelectSNP(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=NaN, missing.rate=NaN, verbose=TRUE)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

sample.id a vector of sample id specifying selected samples; if NULL, all samples will be
used

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs will be used

autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

remove.monosnp if TRUE, remove monomorphic SNPs

maf to use the SNPs with ">= maf" only; if NaN, no any MAF threshold

missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no any missing threshold

verbose if TRUE, show information

Value

Return a list of snp ids.

Author(s)

Xiuwen Zheng

See Also

snpgdsSampMissRate, snpgdsSNPRateFreq, snpgdsLDpruning

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

snpset <- snpgdsSelectSNP(genofile, maf=0.05, missing.rate=0.95)
length(snpset)
7502

close the genotype file
snpgdsClose(genofile)

snpgdsSlidingWindow 87

snpgdsSlidingWindow Sliding window

Description

Apply a user-defined function with a sliding window.

Usage

snpgdsSlidingWindow(gdsobj, sample.id=NULL, snp.id=NULL,
FUN=NULL, winsize=100000L, shift=10000L, unit=c("basepair", "locus"),
winstart=NULL, autosome.only=FALSE, remove.monosnp=TRUE, maf=NaN,
missing.rate=NaN, as.is=c("list", "numeric", "array"),
with.id=c("snp.id", "snp.id.in.window", "none"), num.thread=1,
verbose=TRUE, ...)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
FUN a character or a user-defined function, see details
winsize the size of sliding window
shift the amount of shifting the sliding window
unit "basepair" – winsize and shift are applied with SNP coordinate of basepair;

"locus" – winsize and shift are applied according to the SNP order in the
GDS file

winstart NULL – no specific starting position; an integer – a starting position for all chro-
mosomes; or a vector of integer – the starting positions for each chromosome

autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

remove.monosnp if TRUE, remove monomorphic SNPs
maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold
missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold
as.is save the value returned from FUN as "list" or "numeric"; "array" is equivalent to

"numeric" except some cases, see details
with.id "snp.id", "snp.id.in.window" or "none"
num.thread the number of (CPU) cores used; if NA, detect the number of cores automatically
verbose if TRUE, show information
... optional arguments to FUN

Details

If FUN="snpgdsFst", two additional arguments "population" and "method" should be specified.
"population" and "method" are defined in snpgdsFst. "as.is" could be "list" (returns a list
of the values from snpgdsFst), "numeric" (population-average Fst, returns a vector) or "array"
(population-average and -specific Fst, returns a ‘# of pop + 1’-by-‘# of windows’ matrix, and the
first row is population-average Fst).

88 snpgdsSNPList

Value

Return a list

Author(s)

Xiuwen Zheng

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

sliding windows
rv <- snpgdsSlidingWindow(genofile, winsize=500000, shift=100000,

FUN=function(...) NULL)

plot
plot(rv$chr1.num, ylab="# of SNPs in the sliding window")

close the genotype file
snpgdsClose(genofile)

snpgdsSNPList Create a SNP list object

Description

A list object of SNP information including rs, chr, pos, allele and allele frequency.

Usage

snpgdsSNPList(gdsobj, sample.id=NULL)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

sample.id a vector of sample id specifying selected samples; if NULL, all samples are used

Value

Return an object of snpgdsSNPListClass including the following components:

snp.id SNP id

chromosome SNP chromosome index

position SNP physical position in basepair

allele reference / non-ref alleles

afreq allele frequency

Author(s)

Xiuwen Zheng

snpgdsSNPListClass 89

See Also

snpgdsSNPListIntersect

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

to get a snp list object
snplist <- snpgdsSNPList(genofile)
head(snplist)

close the file
snpgdsClose(genofile)

snpgdsSNPListClass the class of a SNP list

Description

the class of a SNP list, and its instance is returned from snpgdsSNPList.

Value

Return an object of “snpgdsSNPListClass” including the following components:

snp.id SNP id

chromosome SNP chromosome index

position SNP physical position in basepair

allele reference / non-ref alleles

afreq allele frequency

Author(s)

Xiuwen Zheng

See Also

snpgdsSNPList, snpgdsSNPListIntersect

90 snpgdsSNPListIntersect

snpgdsSNPListIntersect

Get a common SNP list between/among SNP list objects

Description

Get a common SNP list by comparing their snp id, chromosome, positions and allele frequency if
needed.

Usage

snpgdsSNPListIntersect(snplist1, snplist2, ..., method=c("position", "exact"),
na.rm=TRUE, same.strand=FALSE, verbose=TRUE)

Arguments

snplist1 the SNP list object snpgdsSNPListClass

snplist2 the SNP list object snpgdsSNPListClass

... the other SNP list objects

method "exact": matching by all snp.id, chromosomes, positions and alleles; "position":
matching by chromosomes and positions

na.rm if TRUE, remove mismatched alleles

same.strand if TRUE, assuming the alleles on the same strand

verbose if TRUE, show information

Value

Return a list of snpgdsSNPListClass including the following components:

idx1 the indices of common SNPs in the first GDS file

idx2 the indices of common SNPs in the second GDS file

idx...

idxn the indices of common SNPs in the n-th GDS file

flag2 an integer vector, flip flag for each common SNP for the second GDS file (as-
suming a value v): bitwAnd(v, 1): 0 – no flip of allele names, 1 – flip of allele
names; bitwAnd(v, 2): 0 – on the same strand, 2 – on the different strands,
comparing with the first GDS file; bitwAnd(v, 4): 0 – no strand ambiguity, 4
– ambiguous allele names, determined by allele frequencies; NA – mismatched
allele names (there is no NA if na.rm=TRUE)

flag...

flagn flip flag for each common SNP for the n-th GDS file

Author(s)

Xiuwen Zheng

See Also

snpgdsSNPList

snpgdsSNPRateFreq 91

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

to get a snp list object
snplist1 <- snpgdsSNPList(genofile)
snplist2 <- snpgdsSNPList(genofile)

a common snp list, exactly matching
v <- snpgdsSNPListIntersect(snplist1, snplist2)
names(v)
"idx1" "idx2"

a common snp list, matching by position
v <- snpgdsSNPListIntersect(snplist1, snplist2, method="pos")
names(v)
"idx1" "idx2" "flag2"

table(v$flag2, exclude=NULL)

close the file
snpgdsClose(genofile)

snpgdsSNPRateFreq Allele Frequency, Minor Allele Frequency, Missing Rate of SNPs

Description

Calculate the allele frequency, minor allele frequency and missing rate per SNP.

Usage

snpgdsSNPRateFreq(gdsobj, sample.id=NULL, snp.id=NULL, with.id=FALSE,
with.sample.id=FALSE, with.snp.id=FALSE)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

sample.id a vector of sample id specifying selected samples; if NULL, all samples will be
used

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs will be used

with.id if TRUE, return both sample and SNP IDs

with.sample.id if TRUE, return sample IDs

with.snp.id if TRUE, return SNP IDs

92 snpgdsSummary

Value

Return a list:

AlleleFreq allele frequencies
MinorFreq minor allele frequencies
MissingRate missing rates
sample.id sample id, if with.id=TRUE or with.sample.id=TRUE
snp.id SNP id, if with.id=TRUE or with.snp.id=TRUE

Author(s)

Xiuwen Zheng

See Also

snpgdsSampMissRate

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

RV <- snpgdsSNPRateFreq(genofile, with.snp.id=TRUE)
head(data.frame(RV))

hist(RV$AlleleFreq, breaks=128)
summary(RV$MissingRate)

close the file
snpgdsClose(genofile)

snpgdsSummary Summary of GDS genotype file

Description

Print the information stored in the gds object

Usage

snpgdsSummary(gds, show=TRUE)

Arguments

gds a GDS file name, or an object of class SNPGDSFileClass
show if TRUE, show information

Value

Return a list:

sample.id the IDs of valid samples
snp.id the IDs of valid SNPs

snpgdsTranspose 93

Author(s)

Xiuwen Zheng

Examples

snpgdsSummary(snpgdsExampleFileName())

snpgdsTranspose Transpose genotypic matrix

Description

Transpose the genotypic matrix if needed.

Usage

snpgdsTranspose(gds.fn, snpfirstdim=FALSE, compress=NULL, optimize=TRUE,
verbose=TRUE)

Arguments

gds.fn the file name of SNP GDS format

snpfirstdim if TRUE, genotypes are stored in snp-by-sample; if FALSE, sample-by-snp mode;
if NA, force to transpose the SNP matrix

compress the compression mode for SNP genotypes, optional values are defined in the
function of add.gdsn; if NULL, to use the compression mode

optimize if TRUE, call cleanup.gds after transposing

verbose if TRUE, show information

Value

None.

Author(s)

Xiuwen Zheng

Examples

the file name of SNP GDS
(fn <- snpgdsExampleFileName())

copy the file
file.copy(fn, "test.gds", overwrite=TRUE)

summary
snpgdsSummary("test.gds")

transpose the SNP matrix
snpgdsTranspose("test.gds", snpfirstdim=TRUE)

94 snpgdsVCF2GDS

summary
snpgdsSummary("test.gds")

delete the temporary file
unlink("test.gds", force=TRUE)

snpgdsVCF2GDS Reformat VCF file(s)

Description

Reformat Variant Call Format (VCF) file(s)

Usage

snpgdsVCF2GDS(vcf.fn, out.fn, method=c("biallelic.only", "copy.num.of.ref"),
snpfirstdim=FALSE, compress.annotation="LZMA_RA", compress.geno="",
ref.allele=NULL, ignore.chr.prefix="chr", verbose=TRUE)

Arguments

vcf.fn the file name of VCF format, vcf.fn can be a vector, see details

out.fn the file name of output GDS

method either "biallelic.only" by default or "copy.num.of.ref", see details

snpfirstdim if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs
for the first individual, and then list all SNPs for the second individual, etc)

compress.annotation

the compression method for the GDS variables, except "genotype"; optional
values are defined in the function add.gdsn

compress.geno the compression method for "genotype"; optional values are defined in the func-
tion add.gdsn

ref.allele NULL or a character vector indicating reference allele (like "A", "G", "T", NA,
...) for each site where NA to use the original reference allele in the VCF file(s).
The length of character vector should be the total number of variants in the VCF
file(s).

ignore.chr.prefix

a vector of character, indicating the prefix of chromosome which should be ig-
nored, like "chr"; it is not case-sensitive

verbose if TRUE, show information

Details

GDS – Genomic Data Structures used for storing genetic array-oriented data, and the file format
used in the gdsfmt package.

VCF – The Variant Call Format (VCF), which is a generic format for storing DNA polymorphism
data such as SNPs, insertions, deletions and structural variants, together with rich annotations.

If there are more than one file names in vcf.fn, snpgdsVCF2GDS will merge all dataset together if
they all contain the same samples. It is useful to combine genetic/genomic data together if VCF
data are divided by chromosomes.

snpgdsVCF2GDS 95

method = "biallelic.only": to exact bi-allelic and polymorhpic SNP data (excluding monomor-
phic variants); method = "copy.num.of.ref": to extract and store dosage (0, 1, 2) of the reference
allele for all variant sites, including bi-allelic SNPs, multi-allelic SNPs, indels and structural vari-
ants.

Haploid and triploid calls are allowed in the transfer, the variable snp.id stores the original the row
index of variants, and the variable snp.rs.id stores the rs id.

When snp.chromosome in the GDS file is character, SNPRelate treats a chromosome as auto-
some only if it can be converted to a numeric value (like "1", "22"). It uses "X" and "Y" for
non-autosomes instead of numeric codes. However, some software format chromosomes in VCF
files with a prefix "chr". Users should remove that prefix when importing VCF files by setting
ignore.chr.prefix = "chr".

The extended GDS format is implemented in the SeqArray package to support the storage of single
nucleotide variation (SNV), insertion/deletion polymorphism (indel) and structural variation calls.
It is strongly suggested to use SeqArray for large-scale whole-exome and whole-genome sequencing
variant data instead of SNPRelate.

Value

Return the file name of GDS format with an absolute path.

Author(s)

Xiuwen Zheng

References

The variant call format and VCFtools. Danecek P, Auton A, Abecasis G, Albers CA, Banks E,
DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R; 1000 Genomes
Project Analysis Group. Bioinformatics. 2011 Aug 1;27(15):2156-8. Epub 2011 Jun 7.

http://corearray.sourceforge.net/

See Also

snpgdsBED2GDS

Examples

the VCF file
vcf.fn <- system.file("extdata", "sequence.vcf", package="SNPRelate")
cat(readLines(vcf.fn), sep="\n")

snpgdsVCF2GDS(vcf.fn, "test1.gds", method="biallelic.only")
snpgdsSummary("test1.gds")

snpgdsVCF2GDS(vcf.fn, "test2.gds", method="biallelic.only", snpfirstdim=TRUE)
snpgdsSummary("test2.gds")

snpgdsVCF2GDS(vcf.fn, "test3.gds", method="copy.num.of.ref", snpfirstdim=TRUE)
snpgdsSummary("test3.gds")

snpgdsVCF2GDS(vcf.fn, "test4.gds", method="copy.num.of.ref")
snpgdsSummary("test4.gds")

snpgdsVCF2GDS(vcf.fn, "test5.gds", method="copy.num.of.ref",

http://corearray.sourceforge.net/

96 snpgdsVCF2GDS

ref.allele=c("A", "T", "T", "T", "A"))
snpgdsSummary("test5.gds")

open "test1.gds"
(genofile <- snpgdsOpen("test1.gds"))

read.gdsn(index.gdsn(genofile, "sample.id"))
read.gdsn(index.gdsn(genofile, "snp.rs.id"))
read.gdsn(index.gdsn(genofile, "genotype"))

close the file
snpgdsClose(genofile)

open "test2.gds"
(genofile <- snpgdsOpen("test2.gds"))

read.gdsn(index.gdsn(genofile, "sample.id"))
read.gdsn(index.gdsn(genofile, "snp.rs.id"))
read.gdsn(index.gdsn(genofile, "genotype"))

close the file
snpgdsClose(genofile)

open "test3.gds"
(genofile <- snpgdsOpen("test3.gds"))

read.gdsn(index.gdsn(genofile, "sample.id"))
read.gdsn(index.gdsn(genofile, "snp.rs.id"))
read.gdsn(index.gdsn(genofile, "genotype"))

close the file
snpgdsClose(genofile)

open "test4.gds"
(genofile <- snpgdsOpen("test4.gds"))

read.gdsn(index.gdsn(genofile, "sample.id"))
read.gdsn(index.gdsn(genofile, "snp.rs.id"))
read.gdsn(index.gdsn(genofile, "snp.allele"))
read.gdsn(index.gdsn(genofile, "genotype"))

close the file
snpgdsClose(genofile)

open "test5.gds"
(genofile <- snpgdsOpen("test5.gds"))

read.gdsn(index.gdsn(genofile, "sample.id"))
read.gdsn(index.gdsn(genofile, "snp.rs.id"))
read.gdsn(index.gdsn(genofile, "snp.allele"))
read.gdsn(index.gdsn(genofile, "genotype"))

snpgdsVCF2GDS_R 97

close the file
snpgdsClose(genofile)

delete the temporary files
unlink(paste("test", 1:5, ".gds", sep=""), force=TRUE)

snpgdsVCF2GDS_R Reformat a VCF file (R implementation)

Description

Reformat a Variant Call Format (VCF) file

Usage

snpgdsVCF2GDS_R(vcf.fn, out.fn, nblock=1024,
method = c("biallelic.only", "copy.num.of.ref"),
compress.annotation="LZMA_RA", snpfirstdim=FALSE, option = NULL,
verbose=TRUE)

Arguments

vcf.fn the file name of VCF format, vcf.fn can be a vector, see details

out.fn the output gds file

nblock the buffer lines

method either "biallelic.only" by default or "copy.num.of.ref", see details
compress.annotation

the compression method for the GDS variables, except "genotype"; optional
values are defined in the function add.gdsn

snpfirstdim if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs
for the first individual, and then list all SNPs for the second individual, etc)

option NULL or an object from snpgdsOption, see details

verbose if TRUE, show information

Details

GDS – Genomic Data Structures used for storing genetic array-oriented data, and the file format
used in the gdsfmt package.

VCF – The Variant Call Format (VCF), which is a generic format for storing DNA polymorphism
data such as SNPs, insertions, deletions and structural variants, together with rich annotations.

If there are more than one file name in vcf.fn, snpgdsVCF2GDS will merge all dataset together once
they all contain the same samples. It is useful to combine genetic data if VCF data are divided by
chromosomes.

method = "biallelic.only": to exact bi-allelic and polymorhpic SNP data (excluding monomor-
phic variants); method = "biallelic.only": to exact bi-allelic and polymorhpic SNP data; method
= "copy.num.of.ref": to extract and store dosage (0, 1, 2) of the reference allele for all variant
sites, including bi-allelic SNPs, multi-allelic SNPs, indels and structural variants.

98 snpgdsVCF2GDS_R

Haploid and triploid calls are allowed in the transfer, the variable snp.id stores the original the row
index of variants, and the variable snp.rs.id stores the rs id.

The user could use option to specify the range of code for autosomes. For humans there are 22
autosomes (from 1 to 22), but dogs have 38 autosomes. Note that the default settings are used for
humans. The user could call option = snpgdsOption(autosome.end=38) for importing the VCF
file of dog. It also allows defining new chromosome coding, e.g., option = snpgdsOption(Z=27),
then "Z" will be replaced by the number 27.

Value

None.

Author(s)

Xiuwen Zheng

References

The variant call format and VCFtools. Danecek P, Auton A, Abecasis G, Albers CA, Banks E,
DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R; 1000 Genomes
Project Analysis Group. Bioinformatics. 2011 Aug 1;27(15):2156-8. Epub 2011 Jun 7.

See Also

snpgdsVCF2GDS_R, snpgdsOption, snpgdsBED2GDS

Examples

The VCF file
vcf.fn <- system.file("extdata", "sequence.vcf", package="SNPRelate")
cat(readLines(vcf.fn), sep="\n")

snpgdsVCF2GDS_R(vcf.fn, "test1.gds", method="biallelic.only")
snpgdsSummary("test1.gds")

snpgdsVCF2GDS_R(vcf.fn, "test2.gds", method="biallelic.only")
snpgdsSummary("test2.gds")

snpgdsVCF2GDS_R(vcf.fn, "test3.gds", method="copy.num.of.ref")
snpgdsSummary("test3.gds")

snpgdsVCF2GDS_R(vcf.fn, "test4.gds", method="copy.num.of.ref")
snpgdsSummary("test4.gds")

Index

∗ GDS
snpgdsAdmixPlot, 6
snpgdsAdmixProp, 7
snpgdsAlleleSwitch, 9
snpgdsApartSelection, 10
snpgdsBED2GDS, 11
snpgdsClose, 13
snpgdsCombineGeno, 14
snpgdsCreateGeno, 16
snpgdsCreateGenoSet, 17
snpgdsCutTree, 19
snpgdsDiss, 21
snpgdsDrawTree, 23
snpgdsEIGMIX, 24
snpgdsErrMsg, 26
snpgdsExampleFileName, 27
SNPGDSFileClass, 28
snpgdsFst, 28
snpgdsGDS2BED, 30
snpgdsGDS2Eigen, 31
snpgdsGDS2PED, 32
snpgdsGEN2GDS, 34
snpgdsGetGeno, 35
snpgdsGRM, 36
snpgdsHCluster, 38
snpgdsHWE, 40
snpgdsIBDKING, 41
snpgdsIBDMLE, 44
snpgdsIBDMLELogLik, 46
snpgdsIBDMoM, 48
snpgdsIBDSelection, 51
snpgdsIBS, 52
snpgdsIBSNum, 54
snpgdsIndInb, 55
snpgdsIndInbCoef, 56
snpgdsIndivBeta, 58
snpgdsLDMat, 59
snpgdsLDpair, 61
snpgdsLDpruning, 62
snpgdsMergeGRM, 64
snpgdsOpen, 66
snpgdsOption, 67
snpgdsPairIBD, 68

snpgdsPairIBDMLELogLik, 70
snpgdsPairScore, 73
snpgdsPCA, 75
snpgdsPCACorr, 78
snpgdsPCASampLoading, 80
snpgdsPCASNPLoading, 82
snpgdsPED2GDS, 83
snpgdsSampMissRate, 85
snpgdsSelectSNP, 86
snpgdsSlidingWindow, 87
snpgdsSNPList, 88
snpgdsSNPListClass, 89
snpgdsSNPListIntersect, 90
snpgdsSNPRateFreq, 91
snpgdsSummary, 92
snpgdsTranspose, 93
snpgdsVCF2GDS, 94
SNPRelate-package, 3

∗ GWAS
snpgdsAdmixPlot, 6
snpgdsAdmixProp, 7
snpgdsAlleleSwitch, 9
snpgdsApartSelection, 10
snpgdsBED2GDS, 11
snpgdsClose, 13
snpgdsCombineGeno, 14
snpgdsCreateGeno, 16
snpgdsCreateGenoSet, 17
snpgdsCutTree, 19
snpgdsDiss, 21
snpgdsDrawTree, 23
snpgdsEIGMIX, 24
snpgdsErrMsg, 26
snpgdsExampleFileName, 27
SNPGDSFileClass, 28
snpgdsFst, 28
snpgdsGDS2BED, 30
snpgdsGDS2Eigen, 31
snpgdsGDS2PED, 32
snpgdsGEN2GDS, 34
snpgdsGetGeno, 35
snpgdsGRM, 36
snpgdsHCluster, 38

99

100 INDEX

snpgdsHWE, 40
snpgdsIBDKING, 41
snpgdsIBDMLE, 44
snpgdsIBDMLELogLik, 46
snpgdsIBDMoM, 48
snpgdsIBDSelection, 51
snpgdsIBS, 52
snpgdsIBSNum, 54
snpgdsIndInb, 55
snpgdsIndInbCoef, 56
snpgdsIndivBeta, 58
snpgdsLDMat, 59
snpgdsLDpair, 61
snpgdsLDpruning, 62
snpgdsMergeGRM, 64
snpgdsOpen, 66
snpgdsOption, 67
snpgdsPairIBD, 68
snpgdsPairIBDMLELogLik, 70
snpgdsPairScore, 73
snpgdsPCA, 75
snpgdsPCACorr, 78
snpgdsPCASampLoading, 80
snpgdsPCASNPLoading, 82
snpgdsPED2GDS, 83
snpgdsSampMissRate, 85
snpgdsSelectSNP, 86
snpgdsSlidingWindow, 87
snpgdsSNPList, 88
snpgdsSNPListClass, 89
snpgdsSNPListIntersect, 90
snpgdsSNPRateFreq, 91
snpgdsSummary, 92
snpgdsTranspose, 93
snpgdsVCF2GDS, 94
snpgdsVCF2GDS_R, 97
SNPRelate-package, 3

∗ PCA
snpgdsPCA, 75
snpgdsPCACorr, 78
snpgdsPCASampLoading, 80
snpgdsPCASNPLoading, 82

∗ datasets
hapmap_geno, 5

∗ gds
snpgdsVCF2GDS_R, 97

add.gdsn, 79

cleanup.gds, 93
closefn.gds, 13

gds.class, 28, 33

gdsfmt, 12, 30, 31, 33, 34, 84, 94, 97

hapmap_geno, 5
hclust, 39

openfn.gds, 66

plot.snpgdsEigMixClass (snpgdsEIGMIX),
24

plot.snpgdsPCAClass (snpgdsPCA), 75

saveRDS, 63
snpgdsAdmixPlot, 6, 8, 25
snpgdsAdmixProp, 6, 7, 7, 25, 77
snpgdsAdmixTable (snpgdsAdmixPlot), 6
snpgdsAlleleSwitch, 9
snpgdsApartSelection, 10
snpgdsBED2GDS, 11, 31, 35, 84, 95, 98
snpgdsClose, 13, 28, 66
snpgdsCombineGeno, 14, 17, 18
snpgdsCreateGeno, 15, 16, 18
snpgdsCreateGenoSet, 15, 17, 17
snpgdsCutTree, 19, 23, 24, 39
snpgdsDiss, 20, 21, 39
snpgdsDrawTree, 20, 23
snpgdsEIGMIX, 7, 8, 24, 38, 77, 79, 82, 83
snpgdsErrMsg, 26
snpgdsExampleFileName, 27
SNPGDSFileClass, 9, 13, 21, 25, 28, 28, 30,

31, 35, 36, 40, 41, 44, 47, 49, 52, 54,
55, 58, 59, 63, 66, 67, 73, 75, 79, 80,
82, 85–88, 91, 92

SNPGDSFileClass-class
(SNPGDSFileClass), 28

snpgdsFst, 28, 38, 59, 87
snpgdsGDS2BED, 30, 33, 84
snpgdsGDS2Eigen, 31
snpgdsGDS2PED, 13, 31, 32, 32, 84
snpgdsGEN2GDS, 34
snpgdsGetGeno, 35
snpgdsGRM, 36, 59, 65
snpgdsHCluster, 19, 20, 22, 38
snpgdsHWE, 40
snpgdsIBDKING, 41, 51
snpgdsIBDMLE, 42, 44, 47, 50, 51, 69, 71
snpgdsIBDMLELogLik, 45, 46, 50, 69, 71
snpgdsIBDMoM, 42, 45, 47, 48, 51, 69, 71
snpgdsIBDSelection, 51
snpgdsIBS, 20, 39, 52, 54, 74
snpgdsIBSNum, 53, 54
snpgdsIndInb, 38, 55, 59
snpgdsIndInbCoef, 56
snpgdsIndivBeta, 38, 58

INDEX 101

snpgdsIndivBetaRel (snpgdsIndivBeta), 58
snpgdsLDMat, 59, 62, 64
snpgdsLDpair, 60, 61, 64
snpgdsLDpruning, 11, 60, 62, 62, 86
snpgdsMergeGRM, 38, 64
snpgdsOpen, 14, 28, 66
snpgdsOption, 12, 13, 67, 97, 98
snpgdsPairIBD, 68, 71
snpgdsPairIBDMLELogLik, 69, 70
snpgdsPairScore, 73
snpgdsPCA, 8, 25, 38, 75, 79, 81–83
snpgdsPCACorr, 77, 78, 81, 83
snpgdsPCASampLoading, 25, 77, 79, 80, 83
snpgdsPCASNPLoading, 25, 77, 79–81, 82
snpgdsPED2GDS, 13, 83
snpgdsSampMissRate, 85, 86, 92
snpgdsSelectSNP, 86
snpgdsSlidingWindow, 87
snpgdsSNPList, 15, 88, 89, 90
snpgdsSNPListClass, 89, 90
snpgdsSNPListIntersect, 14, 15, 89, 90
snpgdsSNPRateFreq, 40, 85, 86, 91
snpgdsSummary, 92
snpgdsTranspose, 93
snpgdsVCF2GDS, 35, 94
snpgdsVCF2GDS_R, 97, 98
SNPRelate (SNPRelate-package), 3
SNPRelate-package, 3

	SNPRelate-package
	hapmap_geno
	snpgdsAdmixPlot
	snpgdsAdmixProp
	snpgdsAlleleSwitch
	snpgdsApartSelection
	snpgdsBED2GDS
	snpgdsClose
	snpgdsCombineGeno
	snpgdsCreateGeno
	snpgdsCreateGenoSet
	snpgdsCutTree
	snpgdsDiss
	snpgdsDrawTree
	snpgdsEIGMIX
	snpgdsErrMsg
	snpgdsExampleFileName
	SNPGDSFileClass
	snpgdsFst
	snpgdsGDS2BED
	snpgdsGDS2Eigen
	snpgdsGDS2PED
	snpgdsGEN2GDS
	snpgdsGetGeno
	snpgdsGRM
	snpgdsHCluster
	snpgdsHWE
	snpgdsIBDKING
	snpgdsIBDMLE
	snpgdsIBDMLELogLik
	snpgdsIBDMoM
	snpgdsIBDSelection
	snpgdsIBS
	snpgdsIBSNum
	snpgdsIndInb
	snpgdsIndInbCoef
	snpgdsIndivBeta
	snpgdsLDMat
	snpgdsLDpair
	snpgdsLDpruning
	snpgdsMergeGRM
	snpgdsOpen
	snpgdsOption
	snpgdsPairIBD
	snpgdsPairIBDMLELogLik
	snpgdsPairScore
	snpgdsPCA
	snpgdsPCACorr
	snpgdsPCASampLoading
	snpgdsPCASNPLoading
	snpgdsPED2GDS
	snpgdsSampMissRate
	snpgdsSelectSNP
	snpgdsSlidingWindow
	snpgdsSNPList
	snpgdsSNPListClass
	snpgdsSNPListIntersect
	snpgdsSNPRateFreq
	snpgdsSummary
	snpgdsTranspose
	snpgdsVCF2GDS
	snpgdsVCF2GDS_R
	Index

