Package ‘matter’

October 16, 2025
Type Package

Title Out-of-core statistical computing and signal processing
Version 2.11.2

Date 2016-10-11

Author Kylie A. Bemis <k.bemis@northeastern.edu>
Maintainer Kylie A. Bemis <k.bemis@northeastern.edu>

Description Toolbox for larger-than-memory scientific computing and visualization, providing effi-
cient out-of-core data structures using files or shared memory, for dense and sparse vectors, ma-
trices, and arrays, with applications to nonuniformly sampled signals and images.

License Artistic-2.0 | file LICENSE
Depends R (>=4.4), BiocParallel, Matrix, methods

Imports BiocGenerics, ProtGenerics, digest, irlba, stats, stats4,
graphics, grDevices, parallel, utils

Suggests BiocStyle, knitr, testthat, plotly
VignetteBuilder knitr

Collate matterGenerics.R utils.R logger.R resources.R drle.R atoms.R
ops.R matter.R matter_arr.R matter_fct.R matter_list.R
matter_str.R search.R sparse_arr.R stream_stat.R chunked.R
apply.R rowDists.R rowStats.R stats.R scale.R signal.R
signal2.R nnmf.R fastmap.R prcomp.R pls.R nscentroids.R sgmix.R
cv.R mi_learn.R altrep.R parallel.R plot.R vizi.R

LinkingTo BH
biocViews Infrastructure, DataRepresentation, Datalmport,
DimensionReduction, Preprocessing

URL https://github.com/kuwisdelu/matter

BugReports https://github.com/kuwisdelu/matter/issues
git_url https://git.bioconductor.org/packages/matter

git_branch devel

git_last_commit ef9f147

git_last_commit_date 2025-09-11

Repository Bioconductor 3.22

Date/Publication 2025-10-15

https://github.com/kuwisdelu/matter
https://github.com/kuwisdelu/matter/issues

2 Contents

Contents
approxl . ..o e 3
APPIOX2 o o o v e e e e e e e e e e e e e 4
AVE . o e e e e e 6
binpeaks L e e e 7
binvec e 8
bsearch 9
checksum e 10
chunkApply e e 11
chunked-class e e 14
colscale e e 16
colStatso e e 17
COISWEED o o e 18
CONVOLVE_at e e 20
COSCOTE . v v v e 21
cpal ..o e 22
Cv_dO . 23
deferred-ops e e 25
deprecated L e 26
downsample 26
drle-class e 27
enhance e e 29
estbase e e e e e 30
estdim e e e e e 32
EStNOISE v v e e e e e e e e e e e 32
BSIICS . . v o e e e e e e e e e e e e e 34
fastmap e e e 35
fetch e e e e e 37
ltl . . e 38
ilt2 . e e e 41
filtn . . . e e e e 43
findpeaks L e e 45
findpeaks_cwt 46
findpeaks_knn 48
mpoly 50
IQUOtE e e e e 51
1Isofun e e e e e e 52
knnsearch 53
matter-class L. e 54
MAatter-OptionS« oo e e e e e e e e e 56
MAET-LYPES .« « v v v o o e 58
matter-utils e e e e e e e e e 59
matter_arr-class e e e e 59
matter_fct-class e 61
matter_list-class e e 63
matter_Str-class L. e e e e e e e 65
10153 0 67
mi_learn oL L s 68
nnmf . ..o e e e e e 70
nscentroids L L L L e e e e e e e e 72

approx1 3
PINV . o 76
PlOt-VIZI L 76
plot_signal 78
PIS .« e 81
PICOMD . . o o i it e e e e e e e e e e e e 84
Predscore L e e e e 86
rescale L e e 87
RNGStreams e e e e e e e 88
TOCSCOTE .+ v v v v v v e 89
rollvec L L e 90
rowDIiStso L e 90
Seq_rel . . .o e e 93
SEMIX & v v o v e 94
shingles e e e e 96
simple_logger-class 97
SIMSPEC . v v v o e e e e e e e e e e e e e 99
SnowfastParam-class L 100
Sparse_arr-Classo e e 102
SIFEAM_SEAL o e e e e e e e e, 105
SITUCE . . o o o e e e e e e e 107
SUMMATY-SEALS o o vt e 108
TO TASLET v v e e e e e e 110
trans2d L e e e e e e e e e e e 111
uuid e e 112
VIZIE oL e 113
vizi_style . ..o e 116
warpl .. e e 117
WAIP2 . . e e e e e e e 119

Index 121

approx1 Resampling in 1D with Interpolation

Description

Resample the given data at specified points. Interpolation can be performed within a tolerance using
several interpolation methods.

Usage
approx1(x, y, xout, interp = "linear”, n = length(x),
tol = NA_real_, tol.ref = "abs”, extrap = NA_real_)
Arguments
Y The data to be interpolated.
xout A vector of values where the resampling should take place.
interp Interpolation method. One of 'none’, ’sum’, ’'mean’, 'max’, 'min’, ’area’, ’lin-

ear’, ’cubic’, gaussian’, or ’lanczos’.

4 approx2

n If xout is not given, then interpolation is performed at n equally spaced data
points along the range of x.

tol The tolerance for the data points used for interpolation. Must be nonnegative. If
NA, then the tolerance is estimated from the maximum differences in x.

tol.ref If ’abs’, then comparison is done by taking the absolute difference. If "x’, then
relative differences are used.

extrap The value to be returned when performing extrapolation, i.e., in the case when
there is no data within tol.
Details

The algorithm is implemented in C and provides several fast interpolation methods. Note that
interpolation is limited to using data within the given tolerance. This is also used to specify the
width for kernel-based interpolation methods such as interp = "gaussian”. The use of a tolerance
also means that interpolating within the range of the data but where no data points are within the
tolerance window is considered extrapolation. This can be useful when resampling sparse signals
with large empty regions, by setting extrap = 9, and setting an appropriate tolerance.

Value

A vector of the same length as xout, giving the resampled data.

Author(s)
Kylie A. Bemis

See Also

asearch, approx approx2

Examples

x <- c(1.11, 2.22, 3.33, 5.0, 5.1)
y <= x*1.11

approx1(x, vy, 2.22) # 2.42359
approx1(x, vy, 3.0) # NA
approx1(x, y, 3.0, tol=0.2, tol.ref="x") # 3.801133

approx2 Resampling in 2D with Interpolation

Description
Resample the (potentially scattered) 2D data to a rectilinear grid at the specified coordinates. Inter-
polation can be performed within a tolerance using several interpolation methods.

Usage

approx2(x, y, z, xout, yout,
interp = "linear”, nx = length(x), ny = length(y),
tol = NA_real_, tol.ref = "abs”, extrap = NA_real_)

approx2

Arguments

X, Y, 2

xout, yout

interp

nx, ny

tol

tol.ref

extrap

Details

The data to be interpolated. Alternatively, x can be a matrix, in which case
the matrix elements are used for z and x and y are generated from the matrix’s
dimensions.

The coordinate (grid lines) where the resampling should take place. These are
expanded into a rectilinear grid using expand.grid().

Interpolation method. One of 'none’, ’sum’, ’'mean’, 'max’, 'min’, ’area’, ’lin-
ear’, ’cubic’, gaussian’, or ’lanczos’.
If xout is not given, then interpolation is performed at nx * ny equally spaced
data points along the range of x and y.

The tolerance for the data points used for interpolation. Must be nonnegative.
May be length-2 to have different tolerances for x and y. If NA, then the tolerance
is estimated from the maximum differences in x and y.

If ’abs’, then comparison is done by taking the absolute difference. If 'x’, then
relative differences are used.

The value to be returned when performing extrapolation, i.e., in the case when
there is no data within tol.

See approx1 for details of the 1D implementation. The 2D implementation is mostly the same,
except it uses a kd-tree to quickly find neighboring points.

Note that interp = "linear” and interp = "cubic” use a kernel-based approximation. Tradition-
ally, bilinear and bicubic interpolation use 4 and 16 neighboring points, respectively. However, to
support scattered data, approx2 will use as many points as are found within the given tolerance,
and scale the kernels accordingly. If the input data falls on a regular grid already, then the tolerance
should be specified accordingly. Set tol equal to the sampling rate for interp = "linear” and
twice the sampling rate for interp = "cubic”.

Value

A vector of the same length as xout, giving the resampled data.

Author(s)

Kylie A. Bemis

See Also

expand.grid, asearch, approx, approx1

Examples

x <= matrix(1:25, nrow=5, ncol=5)

approx2(x, nx=10, ny=10, interp="cubic") # upsampling

6 avg

avg Central Tendency

Description

Calculate the mean, median, or mode of a vector.

Usage

avg(x, center = mean)

Arguments
X A vector to summarize.
center A function to use to calculate the central tendency for numeric vectors. Defaults
to mean.
Details

Missing values are always removed before calculating the central tendency. The center funtion will
be used to calculate the central tendency for any x for which either is.numeric or is.complex is
TRUE. Otherwise, the mode is calculated.

Value

A single value summarizing Xx.

Author(s)

Kylie A. Bemis

See Also

mean, median

Examples

set.seed(1)
x <- sample(LETTERS, 50, replace=TRUE)
y <- runif(50)

avg(x)
avg(y)
avg(y, median)

binpeaks 7

binpeaks Peak Processing

Description

Combine peaks from multiple signals.

Usage

Bin a list of peaks

binpeaks(peaklist, domain = NULL, xlist = peaklist,
tol = NA_real_, tol.ref = "abs"”, merge = FALSE,
na.drop = TRUE)

Merge peaks

mergepeaks(peaks, n = nobs(peaks), x = peaks,
tol = NA_real_, tol.ref = "abs",
na.drop = TRUE)

Arguments

peaklist, xlist A list of vectors of peak indices (or domain values), and the values to be binned
according to the peak locations.

peaks, x The indices (or domain values) of peaks which should be merged, or for which
the corresponding values should be averaged. If n is not provided, this should
be a numeric stream_stat vector produced by binpeaks().

domain The domain variable of the signal.

tol, tol.ref A tolerance specifying the maximum allowed distance between binned or merged
peaks. See bsearch for details. For binpeaks, this is used to determine whether
a peak should be binned to a domain value. For mergepeaks, peaks closer than
this are merged unless a local minimum in their counts (n) indicates that they
should be separate peaks. If missing, binpeaks estimates it as one half the
minimum gap between same-signal peaks, and mergepeaks estimates it as one
hundredth of the average gap beteen peaks.

merge Should the binned peaks be merged?
na.drop Should missing values be dropped from the result?
n The count of times each peak was observed. This is used to weight the aver-

aging. Local minima in counts are also used to separate distinct peaks that are
closer together than tol.

Details

binpeaks() is used to bin a list of peaks from multiple signals to a set of common peaks. The peaks
(or their corresponding values) are binned to the given domain values and are averaged within each
bin. If domain is not given, then the bins are created from the range of the peak locations and the
specified tol.

mergepeaks() is used to merge any peaks with gaps smaller than the given tolerance and whose
counts (n) do not indicate that they should be considered separate peaks. The merged peaks are
averaged together.

8 binvec

Value

A numeric stream_stat vector, giving the average locations of each peak.

Author(s)
Kylie A. Bemis

Examples
x <-c(o, 1,1, 2,3, 2,1, 4, 5,1, 1, 0
y <_ C(Ol 1! 1, 3, 2’ 2’ 1! 5! 4) 1' 1' 0)

p1 <- findpeaks(x)
p2 <- findpeaks(y)
binpeaks(list(p1, p2), merge=FALSE)

binvec Binned Summaries of a Vector

Description

Summarize a vector in the bins at the specified indices.

Usage

n

binvec(x, lower, upper, stat = "sum”, prob = 0.5)

Arguments
X A numeric vector.
lower, upper The (inclusive) lower and upper indices of the bins
stat The statistic used to summarize the values in each bin. Must be one of "sum",
"mean"”, "max", "min", "sd", "var", "mad", or "quantile".
prob The quantile for stat = "quantile”.
Value

An numeric vector of the summarized (binned) values.

Author(s)
Kylie A. Bemis

Examples
set.seed(1)
x <= sort(runif(20))
binvec(x, c(1,6,11,16), <(5,10,15,20))

binvec(x, seq(from=1, to=16, by=5), stat="mean")

bsearch 9

bsearch Binary Search with Approximate Matching

Description

Use a binary search to find approximate matches for the elements of its first argument among those
in its second. This implementation allows for returning the index of the nearest match if there are
no exact matches. It also allows specifying a tolerance for the comparison.

Usage

bsearch(x, table, tol = 0, tol.ref = "abs",
nomatch = NA_integer_, nearest = FALSE)

reldiff(x, y, ref = "y")

Arguments
X A vector of values to be matched. Only integer, numeric, and character vectors
are supported.
y, table A sorted (non-decreasing) vector of values to be matched against. Only integer,
numeric, and character vectors are supported.
tol The tolerance for matching doubles. Must be >= 0.
ref, tol.ref One of ’abs’, ’x’, or ’y’. If ’abs’, then comparison is done by taking the abso-
lute difference. If either ’x’ or ’y’, then relative differences are used, and this
specifies which to use as the reference (target) value. For strings, this uses the
Hamming distance (number of errors), normalized by the length of the reference
string for relative differences.
nomatch The value to be returned in the case when no match is found, coerced to an
integer. (Ignored if nearest = TRUE.)
nearest Should the index of the closest match be returned if no exact matches are found?
Details

The algorithm is implemented in C and currently only works for ’integer’, numeric’, and ’charac-
ter’ vectors. If there are multiple matches, then the first match that is found will be returned, with
no guarantees. If a nonzero tolerance is provided, the closest match will be returned.

The "nearest" match for strings when there are no exact matches is decided by the match with
the most initial matching characters. Tolerance is ignored for strings and integers. Behavior is
undefined and results may be unexpected if values includes NAs.

Value

A vector of the same length as x, giving the indexes of the matches in table.

Author(s)

Kylie A. Bemis

10 checksum

See Also

asearch, match, pmatch, findInterval

Examples

a<-c(1.11, 2.22, 3.33, 5.0, 5.1)

bsearch(2.22, a) # 2

bsearch(3.0, a) # NA

bsearch(3.0, a, nearest=TRUE) # 3

bsearch(3.0, a, tol=0.1, tol.ref="values") # 3

b <- c("hello”, "world!")
bsearch("world!"”, b) # 2
bsearch("worl”, b) # NA
bsearch("worl”, b, nearest=TRUE) # 2

checksum Calculate Checksums and Cryptographic Hashes

Description
This is a generic function for applying cryptographic hash functions and calculating checksums for
externally-stored R objects.

Usage

checksum(x, ...)

S4 method for signature 'character'
checksum(x, algo = "shal”, ...)

S4 method for signature 'matter_

checksum(x, algo = "shal”, ...)

Arguments
X A file path or an object to be hashed.
algo The hash function to use.

Additional arguments to be passed to the hash function.

Details

The method for matter objects calculates checksums of each of the files in the object’s paths.

Value

A character vector giving the hash or hashes of the object.

Author(s)
Kylie A. Bemis

chunkApply 11

See Also

digest

Examples

x <- matter(1:10)
y <- matter(1:10)

checksum(x)
checksum(y) # should be the same

chunkApply Apply Functions Over Chunks of a List, Vector, or Matrix

Description

Perform equivalents of apply, lapply, and mapply, but over parallelized chunks of data. This
is most useful if accessing the data is potentially time-consuming, such as for file-based matter
objects. Operating on chunks reduces the number of I/O operations.

Usage

Operate on elements/rows/columns

chunkApply (X, MARGIN, FUN, ...,
simplify = FALSE, outpath = NULL,
verbose = NA, BPPARAM = bpparam())

chunkLapply (X, FUN, ...,
simplify = FALSE, outpath = NULL,
verbose = NA, BPPARAM = bpparam())

chunkMapply(FUN, ...,
simplify = FALSE, outpath = NULL,
verbose = NA, BPPARAM = bpparam())

Operate on complete chunks

chunk_rowapply (X, FUN, ...,
simplify = "c", depends = NULL, permute = FALSE,
RNG = FALSE, verbose = NA, chunkopts = list(),

BPPARAM = bpparam())

chunk_colapply (X, FUN, ...,
simplify = "c", depends = NULL, permute = FALSE,
RNG = FALSE, verbose = NA, chunkopts = list(),

BPPARAM = bpparam())

chunk_lapply(X, FUN, ...,
simplify = "c", depends = NULL, permute = FALSE,
RNG = FALSE, verbose = NA, chunkopts = list(),

BPPARAM = bpparam())

12

chunkApply

chunk_mapply(FUN, ..., MoreArgs = NULL,

simplify =

"c", depends = NULL, permute = FALSE,

RNG = FALSE, verbose = NA, chunkopts = list(),
BPPARAM = bpparam())

Arguments

X

MARGIN

FUN

MoreArgs

simplify

outpath

verbose

chunkopts

depends

permute

RNG

BPPARAM

Details

A matrix for chunkApply(), a list or vector for chunkLapply(), or lists for
chunkMapply (). These may be any class that implements suitable methods for
[, L[, dim, and length().

If the object is matrix-like, which dimension to iterate over. Must be 1 or 2,
where 1 indicates rows and 2 indicates columns. The dimension names can also
be used if X has dimnames set.

The function to be applied.

A list of other arguments to FUN.

Additional arguments to be passed to FUN.

Should the result be simplified into a vector, matrix, or higher dimensional ar-
ray?

If non-NULL, a file path where the results should be written as they are pro-
cessed. If specified, FUN must return a 'raw’, ’logical’, ’integer’, or 'numeric’
vector. The result will be returned as a matter object.

Should user messages be printed with the current chunk being processed? If NA
(the default), this is taken from getOption("matter.default.verbose").

An (optional) list of chunk options including nchunks, chunksize, and serialize.
See "Details".

A list with length equal to the extent of X. Each element of depends should
give a vector of indices which correspond to other elements of X on which each
computation depends. These elements are passed to FUN. For time efficiency, no
attempt is made to verify these indices are valid.

Should the order of items be randomized? This may be useful for iterating over
random subsets. No attempt is made to re-order the results.

Should the local random seed (as set by set.seed) be forwarded to the worker
processes? If RNGkind is set to "L'Ecuyer-CMRG", then the random seed will be
set to appropriate substreams for each chunk or for each element/row/column.
Note that forwarding the local random seed incurs additional overhead.

An optional instance of BiocParallelParam. See documentation for bplapply.

For chunkApply (), chunkLapply(), and chunkMapply():

For vectors and lists, the vector is broken into some number of chunks according to chunks. The
individual elements of the chunk are then passed to FUN.

For matrices, the matrix is chunked along rows or columns, based on the number of chunks. The
individual rows or columns of the chunk are then passed to FUN.

In this way, the first argument of FUN is analogous to using the base apply, lapply, and mapply

functions.

For chunk_rowapply (), chunk_colapply(), chunk_lapply(), and chunk_mapply():

chunkApply 13

In this situation, the entire chunk is passed to FUN, and FUN is responsible for knowing how to handle
a sub-vector or sub-matrix of the original object. This may be useful if FUN is already a function
that could be applied to the whole object such as rowSums or colSums.

When this is the case, it may be useful to provide a custom simplify function.

For convenience to the programmer, several attributes are made available when operating on a
chunk.

* "chunkid": The index of the chunk currently being processed by FUN.
* "chunklen": The number of elements in the chunk that should be processed.

* "index": The indices of the elements of the chunk, as elements/rows/columns in the original
matrix/vector.

* "depends" (optional): If depends is given, then this is a list of indices within the chunk. The
length of the list is equal to the number of elements/rows/columns in the chunk. Each list
element is either NULL or a vector of indices giving the elements/rows/columns of the chunk
that should be processed for that index. The indices that should be processed will be non-NULL,
and indices that should be ignored will be NULL.

The depends argument can be used to iterate over dependent elements of a vector, or dependent
rows/columns of a matrix. This can be useful if the calculation for a particular row/column/element
depends on the values of others.

When depends is provided, multiple rows/columns/elements will be passed to FUN. Each element
of the depends list should be a vector giving the indices that should be passed to FUN.

For example, this can be used to implement a rolling apply function.

Several options are supported by chunkopts to override the global options:

¢ nchunks: The number of chunks to use. If omitted, this is taken from getOption("matter.default.nchunks").
For I0-bound operations, using fewer chunks will often be faster, but use more memory.

* chunksize: The approximate chunk size in bytes. If omitted, this is taken from getOption("matter.default.chur
For 10-bound operations, using larger chunks will often be faster, but use more memory. If
set to NA_real_, then the chunk size is determined by the number of chunks.

* serialize: Whether data in virtual memory should be realized on the manager and serialized
to the workers (TRUE), passed to the workers in virtual memory as-is (FALSE), or if matter
should decide the behavior based on the cluster configuration (NA). If omitted, this is taken
from getOption("matter.default.serialize"”). If all workers have access to the same
virtual memory resources (whether file storage or shared memory), then it can be significantly
faster to avoid serializing the data.

Value

Typically, a list if simplify=FALSE. Otherwise, the results may be coerced to a vector or array.

Author(s)
Kylie A. Bemis

See Also

apply, lapply, mapply, RNGkind, RNGStreams, SnowfastParam

14 chunked-class

Examples

register(SerialParam())

set.seed(1)
X <= matrix(rnorm(1000*2), nrow=1000, ncol=1000)

out <- chunkApply(x, 1L, mean, chunkopts=1list(nchunks=10))
head(out)

chunked-class Chunked Vectors, Arrays, and Lists

Description

The chunked class implements chunked wrappers for vectors, arrays, and lists for parallel iteration.

Usage

Instance creation
chunked_vec(x, nchunks = NA, chunksize = NA,

verbose = FALSE, permute = FALSE, depends = NULL, drop = FALSE)
chunked_mat(x, margin, nchunks = NA, chunksize = NA,
verbose = FALSE, permute = FALSE, depends = NULL, drop = FALSE)
chunked_list(..., nchunks = NA, chunksize = NA,
verbose = FALSE, permute = FALSE, depends = NULL, drop = FALSE)
Additional methods documented below
Arguments
Xy on The data to be chunked. If multiple objects are passed via ..., then they are all
recycled to the same length.
nchunks The number of chunks to use. If NA (the default), this is taken from getOption("matter.default.nc
For I0-bound operations, using fewer chunks will often be faster, but use more
memory. If both nchunks and chunksize are specified, then nchunks takes
priority.
chunksize The approximate chunk size in bytes. If NA (the default), this is taken from
getOption("matter.default.chunksize"). For IO-bound operations, using
larger chunks will often be faster, but use more memory. If both nchunks and
chunksize are specified, then nchunks takes priority.
verbose Should messages be printed whenever a chunk is extracted?
permute Should the order of items be randomized? Alternatively, an integer vector or

a list of integer vectors can be specified. If an integer vector is provided, then
x is chunked in the exact order of the provided indices. If a list of indices is
provided, then these are taken as strata (i.e., subpopulations). Each stratum will
be chunked separately and then merged (without randomization), so that each
chunk will contain examples from every stratum.

chunked-class 15

depends A list with length equal to the extent of X. Each element of depends should
give a vector of indices which correspond to other elements of X on which each
computation depends. These elements are passed to FUN. For time efficiency, no
attempt is made to verify these indices are valid.

margin Which array margin should be chunked.
drop The value passed to drop when subsetting the chunks.
Value

An object derived from class chunked.

Slots

data: The data.

index: The chunk indices.

verbose: Print messages on chunk extraction?

drop: The value passed to drop when subsetting the chunks.

margin: The array margin for the chunks.

Creating Objects
chunked_vec, chunked_mat and chunked_list instances can be created through chunked_vec(),
chunked_mat (), and chunked_list(), respectively.

Methods

Standard generic methods:

length(x): Get number of chunks.
lengths(x): Get chunk sizes for each chunk.
x[i, ...J: Get chunks.

x[[i]]: Get a single chunk.

Author(s)
Kylie A. Bemis

See Also

chunkApply

Examples

X <= matrix(runif(200), nrow=10, ncol=20)

y <- chunked_mat(x, margin=2, nchunks=5)
print(y)

16 colscale

colscale Scaling and Centering by Row or Column Based on Grouping

Description

Apply the equivalent of scale to either columns or rows of a matrix, using a grouping variable.

Usage

S4 method for signature 'ANY'
colscale(x, center=TRUE, scale=TRUE,
group = NULL, ..., BPPARAM = bpparam())

S4 method for signature 'ANY'
rowscale(x, center=TRUE, scale=TRUE,

group = NULL, ..., BPPARAM = bpparam())
Arguments
X A matrix-like object.
center Either a logical value or a numeric vector of length equal to the number of

columns of ’x’ (for colscale()) or the number of the rows of ’x’ (for rowscale()).
If a grouping variable is given, then this must be a matrix with number of
columns equal to the number of groups.

scale Either a logical value or a numeric vector of length equal to the number of
columns of ’x’ (for colscale()) or the number of the rows of ’x’ (for rowscale()).
If a grouping variable is given, then this must be a matrix with number of
columns equal to the number of groups.

group A vector or factor giving the groupings with length equal to the number of rows
of ’x’ (for colscale()) or the number of the columns of ’x’ (for rowscale()).

Arguments passed to rowStats() or colStats() respectively, if center or
scale must be calculated.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

Details

See scale for details.

Value

A matrix-like object (usually of the same class as x) with either ‘col-scaled:center’ and ‘col-scaled:scale’
attributes or ‘row-scaled:center’ and ‘row-scaled:scale’ attributes.

Author(s)
Kylie A. Bemis

See Also

scale

colStats

Examples

17

X <- matter(1:100, nrow=10, ncol=10)

colscale(x)

colStats

Row and Column Summary Statistics Based on Grouping

Description

These functions perform calculation of summary statistics over matrix rows and columns for each
level of a grouping variable.

Usage

S4 method for signature 'ANY'
rowStats(x, stat, ..., BPPARAM = bpparam())

S4 method for signature 'ANY'
colStats(x, stat, ..., BPPARAM = bpparam())

S4 method for signature 'matter_mat'
rowStats(x, stat, ..., BPPARAM = bpparam())

S4 method for signature 'matter_mat'
colStats(x, stat, ..., BPPARAM = bpparam())

S4 method for signature 'sparse_mat'
rowStats(x, stat, ..., BPPARAM = bpparam())

S4 method for signature 'sparse_mat'
colStats(x, stat, ..., BPPARAM = bpparam())

.rowStats(x, stat, group = NULL,

na.rm

iter.dim

.colStats(x, stat, group = NULL,

FALSE, simplify = TRUE, drop = TRUE,
1L, BPPARAM = bpparam(), ...)

na.rm = FALSE, simplify = TRUE, drop = TRUE,
2L, BPPARAM = bpparam(), ...)

iter.dim

Arguments

X

stat

group

na.rm

A matrix on which to calculate summary statistics.

The name of summary statistics to compute over the rows or columns of a ma-
" n " " " n n n n

trix. Allowable values include: "min", "max", "prod", "sum", "mean", "var",
"sd", "any", "all", and "nnzero".

A factor or vector giving the grouping. If not provided, no grouping will be
used.

If TRUE, remove NA values before summarizing.

18

simplify

drop

iter.dim

BPPARAM

Details

colsweep

Simplify the results from a list to a vector or array. This also drops any additional
attributes (besides names).

If only a single summary statistic is calculated, return the results as a vector (or
matrix) rather than a list.

The dimension to iterate over. Must be 1 or 2, where 1 indicates rows and 2
indicates columns.

An optional instance of BiocParallelParam. See documentation for bplapply.

Additional arguments passed to chunk_rowapply () or chunk_colapply(), such
as the number of chunks.

The summary statistics methods are calculated over chunks of the matrix using s_colstats and
s_rowstats. For matter objects, the iteration is performed over the major dimension for 10 effi-

ciency.

Value

A list for each stat requested, where each element is either a vector (if no grouping variable is
provided) or a matrix where each column corresponds to a different level of group.

If drop=TRUE, and only a single statistic is requested, then the result will be unlisted and returned
as a vector or matrix.

Author(s)

Kylie A. Bemis

See Also

colSums

Examples

register(SerialParam())

set.seed(1)

x <= matrix(runif(100*2), nrow=100, ncol=100)

g <- as.factor(rep(letters[1:5], each=20))

colStats(x, "mean"”, group=g)

colsweep

Sweep out Matrix Summaries Based on Grouping

Description

Apply the equivalent of sweep to either columns or rows of a matrix, using a grouping variable.

colsweep 19

Usage

S4 method for signature 'ANY'
colsweep(x, STATS, FUN = "-" group = NULL, ...)

S4 method for signature 'matter_mat'
colsweep(x, STATS, FUN = "-" group = NULL, ...)

S4 method for signature 'sparse_mat'
colsweep(x, STATS, FUN = "-" group = NULL, ...)

S4 method for signature 'ANY'
rowsweep(x, STATS, FUN = "-" group = NULL, ...)

S4 method for signature 'matter_mat'
rowsweep(x, STATS, FUN = "-" group = NULL, ...)

S4 method for signature 'sparse_mat'

rowsweep(x, STATS, FUN = "-" group = NULL, ...)
Arguments
X A matrix-like object.
STATS The summary statistic to be swept out, with length equal to the number of

columns of ’x’ (for colsweep()) or the number of the rows of ’x’ (for rowsweep()).
If a grouping variable is given, then this must be a matrix with number of
columns equal to the number of groups.

FUN The function to be used to carry out the sweep.

group A vector or factor giving the groupings with length equal to the number of rows
of ’x’ (for colsweep()) or the number of the columns of ’x’ (for rowsweep()).

Ignored.

Details

See sweep for details.

Value

A matrix-like object (usually of the same class as x) with the statistics swept out.

Author(s)
Kylie A. Bemis

See Also

sweep

Examples

set.seed(1)

x <- matrix(1:100, nrow=10, ncol=10)

20 convolve_at

colsweep(x, colStats(x, "mean"))

convolve_at Convolution at Arbitrary Indices

Description

Convolve a signal with weights at arbitrary indices.

Usage

convolve_at(x, index, weights, margin = NULL, na.rm = FALSE)

Arguments
X A numeric vector or matrix.
index A list or matrix of numeric vectors giving the indices to convolve. If index is
a list, then it must have the same length as x and element lengths that match
weights. If x is a matrix, then its rows must correspond to x and its columns
must correspond to weights.
weights A list giving the weights of the kernels to convolve for each element of x.
Lengths must match index.
margin If x is a matrix, then the margin to convolve over.
na.rm Should missing values (including NaN) be removed?
Details

This is essentially just a weighted sum defined by x[i] = sum(weights[[i]] * x[index[[i11]).

Value

A numeric vector the same length as x with the smoothed result.

Author(s)
Kylie A. Bemis

Examples

set.seed(1)

t <- seq(from=0, to=6 * pi, length.out=5000)
y <- sin(t) + 0.6 * sin(2.6 * t)

x <=y + runif(length(y))

i <- roll(seqg_along(x), width=15)
wt <- dnorm((-7):7, sd=7/2)
wt <- wt / sum(wt)

xs <- convolve_at(x, i, wt)

plot(x, type="1")
lines(xs, col="red")

coscore 21

coscore Colocalization Coefficients

Description

Compute Manders overlap coefficient (MOC), and Manders colocalization coefficients (M1 and
M2), and Dice similarity coefficient.

Usage

coscore(x, y, threshold = NA)

Arguments
X, Yy Images to be compared. These can be numeric or logical. If numeric, then the
"overlap" is defined where both images are nonzero.
threshold The intensity threshold to use when comparing the images. If NA, this will be
determined automatically from the technique described in Costes et al. (2004).
Alternatively, this can be a function such as median that can be applied to return
a suitable threshold.
Details

The Dice coefficient and Manders overlap coefficient are symmetric between images, while M1 and
M2 measure the overlap relative to x and y respectively.

Value

A numeric vector with elements named "MOC", "M1", "M2", and "Dice", and an attribute named
"threshold" giving the numeric thresholds (if applicable) for converting each image to a logical
mask.

Author(s)

Kylie A. Bemis

References

K. W. Dunn, M. M. Kamocka, and J. H. McDonald. “A practical guide to evaluating colocalization
in biological microscop.” American Journal of Physiology: Cell Physiology, vol. 300, no. 4, pp.
C732-C742, 2011.

S. V. Costes, D. Daelemans, E. H. Cho, Z. Dobbin, G. Pavlakis, and S. Lockett. “Automatic and
Quantitative Measurement of Protein-Protein Colocalization in Live Cells.” Biophysical Journal,
vol. 86, no. 6, pp. 3993-4003, 2004.

K. H. Zou, S. K. Warfield, A. Bharatha, C. M. C. Tempany, M. R. Kaus, S. J. Haker, W. M. Wells,
IIL, F. A. Jolesz, and R. Kikinis. “Statistical Validation of Image Segmentation Quality Based on a
Spatial Overlap Index.” Academic Radiology, vol. 11, issue 2, pp. 178-189, 2004.

22 cpal

Examples

set.seed(1)

y <- x <- matrix(@, nrow=32, ncol=32)
x[5:16,5:16] <- 1

x[17:28,17:28] <- 1

x <= x + runif(length(x))
y[4:15,4:15] <- 1

y[18:29,18:29] <- 1

y <=y + runif(length(y))

x1 <= x > median(x)

yl <=y > median(y)

coscore(x, x)

coscore(x, y)

coscore(x, y, threshold=median)
coscore(xl, yl)

cpal Color Palettes

Description

These functions provide simple color palettes.

Usage

Continuous color palettes
cpal(palette = "Viridis")

Discrete color palettes
dpal(palette = "Tableau 10")

List palettes
cpals()
dpals()

Add transparency to colors
add_alpha(colors, alpha = 1, pow = 1)

Arguments
palette The name of a color palette. See palette.pals and hcl.pals.
colors A character vector of colors to add transparency to.
alpha A numeric vector giving the level of transparency in the range [0, 1] where O is
fully transparent and 1 is fully opaque.
pow The power scaling of the alpha channel. A linear alpha scale often results in

poor interpretability for superposed images, so raising the alpha channel (al-
ready in range [0, 1]) to a power > 1 can improve interpretability in these cases.
Conversely, for highly skewed data, using a power < 1 can reduce the impact of
extreme values.

cv_do 23

Value

A character vector of colors or a function for generating n colors.

Author(s)
Kylie A. Bemis

See Also

vizi, image

Examples

f <= cpal("viridis")
cols <- f(10)
add_alpha(cols, 1:10/10)

cv_do Perform Cross Validation

Description

Perform k-fold cross-validation with an arbitrary modeling function.

Usage

cv_do(fit., x, y, folds, ...,

mi = !is.null(bags), bags = NULL, pos = 1L,

predict. = predict, transpose = FALSE, keep.models = TRUE,
trainProcess = NULL, trainArgs = list(),

testProcess = NULL, testArgs = list(),

verbose = NA, chunkopts = list(),

BPPARAM = bpparam())

S3 method for class 'cv'
fitted(object, type = c("response”, "class"),

simplify = TRUE, ...)
Arguments
fit. The function used to fit the model.
X,y The data and response variable.
folds A vector coercible to a factor giving the fold for each row or column of x.
mi Should mi_learn be called with fit. for multiple instance learning?
bags If provided, subsetted and passed to fit. or mi_learn if mi=TRUE.
pos The positive class for multiple instance learning. Only used if mi=TRUE.

Additional arguments passed to fit. and predict..

predict. The function used to predict on new data from the fitted model. The fitted model
is passed as the Ist argument and the test data is passed as the 2nd argument.

24

cv_do

transpose A logical value indicating whether x should be considered transposed or not.
This can be useful if the input matrix is (P x N) instead of (N x P) and storing the
transpose is expensive. This is not necessary for matter_mat and sparse_mat
objects, but can be useful for large in-memory (P x N) matrices.

keep.models Should the models be kept and returned?

trainProcess, trainArgs
A function and arguments used for processing the training sets. The training set
is passed as the 1st argument to trainProcess.

testProcess, testArgs
A function and arguments used for processing the test sets. The test set is passed
as the Ist argument to trainProcess, and the processed training set is passed
as the 2nd argument.

verbose Should progress be printed for each iteration?

chunkopts Passed to fit., predict., trainProcess and testProcess. See chunkApply
for details.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.
Passed to fit., predict., trainProcess and testProcess.

object An object inheriting from cv.

type The type of prediction, where "response” means the fitted response matrix and

"class” will be the vector of class predictions (only for classification).

simplify Should the predictions be simplified (from a list) to an array (type="response")
or data frame (type="class")?

Details

The cross-validation is not performed in parallel, because it is assumed the pre-processing func-
tions, modeling function, and prediction function may make use of parallelization. Therefore, these
functions need to be able to handle (or ignore) the arguments nchunks and BPPARAM, which will be
passed to them.

If bags is specified, then multiple instance learning is assumed, where observations from the same
bag are all assumed to have the same label. The labels for bags are automatically pooled (from y) so
that if any observation in a bag is pos, then the entire bag is labeled pos. If mi=TRUE then mi_learn
will be called by cv_do; otherwise it is assumed fn will handle the multiple instance learning. The
accuracy metrics are calculated with the original y labels.

Value

An object of class cv, with the following components:

* average: The average accuracy metrics.

* scores: The fold-specific accuracy metrics.

* folds: The fold memberships.

e fitted.values: The fold-specific predictions.
* models: (Optional) The fitted models.

Author(s)

Kylie A. Bemis

deferred-ops 25

See Also

predscore

Examples

register(SerialParam())

set.seed(1)

n <- 100

p<-5

nfolds <- 3

y <- rep(c(rep.int("yes”, 60), rep.int("no"”, 40)), nfolds)

x <= matrix(rnorm(nfolds * n * p), nrow=nfolds * n, ncol=p)
x[,1L] <= x[,1L] + 2 x ifelse(y == "yes"”, runif(n), -runif(n))
x[,2L] <- x[,2L] + 2 x ifelse(y == "no", runif(n), -runif(n))
folds <- rep(paste@("set”, seq_len(nfolds)), each=n)

cv_do(pls_nipals, x, y, k=1:5, folds=folds)

deferred-ops Deferred Operations on “matter” Objects

Description
Some arithmetic, comparison, and logical operations are available as delayed operations on matter_arr
and sparse_arr objects.

Details

Currently the following delayed operations are supported:
‘Arith’: 4+’, ‘_’, 4*7’ 6/7’ 4/\’7 3
‘Math’: ‘exp’, ‘log’, ‘log2’, ‘logl0’
Arithmetic operations are applied in C++ layer immediately after the elements are read from virtual
memory. This means that operations that are implemented in C and/or C++ for efficiency (such as
summary statistics) will also reflect the execution of the deferred arithmetic operations.

Value
A new matter object with the registered deferred operation. Data in storage is not modified; only
object metadata is changed.

Author(s)

Kylie A. Bemis

See Also

Arith, Compare, Logic, Ops, Math

26 downsample

Examples
x <- matter(1:100)
y<-2=*xx+1

x[1:10]
y[1:10]

mean(x)
mean(y)

deprecated Deprecated and defunct objects in matter

Description

These functions are provided for compatibility with older versions of matter, and will be removed
in the future.

downsample Downsample a Signal

Description

Downsamples a signal for the purposes of visualization. A subset of the original samples are used to
represent the signal. The downsampled signal is intended to resemble the original when visualized
and should not typically be used for downstream processing.

Usage

downsample(x, n = length(x) / 10L, domain = NULL,
method = c("1ttb”, "ltob"”, "dynamic"))

Arguments
X A numeric vector.
n The length of the downsampled signal.
domain The domain variable of the signal.
method The downsampling method to be used. Must be one of "1ttb"”, "1tob", or
"dynamic".
Details

This function implements the downsampling methods from Sveinn Steinarsson’s 2013 MSc the-
sis Downsampling Time Series for Visual Representation, including largest-triangle-three-buckets
(LTTB), largest-triangle-one-bucket (LTOB), and dynamic binning.

Value

A vector of length n, giving the downsampled signal.

drle-class 27

Author(s)

Kylie A. Bemis

References

S. Steinarsson. “Downsampling Time Series for Visual Representation.” MSc, School of Engineer-
ing and Natural Sciences, University of Iceland, Reykjavik, Iceland, June 2013.

See Also

approx1

Examples

set.seed(1)

t <- seq(from=0, to=6 * pi, length.out=2000)
X <= sin(t) + 0.6 * sin(2.6 * t)

X <= x + runif(length(x))

xs <- downsample(x, n=200)

s <- attr(xs, "sample")

plot(x, type="1")
points(s, xs, col="red"”, type="b")

drle-class Delta Run Length Encoding

Description

The drle class stores delta-run-length-encoded vectors. These differ from other run-length-encoded
vectors provided by other packages in that they allow for runs of values that each differ by a common
difference (delta).

Usage

Instance creation
drle(x, type = "drle"”, cr_threshold = @)

is.drle(x)
Additional methods documented below

Arguments
X An integer or numeric vector to convert to delta run length encoding for drle();
an object to test if it is of class drle for is.drle().
type The type of compression to use. Must be "drle", "rle", or "seq". The default

("drle") allows arbitrary deltas. Using type "rle" means that runs must consist of
a single value (i.e., deltas must be 0). Using type "seq" means that deltas must
bel,-1,o0r0.

28 drle-class

cr_threshold The compression ratio threshold to use when converting a vector to delta run
length encoding. The default (0) always converts the object to drle. Values
of cr_threshold < 1 correspond to compressing even when the output will
be larger than the input (by a certain ratio). For values > 1, compression will
only take place when the output is (approximately) at least cr_threshold times
smaller.

Value

An object of class drle.

Slots

values: The values that begin each run.
lengths: The length of each run.

deltas: The difference between the values of each run.

Creating Objects

drle instances can be created through drle().

Methods
Standard generic methods:
x[i]: Get the elements of the uncompressed vector.

length(x): Get the length of the uncompressed vector.

c(x, ...): Combine vectors.

Author(s)

Kylie A. Bemis

See Also

rle

Examples

Create a drle vector
x <- ¢(1,1,1,1,1,6,7,8,9,10,21,32,33,34,15)
y <- drle(x)

Check that their elements are equal
X == y[]

enhance 29

enhance Contrast Enhancement

Description

Enhance the contrast in a 2D signal.

Usage

Adjust by extreme values
enhance_adj(x, frac = 0.01)

Histogram equalization
enhance_hist(x, nbins = 256L)

Contrast-limited adaptive histogram equalization (CLAHE)
enhance_adapt(x, width = sqrt(nrow(x) * ncol(x)) %/% 5L,
clip = 0.1, nbins = 256L)

Arguments
X A numeric matrix.
frac The fraction of the highest and lowest pixel values to adjust by clamping the
overall intensity range.
nbins The number of gray levels in the output image.
clip The normalized clip limit, expressed as a fraction of the neighborhood size.
This is used to limit the maximum value of any bin in the adaptive histograms,
in order avoid amplifying local noise.
width The width of the sliding window used when calculating the local adaptive his-
tograms.
Details

enhance_adj() performs a simple adjustment of the overall image intensity range by clamping a
fraction of the highest and lowest pixel values. This is useful for suppressing very bright hotspots,
but may not be sufficient for images with globally poor contrast.

enhance_hist() performs histogram equalization. Histogram equalization transforms the pixel
values so that the histogram of the image is approximately flat. This is done by replacing the original
pixel values with their associated probability in the image’s empirical cumulative distribution.

enhance_adapt () performs contrast-limited adaptive histogram equalization (CLAHE) from Zuiderveld
(1994). While ordinary histogram equalization performs a global transformation on the image,
adaptive histogram equalization calculates a histogram in a local neighborhood around each pixel

to perform the transformation, thereby enhancing the local contrast across the image. However, this

can amplify local noise, so to avoid this, the histogram is clipped to a maximum allowed bin value
before transforming the pixel values. To speed up the computation, it is implemented here using a
sliding window technique as described by Wang and Tao (2006).

These methods rescale the output image so that its median equals the median of the original image
and it has equal interquartile range (IQR).

30 estbase

Value

A numeric matrix the same dimensions as x with the smoothed result.

Author(s)

Kylie A. Bemis

References

K. Zuiderveld. “Contrast Limited Adaptive Histogram Equalization.” Graphics Gems IV, Academic
Press, pp. 474-485, 1994.

Z. Wang and J. Tao. “A Fast Implementation of Adaptive Histogram Equalization.” IEEE 8th
international Conference on Signal Processing, Nov 2006.

Examples

set.seed(1)

x <- matrix(@, nrow=32, ncol=32)
x[9:24,9:24] <- 10

x <= x + runif(length(x))

y <= x + rlnorm(length(x))

z <- enhance_hist(y)

par(mfcol=c(1,3))

image(x, col=hcl.colors(256), main="original")

image(y, col=hcl.colors(256), main="multiplicative noise")
image(z, col=hcl.colors(256), main="histogram equalization”)

estbase Continuum Estimation

Description

Estimate the continuum (baseline) of a signal.

Usage

Continuum based on local extrema
estbase_loc(x,
smooth = c("none”, "loess”, "spline"),
span = 1/10, spar = NULL, upper = FALSE)

Convex hull
estbase_hull(x, upper = FALSE)

Sensitive nonlinear iterative peak clipping (SNIP)
estbase_snip(x, width = 100L, decreasing = TRUE)

Running medians
estbase_med(x, width = 100L)

estbase 31

Arguments
X A numeric vector.
smooth A smoothing method to be applied after linearly interpolating the continuum.
span, spar Smoothing parameters for loess and spline smoothing, respectively.
upper Should the upper continuum be estimated instead of the lower continuum?
width The width of the smoothing window in number of samples.
decreasing Use a decreasing clipping window instead of an increasing window.

Details

estbase_loc() uses a simple method based on linearly interpolating from local extrema. It typi-
cally performs well enough for most situations. Signals with strong noise or wide peaks may require
stronger smoothing after the interpolation step.

estbase_hull() estimates the continuum by finding the lower or upper convex hull using the
monotonic chain algorithm of A. M. Andrew (1979).

estbase_snip() performs sensitive nonlinear iterative peak (SNIP) clipping using the adaptive
clipping window from M. Morhac (2009).

estbase_med() estimates the continuum from running medians.

Value

A numeric vector the same length as x with the estimated continuum.

Author(s)

Kylie A. Bemis

References

A. M. Andrew. “Another efficient algorithm for convex hulls in two dimensions.” Information
Processing Letters, vol. 9, issue 5, pp. 216-219, Dec. 1979.

M. Morhac. “An algorithm for determination of peak regions and baseline elimination in spec-
troscopic data.” Nuclear Instruments and Methods in Physics Research A, vol. 600, issue 2, pp.
478-487, Mar. 2009.

Examples

set.seed(1)

t <- seq(from=0, to=6 * pi, length.out=2000)
X <= sin(t) + 0.6 * sin(2.6 * t)

lo <- estbase_hull(x)

hi <- estbase_hull(x, upper=TRUE)

plot(x, type="1")
lines(lo, col="red")
lines(hi, col="blue")

32 estnoise

estdim Estimate Raster Dimensions

Description

Estimate the raster dimensions of a scattered 2D signal based on its pixel coordinates.

Usage

estdim(x, tol = 1e-6)

Arguments
X A numeric matrix or data frame where each column gives the pixel coordinates
for a different dimension. Only 2 or 3 dimensions are supported if the coordi-
nates are irregular. Otherwise, any number of dimensions are supported.
tol The tolerance allowed when estimating the resolution (i.e., pixel sizes) using
estres(). If estimating the resolution this way fails, then it is estimated from
the coordinate ranges instead.
Value

A numeric vector giving the estimated raster dimensions.

Author(s)

Kylie A. Bemis

Examples
co <- expand.grid(x=1:12, y=1:9)
co$x <- jitter(co$x)

co$y <- jitter(cos$y)

estdim(co)

estnoise Local Noise Estimation

Description

Estimate the noise across a signal.

estnoise 33

Usage

Difference-based noise estimation

estnoise_diff(x, nbins = 1L, overlap = 0.5,
index = NULL)

Dynamic noise level filtering

estnoise_filt(x, nbins = 1L, overlap = 0.5,

msnr = 2, threshold = 0.5, isPeaks = FALSE, index = NULL)

SD-based noise estimation
estnoise_sd(x, nbins = 1, overlap = 0.5,
k =9, index = NULL)

MAD-based noise estimation
estnoise_mad(x, nbins = 1, overlap = 0.5,
k =9, index = NULL)

Quantile-based noise estimation
estnoise_quant(x, nbins = 1, overlap = 0.5,
k =9, prob = 0.95, index = NULL)

Arguments
X A numeric vector.
nbins The number of bins to use if estimating a variable noise level.
overlap The fraction of overlap between bins if estimating a variable noise level.
msnr The minimum signal-to-noise ratio for distinguishing signal peaks from noise
peaks.
threshold The required signal-to-noise difference for the first non-noise peak.
isPeaks Does x represent a profile signal (FALSE) or its peaks (TRUE)?
index A matrix or list of domain vectors giving the sampling locations of x if it is a
multidimensional signal.
k The size of the smoothing window when calculating the difference between the
raw signal and a smoothed version of the signal.
prob The quantile used when estimating the noise.
Details

estnoise_diff () estimates the local noise from the mean absolute differences between the signal
and the average of its derivative. For noisy signals, the derivative is dominated by the noise, making
it a useful estimator of the noise.

estnoise_sd(), estnoise_mad(), and estnoise_quant() all estimate the local noise by first
smoothing the signal with a Gaussian filter, and then subtracting the raw signal from the smoothed
signal to isolate the noise component. The noise is then summarized with the corresponding statis-
tic.

estnoise_filt() uses the dynamic noise level filtering algorithm of Xu and Freitas (2010) based
on the local signal in an approach similar to Gallia et al. (2013). The peaks in the signal are sorted,
and the smallest peak is assumed to be noise and is used to estimate the noise level. Each peak is
then compared to the previous peak. A peak is labeled a signal peak only if it exceeds a minimum
signal-to-noise ratio. Otherwise, the peak is labeled noise, and the noise level is re-estimated. This
process continues until a signal peak is found, and the noise level is estimated from the noise peaks.

34 estres

Value

A numeric vector the same length as x with the estimated local noise level.

Author(s)

Kylie A. Bemis

References

H. Xu and M. A. Freitas. “A Dynamic Noise Level Algorithm for Spectral Screening of Peptide
MS/MS Spectra.” BMC Bioinformatics, vol. 11, no. 436, Aug. 2010.

J. Gallia, K. Lavrich, A. Tan-Wilson, and P. H. Madden. “Filtering of MS/MS data for peptide
identification.” BMC Genomics, vol. 14, suppl. 7, Nov. 2013.

Examples

simple signal

set.seed(1)

n <- 500

<- rnorm(n)

<- x + 90 * dnorm(seqg_along(x), mean=n/4)
<- x + 80 * dnorm(seqg_along(x), mean=n/2)
<- x + 70 * dnorm(seq_along(x), mean=3*n/4)

X X X X

ns <- estnoise_quant(x)
plot(x, type="1")
lines(ns, col="blue")

simulated spectrum
set.seed(1)
X <- simspec(size=5000)

ns <- estnoise_quant(x, nbins=20)
plot(x, type="1")
lines(ns, col="blue")

estres Estimate Signal Resolution

Description

Estimate the resolution (approximate sampling rate) of a signal based on its domain values.

Usage

estres(x, tol = NA, ref = NA_character_)

fastmap 35

Arguments
X A numeric vector giving the domain values of the signal.
tol The tolerance allowed when determining if the estimated resolution is valid (i.e.,
actually matches the given domain values). Noise in the sampling rate will be
allowed up to this amount. If NA (the default), then the resolution is simply
calculated as the smallest difference between sorted domain values.
ref If "abs’, then comparison is done by taking the absolute difference. If *x’, then
relative differences are used. If missing, then the funciton will try to determine
which gives a better fit to the domain values.
Value

A single number named "absolute" or "relative" giving the approximate constant sampling rate
matching the given domain values. NA if a sampling rate could not be determined.

Author(s)

Kylie A. Bemis

Examples
x <- seq_rel(501, 600, by=1e-3)

estres(x)

fastmap FastMap Projection

Description

The FastMap algorithm performs approximate multidimensional scaling (MDS) based on any dis-
tance function. It is faster and more efficient than traditional MDS algorithms, scaling as O(n)
rather than O(n*2). FastMap accomplishes this by finding two distant pivot objects on some hy-
perplane for each projected dimension, and then projecting all other objects onto the line between
these pivots.

Usage

FastMap projection
fastmap(x, k = 3L, group = NULL, distfun = NULL,
transpose = FALSE, pivots = 10L, niter = 10L, verbose = NA, ...)

S3 method for class 'fastmap'
predict(object, newdata, ...)

36

Arguments

X
k
group

distfun

transpose

pivots

niter
object

newdata

verbose

Details

fastmap

A numeric matrix-like object.
The number of FastMap components to project.
Grouping variable if pivots should be guaranteed to come from different groups.

A distance function with the same usage (i.e., supports the same arguments and
return values) as rowDists or colDists.

A logical value indicating whether x should be considered transposed or not.
This only used internally to indicate whether the input matrix is (P x N) or (N x
P), and therefore extract the number of objects and their names.

The number of pivot candidates to attempt each iteration. Using more pivot
candidates can help improve the quality of the pivot selection. Using fewer can
help speed up computation.

The maximum number of iterations for selecting the pivots.
Additional options passed to distfun.

An object inheriting from fastmap.

An optional data matrix to use for the prediction.

Should progress be printed for each pivot iteration and FastMap component pro-
jection?

The pivots are initialized randomly for each new dimension, so the selection of pivots (and therefore
the resulting projection) can be sensitive to the random seed for some datasets.

A custom distance function can be passed via distfun. If not provided, then this defaults to
rowDists if transpose=FALSE or colDists if transpose=TRUE.

If a custom function is passed, it must support the same arguments and return values as rowDists

and colDists.

Value

An object of class fastmap, with the following components:

* x: The projected variable matrix.

* sdev: The standard deviations of each column of the projected matrix x.

* pivots: A matrix giving the indices of the pivots and the distances between them.

* pivot.array: A subset of the original data matrix containing only the pivots.

e distfun: The function used to generate the distance function.

Author(s)
Kylie A. Bemis

References

C. Faloutsos, and D. Lin. “FastMap: A Fast Algorithm for Indexing, Data-Mining and Visualization
of Traditional and Multimedia Datasets.” Proceedings of the 1995 ACM SIGMOD international
conference on Management of data, pp. 163 - 174, June 1995.

fetch 37

See Also

rowDists, colDists, cmdscale, prcomp

Examples

register(SerialParam())
set.seed(1)

a <- matrix(sort(runif(500)), nrow=50, ncol=10)
b <- matrix(rev(sort(runif(500))), nrow=50, ncol=10)
x <- cbind(a, b)

fm <- fastmap(x, k=2)

fetch Move Data Between Shared Memory and File Storage

Description

These are generic functions for moving data in R objects between shared memory and file storage
for sharing with other R processes.

Usage
fetch(object, ...)
flash(object, ...)
Arguments
object An object with data to move.
Additional arguments to the matter constructor, chunk_colapply, chunk_rowapply,
or chunk_lapply.
Details

The fetch methods for matter objects return new matter objects that use shared memory storage.

The flash methods for matter objects return new matter objects that use file storage.

Value

A new object (typically of the same class but not necessarily) with data in the specified storage
format.

Author(s)
Kylie A. Bemis

See Also

matter

38 filt1

Examples

set.seed(1)
X <- as.matter(runif(10))
path(x)

copy x into shared memory
y <~ fetch(x)
path(y)

copy y into file storage
z <- flash(y)
path(z)

filt1 Smoothing Filters in 1D

Description

Smooth a uniformly sampled 1D signal.

Usage

Moving average filter
filt1_ma(x, width = 5L)

Linear convolution filter
filt1_conv(x, weights)

Gaussian filter
filt1_gauss(x, width = 5L, sd = (width %/% 2) / 2)

Bilateral filter
filt1_bi(x, width = 5L, sddist = (width %/% 2) / 2,
sdrange = mad(x, na.rm = TRUE))

Bilateral filter with adaptive parameters
filt1_adapt(x, width = 5L, spar = 1)

Nonlinear diffusion
filt1_diff(x, niter = 3L, kappa = 50,
rate = .25, method = 1L)

Guided filter
filt1_guide(x, width = 5L, guide = x,
sdreg = mad(x, na.rm = TRUE))

Peak-aware guided filter
filt1_pag(x, width = 5L, guide = NULL,
sdreg = mad(x, na.rm = TRUE), ftol = 1/10)

Savitzky-Golay filter
filt1_sg(x, width = 5L, order = min(3L, width - 2L),
deriv = @, delta = 1)

filt]

Arguments

X

width

weights
sd, sddist

sdrange

spar

kappa

rate

method

niter

guide

sdreg

ftol

order
deriv

delta

Details

39

A numeric vector.

The width of the smoothing window in number of samples. Must be positive.
Must be odd.

The weights of the linear convolution kernel. Length must be odd.

The spatial parameter for kernel-based filters. This controls the strength of
smoothing for samples farther from the center of the smoothing window.

The range parameter for kernel-based filters. This controls the strength of the
smoothing for samples with signal values very different from the center of the
smoothing window.

The strength of the smoothing when calculating the adaptive bilateral filtering
parameters. The larger the number, the stronger the smoothing. Must be posi-
tive.

The constant for the conduction coefficient for nonlinear diffusion. Must be
positive.

The rate of diffusion. Must be between 0 and 0.25 for stability.

The diffusivity method, where 1 and 2 correspond to the two diffusivity func-
tions proposed by Perona and Malik (1990). For 1, this is exp(-(|grad x| /K)*2),
and 21is 1/(1+(|grad x| /K)*2). An additional method 3 implements the peak-

aware weighting 1/ (1+(| x| /K) #2), which does not use the gradient, but is used
to create the guidance signal for peak-aware guided filtering.

The number of iterations for nonlinear diffusion. Must be positive.

The guide signal for guided filtering. This is the signal used to determine the
degree of filtering for different regions of the sample. By default, it is the same
as the signal to be smoothed.

The regularization parameter for guided filtering. This is analagous to the range
parameter for kernel-based filters. Signal regions with variance much smaller
than this value are smoothed, while signal regions with varaince much larger
than this value are preserved.

Specifies how large the signal value must be before it is considered a peak,
expressed as a fraction of the maximum value in the signal.

The polynomial order for the Savitzky-Golay filter coefficients.
The order of the derivative for the Savitzky-Golay filter coefficients.
The sample spacing for the Savitzky-Golay filter. Only used if deriv > @.

filt1_ma() performs mean filtering in O(n) time. This is fast and especially useful for calculating
other filters that can be constructed as a combination of mean filters.

filt1_gauss() performs Gaussian filtering.

filt1_bi() and filt1_adapt() perform edge-preserving bilateral filtering. The latter calculates
the kernel parameters adapatively based on the local signal, using a strategy adapted from Joseph
and Periyasamy (2018).

filt1_diff() performs the nonlinear diffusion filtering of Perona and Malik (1990). Rather than
relying on a filter width, it progressively diffuses (smooths) the signal over multiple iterations. More
iterations will result in a smoother image.

40 filt1

filt1_guide() performs edge-preserving guided filtering. Guided filtering uses a local linear
model based on the structure of a so-called "guidance signal". By default, the guidance signal is
often the same as the input signal. Guided filtering performs similarly to bilateral filtering, but is
often faster (though with more memory use), as it is implemented as a combination of mean filters.

filt1_pag() performs peak-aware guided filtering using a regularization parameter that focuses on
preserving peaks rather than edges, using a strategy adapted from Liu and He (2022). By default,
the guidance signal is generated by smoothing the input signal with nonlinear diffusion.

filt1_sg() performs traditional Savitzky-Golay filtering, which uses a local least-squares polyno-
mial approximation to perform the smoothing. It reduces noise while attempting to retain the peak
shape and height.

Value

A numeric vector the same length as x with the smoothed result.

Author(s)

Kylie A. Bemis

References

J. Joseph and R. Perisamy. “An image driven bilateral filter with adaptive range and spatial param-
eters for denoising Magnetic Resonance Images.” Computers and Electrical Engineering, vol. 69,
pp- 782-795, July 2018.

P. Perona and J. Malik. “Scale-space and edge detection using anisotropic diffusion.” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 12, issue 7, pp. 629-639, July 1990.

K. He, J. Sun, and X. Tang. “Guided Image Filtering.” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 35, no. 6, pp. 1397-1409, June 2013.

D. Liu and C. He. “Peak-aware guided filtering for spectrum signal denoising.” Chemometrics and
Intelligent Laboratory Systems, vol. 222, March 2022.

A. Savitzky and M. J. E. Golay. “Smoothing and Differentiation of Data by Simplified Least Squares
Procedures.” Analytical Chemistry, vol. 36, no. 8, pp. 1627-1639, July 1964.

Examples

set.seed(1)

t <- seq(from=0, to=6 * pi, length.out=5000)
y <- sin(t) + 0.6 * sin(2.6 * t)

x <=y + runif(length(y))

xs <- filt1_gauss(x, width=25)

plot(x, type="1")
lines(xs, col="red")

filt2

41

filt2

Smoothing Filters in 2D

Description

Smooth a uniformly sampled 2D signal.

Usage

Moving average filter
filt2_ma(x, width = 5L)

Linear convolution filter
filt2_conv(x, weights)

Gaussian filter
filt2_gauss(x, width = 5L, sd = (width %/% 2) / 2)

Bilateral filter
filt2_bi(x, width = 5L, sddist = (width %/% 2) / 2,

sdrange

mad(x, na.rm = TRUE))

Bilateral filter with adaptive parameters
filt2_adapt(x, width = 5L, spar = 1)

Nonlinear diffusion
filt2_diff(x, niter = 3L, kappa = 50,
rate = 0.25, method = 1L)

Guided filter

filt2_guide(x, width = 5L, guide = x,
sdreg = mad(x, na.rm = TRUE))

Arguments

X

width

weights
sd, sddist

sdrange

spar

kappa

A numeric matrix.

The width of the smoothing window in number of samples. Must be positive.
Must be odd.

A matrix of weights for the linear convolution kernel. Dimensions must be odd.

The spatial parameter for kernel-based filters. This controls the strength of
smoothing for samples farther from the center of the smoothing window.

The range parameter for kernel-based filters. This controls the strength of the
smoothing for samples with signal values very different from the center of the
smoothing window.

The strength of the smoothing when calculating the adaptive bilateral filtering
parameters. The larger the number, the stronger the smoothing. Must be posi-
tive.

The constant for the conduction coefficient for nonlinear diffusion. Must be
positive.

42 filt2
rate The rate of diffusion. Must be between 0 and 0.25 for stability.
method The diffusivity method, where 1 and 2 correspond to the two diffusivity func-
tions proposed by Perona and Malik (1990). For 1, thisis exp(-(|grad x| /K)*2),
and 2is 1/(1+(|grad x| /K)*2).
niter The number of iterations for nonlinear diffusion. Must be positive.
guide The guide signal for guided filtering. This is the signal used to determine the
degree of filtering for different regions of the sample. By default, it is the same
as the signal to be smoothed.
sdreg The regularization parameter for guided filtering. This is analagous to the range
parameter for kernel-based filters. Signal regions with variance much smaller
than this value are smoothed, while signal regions with varaince much larger
than this value are preserved.
Details

filt2_ma() performs mean filtering in O(n) time. This is fast and especially useful for calculating
other filters that can be constructed as a combination of mean filters.

filt2_gauss() performs Gaussian filtering.

filt2_bi() and filt2_adapt() perform edge-preserving bilateral filtering. The latter calculates
the kernel parameters adapatively based on the local signal, using a strategy adapted from Joseph
and Periyasamy (2018).

filt2_diff() performs the nonlinear diffusion filtering of Perona and Malik (1990). Rather than
relying on a filter width, it progressively diffuses (smooths) the signal over multiple iterations. More
iterations will result in a smoother image.

filt2_guide() performs edge-preserving guided filtering. Guided filtering uses a local linear
model based on the structure of a so-called "guidance signal". By default, the guidance signal is
often the same as the input signal. Guided filtering performs similarly to bilateral filtering, but is
often faster (though with more memory use), as it is implemented as a combination of mean filters.

Value

A numeric matrix the same dimensions as x with the smoothed result.

Author(s)

Kylie A. Bemis

References

J. Joseph and R. Perisamy. “An image driven bilateral filter with adaptive range and spatial param-
eters for denoising Magnetic Resonance Images.” Computers and Electrical Engineering, vol. 69,
pp. 782-795, July 2018.

P. Perona and J. Malik. “Scale-space and edge detection using anisotropic diffusion.” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 12, issue 7, pp. 629-639, July 1990.

K. He, J. Sun, and X. Tang. “Guided Image Filtering.” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 35, no. 6, pp. 1397-1409, June 2013.

filtn 43

Examples

set.seed(1)

i <- seq(-4, 4, length.out=12)

j <- seq(1, 3, length.out=9)

co <- expand.grid(i=i, j=j)

x <- matrix(atan(coi / coj), nrow=12, ncol=9)
X <= 10 * (x - min(x)) / diff(range(x))

X <= x + 2.5 * runif(length(x))

xs <- filt2_gauss(x)

par(mfcol=c(1,2))
image(x, col=hcl.colors(256), main="original")
image(xs, col=hcl.colors(256), main="smoothed")

filtn Smoothing Filters using K-nearest neighbors

Description

Smooth a nonuniformly sampled signal in K-nearest neighbors.

Usage

Moving average filter
filtn_ma(x, index, k = 5L, metric = "euclidean”, p = 2)

Linear convolution filter
filtn_conv(x, index, weights, metric = "euclidean”, p = 2)

Gaussian filter
filtn_gauss(x, index, k = 5L, sd = median(r) / 2,
metric = "euclidean”, p = 2)

Bilateral filter
filtn_bi(x, index, k = 5L, sddist = median(r) / 2,
sdrange = mad(x, na.rm=TRUE), metric = "euclidean”, p = 2)

Bilateral filter with adaptive parameters
filtn_adapt(x, index, k = 5L, spar =1,

metric = "euclidean”, p = 2)
Arguments
X A numeric vector.
index A matrix or list of domain vectors giving the sampling locations of x.
k The number of K-nearest neighbors to use in the smoothing (including the sam-

ple being smoothed). Must be positive.

weights A vector of weights for the linear convolution kernel, in order from nearest to
farthest neighbors. The first weight applies to the sample being smoothed.

44

sd, sddist

sdrange

spar

metric

Details

filtn

The spatial parameter for kernel-based filters. This controls the strength of
smoothing for samples farther from the center of the smoothing window. The
default is calculated as half the median smoothing radius (i.e., the distance to
the Kth nearest neighbor).

The range parameter for kernel-based filters. This controls the strength of the
smoothing for samples with signal values very different from the center of the
smoothing window.

The strength of the smoothing when calculating the adaptive bilateral filtering
parameters. The larger the number, the stronger the smoothing. Must be posi-
tive.

Distance metric to use when finding the nearest neighbors. Supported metrics

non non

include "euclidean", "maximum", "manhattan", and "minkowski".

The power for the Minkowski distance.

These functions must first perform a K-nearest neighbors search on the sample locations (index)
before smoothing the signal (x), but they can be applied to nonuniformly sampled signals in an
arbitrary number of dimensions. The nearest neighbor search is performed using a kd-tree. It is
efficient for low dimensional signals, but performance will degrade in high dimensions. In general,
the complexity of these filters is O(k * n log(n)).

Value

A numeric vector the same dimensions as x with the smoothed result.

Author(s)

Kylie A. Bemis

References

J. Joseph and R. Perisamy. “An image driven bilateral filter with adaptive range and spatial param-
eters for denoising Magnetic Resonance Images.” Computers and Electrical Engineering, vol. 69,
pp. 782-795, July 2018.

Examples

set.seed(1)

signal intensities

X <= rlnorm(100)

3D sampling locations
index <- replicate(3, runif(100))

filtn_ma(x, index, k=5)

findpeaks

45

findpeaks

Peak Detection

Description

Find peaks in a signal based on its local maxima, as determined by a sliding window.

Usage
Find peaks

findpeaks(x, width = 5L, prominence = NULL,

snr = NULL,
relheight =

Local maxima
locmax(x, width

Local minima
locmin(x, width

Arguments

X
width

prominence

snr
noise

bounds

relheight

Details

noise = "quant”, bounds = TRUE,
0.005, ...)

= 5L)

= 5L)

A numeric vector.

The number of signal elements to consider when determining if the center of the
sliding window is a local extremum.

The minimum peak prominence used for filtering the peaks. The prominence
of a peak is the height that the peak rises above the higher of its bases (i.e., its
lowest contour line). A peak’s bases are found as the local minima between the
peak and the next higher peaks on either side.

The minimum signal-to-noise ratio used for filtering the peaks.
The method used to estimate the noise. See Details.

Whether the boundaries of each peak should be calculated and returned. A
peak’s boundaries are found as the nearest local minima on either side.

The minimum relative height (proportion of the maximum peak value) used for
filtering the peaks.

Arguments passed to the noise estimation function.

For locmax () and locmin(), a local extremum is defined as an element greater (or less) than all of
the elements within width / 2 elements to the left of it, and greater (or less) than or equal to all of
the elements within width / 2 elements to the right of it. That is, ties are resolved such that only
the leftmost sample is considered the local extremum.

For findpeaks(),

the peaks are simply the local maxima of the signal. The peak boundaries are

found by descending a local maximum until a local minimum is found on either side, using the
same criteria as above. The peaks are optionally filtered based on their prominences.

Optionally, the signal-to-noise ratio (SNR) can be estimated and used for filtering the peaks. These
use the functions estnoise_quant, estnoise_diff, estnoise_filt, etc., to estimate the noise in

the signal.

46 findpeaks_cwt

Value

For locmax () and locmin(), an logical vector indicating whether each element is a local extremum.

For findpeaks(), an integer vector giving the indices of the peaks, with attributes ’left_bounds’
and ’right_bounds’ giving the left and right boundaries of the peak as determined using the rule
above.

Author(s)
Kylie A. Bemis

See Also

findpeaks_cwt, findpeaks_knn, estnoise_quant, estnoise_sd, estnoise_mad, estnoise_diff,
estnoise_filt, peakwidths, peakareas, peakheights, binpeaks, mergepeaks

Examples

simple signal

X <-c(0, 1,1, 2,3,2,1,4,5,1,1, 0
locmax (x)

findpeaks(x)

simulated spectrum
set.seed(1)
X <- simspec(size=5000)

find peaks with snr >= 3

p <- findpeaks(x, snr=3, noise="quant")
plot(x, type="1")

points(p, x[pl, col="red")

find peaks with derivative-based noise
p <- findpeaks(x, snr=3, noise="diff")
plot(x, type="1")

points(p, x[pl, col="red")

findpeaks_cwt CWT-based Peak Detection

Description

Find peaks in a signal using continuous wavelet transform (CWT).

Usage

Find peaks with CWT

findpeaks_cwt(x, snr = 2, wavelet = ricker, scales = NULL,
maxdists = scales, ngaps = 3L, ridgelen = length(scales) %/% 4L,
gnoise = 0.95, width = length(x) %/% 20L, bounds = TRUE)

Find ridges lines in a matrix
findridges(x, maxdists, ngaps)

findpeaks_cwt 47

Continuous Wavelet Transform
cwt(x, wavelet = ricker, scales = NULL)

Arguments

X A numeric vector for findpeaks_cwt () and cwt(). A matrix of CWT coeffi-
cients for findridges().

snr The minimum signal-to-noise ratio used for filtering the peaks.

wavelet The wavelet to be convolved with the signal. Must be a function that takes two
arguments: the number of points in the wavelet n as the first argument and the
scale a of the wavelet as the second argument. The default ricker () function
satisfies this.

scales The scales at which to perform CWT. A reasonable sequence is generated auto-
matically if not provided.

maxdists The maximum allowed shift distance between local maxima allowed when con-
necting maxima into ridge lines. Should be a vector the same length as scales.

ngaps The number of gaps allowed in a ridge line before it is removed from the search
space.

ridgelen The minimum ridge length allowed when filtering peaks.

gnoise The quantile of the CWT coefficients at the smallest scale used to estimate the
noise.

width The width of the rolling estimation of noise quantile.

bounds Whether the boundaries of each peak should be calculated and returned. A
peak’s boundaries are found as the nearest local minima on either side.

Details

findpeaks_cwt () uses the peak detection method based on continuous wavelet transform (CWT)
proposed by Du, Kibbe, and Lin (2006).

The raw signal is convolved with a wavelet (by default, a Ricker wavelet is used) at a range of
different scales. This produces a matrix of CWT coefficients with a number of rows equal to the
length of the original signal and each column representing a different scale of convolution.

The convolution at the smallest scales represent a good estimate of noise and peak location. The
larger scales represent a smoother signal where larger peaks are prominent and smaller peaks are
removed.

The method proceeds by identifying ridge lines in the CWT coefficient matrix using findridges().
Local maxima are identified at each scale and connected across each scale, forming the ridge lines.

Finally, the local noise is estimated from the CWT coefficients at the smallest scale. The peaks are
filtered based on signal-to-noise ratio and the length of their ridge lines.

Value

For findpeaks_cwt (), an integer vector giving the indices of the peaks, with attributes ’left_bounds’
and ’right_bounds’ giving the left and right boundaries of the peak as determined using the rule
above.

For findridges(), a list of matrices giving the row and column indices of the entries of each
detected ridge line.

48 findpeaks_knn

Author(s)

Kylie A. Bemis

See Also

findpeaks, peakwidths, peakareas, peakheights, binpeaks, mergepeaks

Examples

simple signal

x <-c(0,1,1,2,3,2,1, 4,5, 1,1, 0)
locmax(x)

findpeaks(x)

simulated spectrum
set.seed(1)
X <- simspec(size=5000)

find peaks with snr >= 3
p <- findpeaks_cwt(x, snr=3)
plot(x, type="1")

points(p, x[pl, col="red")

plot ridges

ridges <- attr(p, "ridges")

plot(c(@, length(x)), c(@, 25), type="n")
for (ri in ridges)

n.n

lines(ri, type="0", pch=20, cex=0.5)

findpeaks_knn Peak Detection using K-nearest neighbors

Description

Find peaks in a signal based on its local maxima, as determined by K-nearest neighbors.

Usage

Find peaks with KNN

findpeaks_knn(x, index, k = 5L,
snr = NULL, noise = "quant”, relheight = 0.005,
arr.ind = is.array(x), useNames = TRUE, ...)

Local maxima
knnmax(x, index, k

5L)

Local minima
knnmin(x, index, k

5L)

findpeaks_knn 49

Arguments
X A numeric vector or array.
index A matrix or list of domain vectors giving the sampling locations of x if it is a
multidimensional signal. May be omitted if x is an array.
k The number of nearest neighbors to consider when determining whether a sam-
ple is a local extremum.
snr The minimum signal-to-noise ratio used for filtering the peaks.
noise The method used to estimate the noise. See Details.
relheight The minimum relative height (proportion of the maximum peak value) used for
filtering the peaks.
arr.ind Should array indices be returned? Otherwise, return linear indices.
useNames Passed to arrayInd.
Arguments passed to the noise estimation function.
Details

For knnmax () and knnmin(), a local extremum is defined as an element greater (or less) than all
of its nearest neighbors with a lesser index, and greater (or less) than or equal to all of its nearest
neighbors with a greater or equal index. That is, ties are resolved such that the sample with the
lowest index is considered the local extremum.

For findpeaks_knn(), the peaks are simply the local maxima of the signal. The peaks are option-
ally filtered based on their relative heights.

Optionally, the signal-to-noise ratio (SNR) can be estimated and used for filtering the peaks. These
use the functions estnoise_quant, estnoise_diff, estnoise_filt, etc., to estimate the noise in
the signal.

Value

For knnmax () and knnmin(), an logical vector or array indicating whether each element is a local
extremum.

For findpeaks_knn(), an integer vector (or matrix if arr.ind=TRUE) giving the indices of the
peaks.

Author(s)
Kylie A. Bemis

See Also

findpeaks, estnoise_quant, estnoise_sd, estnoise_mad, estnoise_diff, estnoise_filt

Examples

simple 2D signal

x <= c(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 0, 0, 1, @0, @0, 0, 1, 1, @0, @0, @0, 0, 1, O,
0, 0, 0, 2, 0, 0, 1, 4, 2, 0, 1, 1, 0, 0, o,
0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, O,
0, 0, 0, 0, 1, 3, 3, 0, 0, 1, 4, 4, 3, 1, 0

’

50 inpoly

0
0

- o

X <- ma

find peaks in 2D using KNN
findpeaks_knn(x)

inpoly Point in polygon

Description

Check if a series of x-y points are contained in a closed 2D polygon.

Usage

inpoly(points, poly)

Arguments

points A 2-column numeric matrix with the points to check.

poly A 2-column numeric matrix with the vertices of the polygon.
Details

This function works by extending a horizontal ray from each point and counting the number of
times it crosses an edge of the polygon.

Value

A logical vector that is TRUE for points that are fully inside the polygon, a vertex, or on an edge, and
FALSE for points fully outside the polygon.

Note

There are various public implementations of this function with no clear original source. The version
implemented here is loosely based on code by W. Randolph Franklin with modifications so that
vertices and points on edges are considered inside the polygon.

Author(s)
W. R. Franklin and Kylie A. Bemis

References

W. R. Franklin. “PNPOLY - Point Inclusion in Polygon Test.” https://wrfranklin.org/Research/Short_Notes/pnpoly.html,
1970.

M. Shimrat, "Algorithm 112, Position of Point Relative to Polygon", Comm. ACM 5(8), pp. 434,
Aug 1962.

E. Haines. “Point in Polygon Strategies.” http://www.acm.org/pubs/tog/editors/erich/ptinpoly/,
1994.

iQuote

See Also

kdsearch

Examples

poly <- data.frame(
x=c(3,5,5,3),
y=c(3,3,5,5))

xy <- data.frame(
x=c(4,6,4,2,3,

ref=c(
rep("out”, 4),
rep("vertex", 4),
rep("edge", 4),
rep("in”, 4)))

xy$test <- inpoly(xy[,1:2], poly)
Xy

51

iQuote Quote Identifiers

Description

Quote strings representing variable identifiers with backticks for use in formulas.

Usage
iQuote(x, g = "™")

Arguments
X An object coercible to a character vector.
q The kind of quotes to be used.

Value

A character vector of the same length as x.

Author(s)

Kylie A. Bemis

See Also

sQuote, dQuote

52 isofun

Examples

x1 <- "This is a non-syntactic variable name”
x2 <- "This is another variable name”

fm <- paste@(iQuote(x1), "~", iQuote(x2))
as.formula(fm)

isofun Isolate Closures for Serialization

Description

These functions modify the environment of a function to isolate a closure from its original environ-
ment.

Usage

isofun(fun, envir = baseenv())

isoclos(fun, envir = baseenv())

Arguments

fun A function to isolate.

envir The new parent environment for the closure.
Details

A common challenge with parallel programming in R is unintentionally serializing large environ-
ments that have been captured by closures. The functions isofun and isoclos provide straight-
forward ways to isolate functions and closures from their original parent environments which may
contain large objects.

isofun simply replaces the environment of fun with envir, which defaults to the base environment.
This is appropriate for simple functions that do not need to enclose any variables, instead taking all
of their inputs as formal arguments.

isoclos creates a new closure that is isolated from fun’s original environment. All objects in
environment(fun) are first copied into a new environment with parent envir, and then this new
environment is assigned to fun.

Note that the default envir=baseenv() means that any functions not in the base environment must
be fully qualified (e.g., stats: : sd versus sd).

Value

A new function or closure, isolated from environment (fun).

Author(s)
Kylie A. Bemis

See Also

environment

knnsearch

Examples

53

register(SerialParam())

bigfun <- function(x)

{

isolate

'smallfun' from 'x

smallfun <- isofun(function(xi) {
(xi - mean(xi)) / stats::sd(xi)

b

chunkApply(x, 2L, smallfun)

}

set.seed(1)

X <- matrix(runif(100), nrow=10, ncol=10)

bigfun(x)

knnsearch

K-Dimensional Nearest Neighbor Search

Description

Search a matrix of K-dimensional data points and return the indices of the nearest neighbors or of
all data points that are within a specified tolerance in each dimension.

Usage

Nearest neighbor search
knnsearch(x, data, k = 1L, metric = "euclidean”, p = 2)

Range search

kdsearch(x, data, tol = @, tol.ref = "abs")

K-D tree
kdtree(data)

Arguments

X

data

k

metric

p
tol

tol.ref

A numeric matrix of coordinates to be matched. Each column should represent
a dimension. Each row should be a query point.

Either a kdtree object returned by kdtree(), or a numeric matrix of coordi-
nates to search, where each column is a different dimension. If this is missing,
then the query x will be used as the data.

The number of nearest neighbors to find for each point (row) in x.

Distance metric to use when finding the nearest neighbors. Supported metrics

non non

include "euclidean", "maximum", "manhattan", and "minkowski".
The power for the Minkowski distance.

The tolerance for finding neighboring points in each dimension. May be a vector
with the same length as the number of dimensions. Must be positive.

One of "abs’, °’x’, or ’y’. If "abs’, then comparison is done by taking the abso-
lute difference. If either ’x’ or ’y’, then relative differences are used, and this
specifies which to use as the reference (target) value.

54 matter-class

Details

knnsearch() performs k-nearest neighbor searches. kdsearch() performs range searches for
points within a given tolerance of the query points.

The algorithms are implemented in C and work by building a kd-tree to perform the search. If
multiple calls to kdsearch() or knnsearch() are expected on the same data, it can be much faster
to build the tree once with kdtree().

A kd-tree is essentially a multidimensional generalization of a binary search tree. Building the
search tree is O(n * log n) and searching for a single data point is O(log n).

For knnsearch (), ties are broken based on the original ordering of the rows in data.

Value

For knnsearch(), a matrix with rows equal to the number of rows of x and columns equal to k
giving the indices of the k-nearest neighbors.

For kdsearch(), a list with length equal to the number of rows of x, where each list element is a
vector of indexes of the matches in data.

Author(s)
Kylie A. Bemis

See Also

bsearch, approx2,

Examples

d <- expand.grid(x=1:10, y=1:10)
X <= rbind(c(1.11, 2.22), c(3.33, 4.44))

knnsearch(x, d, k=3)

matter-class Vectors, Matrices, and Arrays Stored in Virtual Memory

Description

The matter class and its subclasses are designed for easy on-demand read/write access to virtual
memory data structures stored in files and/or shared memory and allow working with them as vec-
tors, matrices, arrays, and lists.

Usage

Instance creation
matter(data, ...)

Check if an object is a matter object
is.matter(x)

Coerce an object to a matter object

matter-class 55

as.matter(x)

Check if an object uses shared memory
is.shared(x)

Coerce an object to use shared memory
as.shared(x)

Additional methods documented below

Arguments
data Data passed to the subclasse constructor.
Arguments passed to subclasses.
X An object to check if it is a matter object or coerce to a matter object.
Value

An object of class matter.

Slots
data: This slot stores any information necessary to access the data for the object (which may
include the data itself and/or paths to file locations, etc.).

type: The storage mode of the accessed data when read into R. This is a ’factor’ with levels 'raw’,
"logical’, ’integer’, ‘numeric’, or ’character’.

dim: Either "NULL for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either ’"NULL’ or the names for the dimensions. If not 'NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
"NULL for vectors.

Creating Objects
matter is a virtual class and cannot be instantiated directly, but instances of its subclasses can be
created through matter ().

Methods
Class-specific methods:

atomdata(x): Access the ’data’ slot.

adata(x): An alias for atomdata(x).

type(x), type(x) <- value: Get or set data ’type’.
Standard generic methods:

length(x), length(x) <- value: Get or set length.
dim(x), dim(x) <- value: Get or set 'dim’.
names(x), names(x) <- value: Get or set 'names’.

dimnames(x), dimnames(x) <- value: Get or set ’"dimnames’.

56 matter-options

Author(s)

Kylie A. Bemis

See Also

matter_arr, matter_mat, matter_vec, matter_fct, matter_list, matter_str

Examples

Create a matter_vec vector
x <- matter(1:100, length=100)
X

Create a matter_mat matrix
y <- matter(1:100, nrow=10, ncol=10)
y

matter-options Options for “matter” Objects

Description

Set global parameters for matter.

Usage

Set defaults for common arguments
matter_defaults(nchunks = 20L, chunksize = NA_real_,
serialize = NA, verbose = FALSE)

Arguments

nchunks The number of chunks to use for chunk processing (e.g., in chunkApply. This
sets getOption("matter.default.nchunks"). For I0-bound operations, us-
ing fewer chunks will often be faster, but use more memory.

chunksize The approximate chunk size in bytes for chunk processing (e.g., in chunkApply.
This sets getOption("matter.default.chunksize"). For IO-bound opera-
tions, using larger chunks will often be faster, but use more memory. If set to
NA_real_, then the chunk size is determined by the number of chunks.

serialize Whether data in virtual memory should be realized on the manager and seri-

alized to the workers (TRUE), passed to the workers in virtual memory as-is
(FALSE), or if matter should decide the behavior based on the cluster configura-
tion (NA). This sets getOption("matter.default.serialize”). If all work-
ers have access to the same virtual memory resources (whether file storage or
shared memory), then it can be significantly faster to avoid serializing the data.

verbose Whether progress messages should be printed. This sets getOption("matter.default.verbose™).

matter-options 57

Details

The matter package provides the following options:

options(matter.compress.atoms=3): The compression ratio threshold to be used to deter-
mine when to compress atoms in a matter object. Setting to O or FALSE means that atoms are
never compressed.

options(matter.default.nchunks=20L): The default number of chunks to use when iter-
ating over matter objects. For IO-bound operations, using fewer chunks will often be faster,
but use more memory.

options(matter.default.chunksize=NA_real_): The default chunk size in bytes to use
when iterating over matter objects. For IO-bound operations, using larger chunks will often
be faster, but use more memory. If set to NA_real_, then the chunk size is determined by the
number of chunks.

options(matter.default.serialize=NA): Whether virtual memory chunks should be re-
alized on the manager and serialized to the workers (TRUE), passed to the workers as-is FALSE,
or if matter should decide based on the cluster configuration (NA). If all workers have access
to the same virtual memory resources (whether file storage or shared memory), then it can be
significantly faster to avoid serializing the data.

options(matter.default.verbose=FALSE): The default verbosity for printing progress mes-
sages.

options(matter.matmul.bpparam=NULL): An optional BiocParallelParampassed to bplapply
when performing matrix multiplication with matter_mat and sparse_mat objects.

options(matter.show.head=TRUE): Should a preview of the beginning of the data be dis-
played when the object is printed?

options(matter.show.head.n=6): The number of elements, rows, and/or columns to be
displayed by the object preview.

options(matter.coerce.altrep=FALSE): When coercing matter objects to native R ob-
jects (such as matrix), should a matter-backed ALTREP object be returned instead? The
initial coercion will be cheap, and the result will look like a native R object. This does not
guarantee that the full data is never read into memory. Not all functions are ALTREP-aware
at the C-level, so some operations may still trigger the full data to be read into memory. This
should only ever happen once, as long as the object is not duplicated, though.

options(matter.wrap.altrep=FALSE): When coercing to a matter-backed ALTREP ob-
ject, should the object be wrapped in an ALTREP wrapper? (This is always done in cases
where the coercion preserves existing attributes.) This allows setting of attributes without
triggering a (potentially expensive) duplication of the object when safe to do so.

options(matter.temp.dir=tempdir()): Temporary directory where anonymous matter
object files (i.e., those created with path=NULL) should be created.

options(matter.temp.gc=TRUE): If TRUE, then anonymous matter object files (i.e., those
created with path=NULL) are automatically cleaned up when all R objects referencing them
have been garbage collected. If FALSE, then they are only removed at the end of the R session
(and only if they are in R’s default temporary directory).

58 matter-types

matter-types Data Types for “matter” Objects

Description

The matter package defines a number of data types for translating between data elements stored in
virtual memory and data elements loaded into R. These are typically set and stored via the datamode
argument and slot.

At the R level, matter objects may be any of the following data modes:

* raw: matter objects of this mode are typically vectors of raw bytes.
* logical: matter object represented logical vector in R.

* integer: matter objects represented as integer vectors in R.

* numeric: matter objects represented as double vectors in R.

* character: matter objects representated as character vectors in R.

» list: Not used. This type exists for inferring conversions between R types and C types, but
matter_list objects instead report the types of their elements.

In virtual memory, matter objects may be composed of atomic units of the following data types:

* char: 8-bit signed integer; defined as char.

* uchar: 8-bit unsigned integer; used for ‘Rbyte’ or ‘raw’; defined as unsigned char.

* int16: 16-bit signed integer; defined as int16_t. May be aliased as ‘short’ and ‘16-bit
integer’.

* uint16: 16-bit unsigned integer; defined as uint16_t. May be aliased as ‘ushort’ and ‘16-bit
unsigned integer’.

* int32: 32-bit signed integer; defined as int32_t. May be aliased as ‘int’ and ‘32-bit integer’.

* uint32: 32-bit unsigned integer; defined as uint32_t. May be aliased as ‘uint’ and ‘32-bit
unsigned integer’.

* int64: 64-bit signed integer; defined as int64_t. May be aliased as ‘long’ and ‘64-bit inte-

s

ger’.

* uint64: 64-bit unsigned integer; defined as uint64_t. May be aliased as ‘ulong’ and ‘64-bit
unsigned integer’.

e float32: 32-bit float; defined as float. May be aliased as ‘float” and ‘32-bit float’.
* float64: 64-bit float; defined as double. May be aliased as ‘double’ and ‘64-bit float’.

While a substantial effort is made to coerce data elements properly between data types, sometimes
this cannot be done losslessly. Loss of precision is silent, while values outside of the representable
range will generate a warning (sometimes many such warnings) and will be set to NA if available or
0 otherwise.

Note that the unsigned data types do not support NA; coercion between signed integer types attempts
to preserve missingness. The special values NaN, Inf, and -Inf are only supported by the floating-
point types, and will be set to NA for signed integral types, and to @ for unsigned integral types.

matter-utils 59

matter-utils Internal Utilities for “matter” Package

Description

Low-level utility functions, classes, and data defined in the matter package that are exported for
developer use only. They are not intended to be used directly.

matter_arr-class Out-of-Core Arrays

Description

The matter_arr class implements out-of-core arrays.

Usage

Instance creation

matter_arr(data, type = "double"”, path = NULL,
dim = NA_integer_, dimnames = NULL, offset = @, extent = NA_real_,
readonly = NA, append = FALSE, rowMaj = FALSE, ...)

matter_mat(data, type = "double”, path = NULL,
nrow = NA_integer_, ncol = NA_integer_, dimnames = NULL,
offset = @, extent = NA_real_, readonly = NA,
append = FALSE, rowMaj = FALSE, ...)

matter_vec(data, type = "double"”, path = NULL,
length = NA_integer_, names = NULL, offset = @, extent = NA_real_,
readonly = NA, append = FALSE, rowMaj = FALSE, ...)

Additional methods documented below

Arguments
data An optional data vector which will be initially written to virtual memory if pro-
vided.
type A ’character’ vector giving the storage mode of the data in virtual memory. See
?"matter-types” for possible values.
path A ’character’ vector of the path(s) to the file(s) where the data are stored. If

NULL, then a temporary file is created using tempfile, which will be managed
according the getOption("matter. temp.gc").
dim, nrow, ncol, length

The dimensions of the array, or the number of rows and columns, or the length.

dimnames, names The names of the matrix dimensions or vector elements.

offset A vector giving the offsets in number of bytes from the beginning of each file in
"path’, specifying the start of the data to be accessed for each file.

60

matter_arr-class

extent A vector giving the length of the data for each file in ’path’, specifying the
number of elements of size 'type’ to be accessed from each file.

readonly Whether the data and file(s) should be treated as read-only or read/write.

append If TRUE, then all offsets will be adjusted to be from the end-of-file (for all files in

path), and readonly will be set to FALSE.

rowMaj Whether the data is stored in row-major or column-major order. The default is
to use column-major order, which is the same as native R matrices.

Additional arguments to be passed to constructor.

Value

An object of class matter_arr.

Slots

data: This slot stores any information necessary to access the data for the object (which may
include the data itself and/or paths to file locations, etc.).

type: The storage mode of the accessed data when read into R. This is a ’factor’ with levels ‘raw’,
"logical’, ’integer’, ‘numeric’, or ’character’.

dim: Either 'NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either ’NULL’ or the names for the dimensions. If not 'NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
’NULL for vectors.

ops: Deferred arithmetic operations.

transpose: Indicates whether the data is stored in row-major order (TRUE) or column-major order
(FALSE). For a matrix, switching the order that the data is read is equivalent to transposing
the matrix (without changing any data).

indexed: For matter_mat only. Indicates whether the pointers to rows or columns are indexed for
quick access or not.

Extends

matter

Creating Objects

matter_arr instances can be created through matter_arr() or matter(). Matrices and vectors
can also be created through matter_mat () and matter_vec().

Methods

Class-specific methods:

path(x), path(x) <- value: Get or set the data source names, i.e., file path(s).
fetch(x, ...): Pull data into shared memory.

flash(x, ...): Push data to a temporary file.

Standard generic methods:

matter_fct-class 61

length(x), length(x) <- value: Get or set length.

dim(x), dim(x) <- value: Get or set 'dim’.

names(x), names(x) <- value: Get or set 'names’.

dimnames(x), dimnames(x) <- value: Get or set ’dimnames’.
x[...], x[...]<-value: Get or set the elements of the array.
as.vector(x): Coerce to a vector.

as.array(x): Coerce to an array.

cbind(x, ...), rbind(x, ...): Combine matrices by row or column.

t(x): Transpose a matrix. This is a quick operation which only changes metadata and does not
touch the data representation.

rowMaj(x): Check the data orientation.

Author(s)
Kylie A. Bemis

See Also

matter

Examples

x <- matter_arr(1:1000, dim=c(10,10,10))
X

matter_fct-class Out-of-Core Factors

Description

The matter_fct class implements out-of-core factors.

Usage

Instance creation

matter_fct(data, levels, type = typeof(levels), path = NULL,
length = NA_integer_, names = NULL, offset = @, extent = NA_real_,
readonly = NA, append = FALSE, labels = as.character(levels), ...)

Additional methods documented below

Arguments
data An optional data vector which will be initially written to the data in virtual
memory if provided.
levels The levels of the factor. These should be of the same type as the data. (Use
labels for the string representation of the levels.)
type A ’character’ vector giving the storage mode of the data in virtual memory. See

?"matter-types” for possible values.

62

path

length

names
offset

extent

readonly

append

labels

Value

matter_fct-class

A ’character’ vector of the path(s) to the file(s) where the data are stored. If
NULL, then a temporary file is created using tempfile, which will be managed
according the getOption("matter.temp.gc").

The length of the factor.
The names of the data elements.

A vector giving the offsets in number of bytes from the beginning of each file in
“path’, specifying the start of the data to be accessed for each file.

A vector giving the length of the data for each file in ’path’, specifying the
number of elements of size ’type’ to be accessed from each file.

Whether the data and file(s) should be treated as read-only or read/write.

If TRUE, then all offsets will be adjusted to be from the end-of-file (for all files in
path), and readonly will be set to FALSE.

An optional character vector of labels for the factor levels.

Additional arguments to be passed to constructor.

An object of class matter_fct.

Slots

data: This slot stores any information necessary to access the data for the object (which may
include the data itself and/or paths to file locations, etc.).

type: The storage mode of the accessed data when read into R. This is a ’factor’ with levels ‘raw’,
"logical’, "integer’, *numeric’, or ’character’.

dim: Either "NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either ’"NULL’ or the names for the dimensions. If not 'NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
"NULL’ for vectors.

levels: The levels of the factor.
labels: The labels for the levels.

Extends

matter, matter_vec

Creating Objects

matter_fct instances can be created through matter_fct() or matter().

Methods

Standard generic methods:

length(x), length(x) <- value: Get or set length.

names(x), names(x) <- value: Get or set 'names’.

x[i], x[i] <- value: Get or set the elements of the factor.

levels(x), levels(x) <- value: Get or set the levels of the factor.

matter_list-class

Author(s)

Kylie A. Bemis

See Also

63

matter, matter_vec

Examples

x <- matter_fct(rep(c("a"”, "a", "b"), 5), levels=c("a", "b", "c"))

X

matter_list-class Out-of-Core Lists of Vectors

Description

The matter_list class implements out-of-core lists.

Usage

Instance creation
matter_list(data, type = "double”, path = NULL,

lengths

NA_integer_, names = NULL, offset = @, extent = NA_real_,

readonly = NA, append = FALSE, ...)

Additional methods documented below

Arguments

data

type

path

lengths

names

offset

extent

readonly

append

An optional data vector which will be initially written to virtual memory if pro-
vided.

A ’character’ vector giving the storage mode of the data in virtual memory. See
?"matter-types" for possible values.

A ’character’ vector of the path(s) to the file(s) where the data are stored. If
NULL, then a temporary file is created using tempfile, which will be managed
according the getOption("matter. temp.gc").

The lengths of the list elements.
The names of the list elements.

A vector giving the offsets in number of bytes from the beginning of each file in
"path’, specifying the start of the data to be accessed for each file.

A vector giving the length of the data for each file in ’path’, specifying the
number of elements of size ’type’ to be accessed from each file.

Whether the data and file(s) should be treated as read-only or read/write.

If TRUE, then all offsets will be adjusted to be from the end-of-file (for all files in
path), and readonly will be set to FALSE.

Additional arguments to be passed to constructor.

64 matter_list-class

Value

An object of class matter_list.

Slots

data: This slot stores any information necessary to access the data for the object (which may
include the data itself and/or paths to file locations, etc.).

type: The storage mode of the accessed data when read into R. This is a ’factor’ with levels ‘raw’,
’logical’, ’integer’, ‘'numeric’, or ’character’.

dim: Either "NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.
dimnames: Either 'NULL’ or the names for the dimensions. If not 'NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
"NULL for vectors.
Extends

matter

Creating Objects

matter_list instances can be created through matter_list() or matter().

Methods

Class-specific methods:

path(x), path(x) <- value: Get or set the data source names, i.e., file path(s).
fetch(x, ...): Pull data into shared memory.

flash(x, ...): Push data to a temporary file.
Standard generic methods:

x[[i]]1, xC[il] <- value: Get or set a single element of the list.
x[[i, j11: Get the jth sub-elements of the ith element of the list.
x[1], x[i] <- value: Get or set the ith elements of the list.

lengths(x): Get the lengths of all elements in the list.

Author(s)

Kylie A. Bemis

See Also

matter

matter_str-class

Examples

65

x <- matter_list(list(c(TRUE,FALSE), 1:5, c(1.11, 2.22, 3.33)), lengths=c(2,5,3))

x[]
x[1]
x[[11]1]

x[[3,11]
x[[2,1:3]]

matter_str-class

Out-of-Core Strings

Description

The matter_str class implements out-of-core strings.

Usage

Instance creation

matter_str(data, encoding, type = "character”, path = NULL,
nchar = NA_integer_, names = NULL, offset = @, extent = NA_real_,
readonly = NA, append = FALSE, ...)

Additional methods documented below

Arguments

data

encoding

type

path

nchar

names
offset

extent

readonly

append

Value

An optional data vector which will be initially written to virtual memory if pro-
vided.

The character encoding to use (if known).

A ’character’ vector giving the storage mode of the data in virtual memory. See
?"matter-types" for possible values.

A ’character’ vector of the path(s) to the file(s) where the data are stored. If
NULL, then a temporary file is created using tempfile, which will be managed
according the getOption("matter.temp.gc").

A vector giving the length of each element of the character vector.
The names of the data elements.

A vector giving the offsets in number of bytes from the beginning of each file in
"path’, specifying the start of the data to be accessed for each file.

A vector giving the length of the data for each file in ’path’, specifying the
number of elements of size 'type’ to be accessed from each file.

Whether the data and file(s) should be treated as read-only or read/write.

If TRUE, then all offsets will be adjusted to be from the end-of-file (for all files in
path), and readonly will be set to FALSE.

Additional arguments to be passed to constructor.

An object of class matter_str.

66 matter_str-class

Slots

data: This slot stores any information necessary to access the data for the object (which may
include the data itself and/or paths to file locations, etc.).

type: The storage mode of the accessed data when read into R. This is a *factor’ with levels 'raw’,
"logical’, ’integer’, ‘numeric’, or ’character’.

dim: Either 'NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either ’NULL’ or the names for the dimensions. If not 'NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
"NULL’ for vectors.

encoding: The string encoding used.

Extends

matter, matter_list

Creating Objects

matter_str instances can be created through matter_str() or matter().

Methods

Standard generic methods:

x[1], x[1] <- value: Get or set the string elements of the vector.

lengths(x): Get the number of characters (in bytes) of all string elements in the vector.

Author(s)

Kylie A. Bemis

See Also

matter

Examples

x <- matter_str(rep(c(”"hello”, "world!"), 50))
X

mem 67

mem Monitor Memory Use

Description

These are utility functions for checking memory used by R and matter in the current session and/or
during the timed execution of an expression.

Usage
mem(x, reset = FALSE)

memcl(cl = bpparam(), reset = FALSE)

memtime(expr, verbose = NA, BPPARAM = NULL)

Arguments
X An object, to summarize how much memory it is using.
reset Should the maximum memory values be reset?
expr An expression to be evaluated.
verbose Should timing messages be printed?
cl, BPPARAM A cluster or a SnowParam object with a cluster backend. Used to collect
memory usage from the cluster during timing.
Details

These functions summarize the memory used by both traditional R objects and out-of-memory
matter objects. "Real" memory managed by R is summarized using gc. "Virtual" memory managed
by matter includes shared memory allocated by matter and temporary files created by matter in
getOption("matter.temp.dir").

For timing parallel code, it is useful to use memtime in combination with its BPPARAM argument to
monitor the amount of memory used by the cluster.

Value

For mem called with an x argument, a named vector summarizing the memory and storage used by
the object. The named elements include:

* "real”: The amount of R memory used.
* "shared"”: The amount of shared memory used.
e "virtual”: The amount of virtual memory used, including both file storage and shared mem-

ory.

For mem called without an x argument, a named vector summarizing the memory and storage used
by the current R session. The named elements include:

* "real”: The amount of R memory used.

* "shared"”: The amount of shared memory used.

68 mi_learn

* "max real”: The maximum amount of R memory used since the last reset.

* "max shared"”: The maximum amount of shared memory used since the last reset.

» "temp": The total size of temporary files managed by matter in getOption("matter.temp.dir").
For memcl, a data frame with columns corresponding to the elements described above and rows
corresponding to cluster nodes.

For memtime, a list including:

* "start”: Memory use at the start of timing.
* "end"”: Memory use at the end of timing.
e "cluser”: (Optional.) A summary of the memory used by the cluster if BPPARAM is specified.

* "overhead": The amount of "real" memory used during the execution of expr that is freed
by the end of timing.

* "change": The difference in "real" memory used before and after timing.

» "total": For the current R session, the sum of "max real" and "max shared" memory used and
total cluster memory used. For a cluster, the sum of "max real" memory used by all workers
(not including shared memory or the managing R process).

e "time": The execution time.

Author(s)
Kylie A. Bemis

See Also
gc
Examples
x <- 1:100
mem(x)

memtime(mean(x + 1))

mi_learn Multiple Instance Learning

Description

Multiple instance learning is a strategy for training classifiers when the class labels are observed
at a coarser level than the individual data points. For example, if an entire image is classified as
"positive" or "negative" but the classifier is trained and predicts at the pixel level.

Usage

mi_learn(fn, x, y, bags, pos = 1L, ...,
score = fitted, threshold = .01, verbose = NA)

mi_learn

Arguments

fn

X

y
bags

pos

score

threshold

verbose

Details

69

The function used to train the classifier.
The data matrix.

The response. This can be the same length as the data, or the same length as the
number of bags. Must have exactly two levels when coerced to a factor.

The bags to which the data points belong. The class labels are observed per-bag
rather than per data point.

The positive class label, as a string matching one of the levels of y, or the index
of the level.

Additional options passed to fn.
The function used to extract the scores for prediction.

The stopping criterion. The learning stops when the proportion of updated labels
between iterations is less than this value.

Should progress be printed for each iteration? Nor passed to fn.

This is a generic wrapper for applying a multiple instance learning strategy for any classifier that
satisfies certain criteria. The labels must be binary (positive and negative).

The multiple instance learning algorithm here assumes that if a single data point is positive, then
the entire bag to which it belongs is labeled as positive. For example, if a single pixel in an image
indicates the presence of disease, then the entire image is labeled as disease.

The model returned by fn must support returning either a vector of probabilities or a 2-column
score matrix when passed to score.

Value

A model object returned by fn.

Author(s)
Kylie A. Bemis

References

D. Guo, M. C. Foell, V. Volkmann, K. Enderle-Ammour, P. Bronsert, O. Shilling, and O. Vitek.
“Deep multiple instance learning classifies subtissue locations in mass spectrometry images from
tissue-level annotations.” Bioinformatics, vol. 36, issue Supplement_1, pp. 1300-i308, 2020.

See Also

nscentroids

Examples

register(SerialParam())

set.seed(1)
n <- 100
p<-5
g<-5

bags <- rep(paste@(”s", seq_len(g)), each=n %/% g)

70

nnmf

bags <- factor(rep_len(bags, n))
x <= matrix(rnorm(n * p), nrow=n, ncol=p)
colnames(x) <- paste@("x", seqg_len(p))

create bagged labels
y <- ifelse(bags %in% c("s1", "s2", "s3"), "pos", "neg")
y <- factor(y, levels=c("pos”, "neg"))

ipos <- which(y == "pos")
ineg <- which(y == "neg")
z<-y

create "true"” labels (with some within-bag noise)

z[ipos] <- sample(c("pos”, "neg"), length(ipos), replace=TRUE)
jpos <- which(z == "pos")

jneg <- which(z == "neg")

create data
x[jpos,] <- x[jpos,] + rnorm(p * length(jpos), mean=1)
x[jneg,] <- x[jneg,] - rnorm(p * length(jneg), mean=1)

fit ordinary NSC and mi-NSC
fit@ <- nscentroids(x=x, y=y)
fitl <- mi_learn(nscentroids, x=x, y=y, bags=bags, priors=1)

improved performance on "true"” labels
mean(fitted(fit@, "class") == z)
mean(fitted(fit1, "class”) == z)

nnmf Nonnegative Matrix Factorization

Description

Nonnegative matrix factorization (NMF) decomposes a nonnegative data matrix into a matrix of ba-
sis variables and a matrix of activations (or coefficients). The factorization is approximate and may
be less accurate than alternative methods such as PCA, but can greatly improve the interpretability
of the reduced dimensions.

Usage

Alternating least squares
nnmf_als(x, k = 3L, niter = 100L, transpose = FALSE,
eps = 1le-9, tol = 1e-5, verbose = NA, ...)

Multiplicative updates
nnmf_mult(x, k = 3L, niter = 100L, cost = c("euclidean”, "KL", "IS"),
transpose = FALSE, eps = 1e-9, tol = 1e-5, verbose = NA, ...)

S3 method for class 'nnmf'
predict(object, newdata, ...)

Nonnegative double SVD
nndsvd(x, k = 3L, ...)

nnmf 71

Arguments

X A nonnegative matrix.

k The number of NMF components to extract.

niter The maximum number of iterations.

transpose A logical value indicating whether x should be considered transposed or not.
This can be useful if the input matrix is (P x N) instead of (N x P) and storing the
transpose is expensive. This is not necessary for matter_mat and sparse_mat
objects, but can be useful for large in-memory (P x N) matrices.

eps A small regularization parameter to prevent singularities.

tol The tolerance for convergence, as measured by the Frobenius norm of the dif-
ferences between the W and H matrices in successive iterations.

verbose Should progress be printed for each iteration?

cost The cost function (i.e., error measure between the reconstructed matrix and
original x) to optimize, where ’euclidean’ is the Frobenius norm, KL’ is the
Kullback-Leibler divergence, and ’IS’ is the Itakura-Saito divergence. See De-
tails.
Additional options passed to irlba.

object An object inheriting from nmf.

newdata An optional data matrix to use for the prediction.

Details

These functions implement nonnegative matrix factorization (NMF) using either alternating least
squares as described by Berry at al. (2007) or multiplicative updates from Lee and Seung (2000)
and further described by Burred (2014). The algorithms are initialized using nonnegative double
singular value decomposition (NNDSVD) from Boutsidis and Gallopoulos (2008).

The algorithm using multiplicative updates (nnmf_mult()) tends to be more stable but converges
more slowly. The alternative least squares algorithm (nnmf_als()) tends to converge faster to more
accurate results, but can be less numerically stable than the multiplicative updates algorithm.

Note for nnmf_mult() that method = "euclidean” is the only method that can handle out-of-
memory matter_mat and sparse_mat matrices. x will be coerced to an in-memory matrix for
other methods.

Value

An object of class nnmf, with the following components:

* activation: The (transposed) coefficient matrix (H).
¢ x: The basis variable matrix (W).

e iter: The number of iterations performed.

Author(s)

Kylie A. Bemis

72 nscentroids

References

M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, R. J. Plemmons. “Algorithms and ap-
plications for approximate nonnegative matrix factorization.” Computational Statistics and Data
Analysis, vol. 52, issue 1, pp. 155-173, Sept. 2007.

D. D. Lee and H. S. Seung. “Algorithms for non-negative matrix factorization.” Proceedings of
the 13th International Conference on Neural Information Processing Systems (NIPS), pp. 535-541,
Jan. 2000.

C. Boutsidis and E. Gallopoulos. “SVD based initialization: A head start for nonnegative matrix
factorization.” Pattern Recognition, vol. 41, issue 4, pp. 1350-1362, Apr. 2008.

J. J. Burred. “Detailed derivation of multiplicative update rules for NMF.” Techical report, Paris,
March 2014.

See Also
svd, prcomp
Examples
set.seed(1)
a <- matrix(sort(runif(500)), nrow=50, ncol=10)
b <- matrix(rev(sort(runif(500))), nrow=50, ncol=10)

x <- cbind(a, b)

mf <- nnmf_als(x, k=3)

nscentroids Nearest Shrunken Centroids

Description

Nearest shrunken centroids performs regularized classification of high-dimensional data. Originally
developed for classification of microarrays, it calculates test statistics for each feature/dimension
based on the deviation between the class centroids and the global centroid. It applies regularization
(via soft thresholding) to these test statistics to produce shrunken centroids for each class.

Usage

Nearest shrunken centroids

nscentroids(x, y, s = @, distfun = NULL,

priors = table(y), center = NULL, transpose = FALSE,
verbose = NA, chunkopts=1list(),

BPPARAM = bpparam(), ...)

S3 method for class 'nscentroids'’
fitted(object, type = c("response”, "class"), ...)

S3 method for class 'nscentroids'
predict(object, newdata,
type = c("response”, "class"), priors = NULL, ...)

nscentroids 73

S3 method for class 'nscentroids'

loglLik(object, ...)
Arguments
X The data matrix.
y The response. (Coerced to a factor.)
s The sparsity (soft thresholding) parameter used to shrink the test statistics. May
be a vector.
distfun A distance function with the same usage (i.e., supports the same arguments and

return values) as rowDists or colDists. In particular, it must support an ar-
gument called weights that takes a vector of feature weights used to scale the
feature-wise distance components.

priors The prior probabilities or sample sizes for each class. (Will be normalized.)
center An optional vector giving the pre-calculated global centroid.
transpose A logical value indicating whether x should be considered transposed or not.

This can be useful if the input matrix is (P x N) instead of (N x P) and storing the
transpose is expensive. This is not necessary for matter_mat and sparse_mat
objects, but can be useful for large in-memory (P x N) matrices.

verbose Should progress be printed for the initial centroid calculations and for each fitted
model (i.e., each value of s)?

chunkopts An (optional) list of chunk options including nchunks, chunksize, and serialize.
See chunkApply.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.
Passed to distfun.

Additional options passed to distfun.

object An object inheriting from nscentroids.
newdata An optional data matrix to use for the prediction.
type The type of prediction, where "response” means the posterior probability ma-

trix and "class” will be the vector of class predictions.

Details

This functions implements nearest shrunken centroids based on the original algorithm by Tibshirani
et al. (2002). It provides a sparse strategy for classification based on regularized class centroids.
The class centroids are shrunken toward the global centroid. The shrunken test statistics used to
perform the regularization can then be interpreted to determine which features are relevant to the
classification. (Important features will have nonzero test statitistics after soft thresholding.)

A custom distance function can be passed via distfun. If not provided, then this defaults to
rowDists if transpose=FALSE or colDists if transpose=TRUE.

If a custom function is passed, it must support the same arguments and return values as rowDists
and colDists.

Value

An object of class nscentroids, with the following components:

* class: The predicted classes.

74 peakwidths

* probability: A matrix of posterior class probabilities.

* centers: The shrunken class centroids used for classification.

* statistic: The shrunken test statistics.

* sd: The pooled within-class standard deviations for each feature.
* priors: The prior class probabilities.

* s: The regularization (soft thresholding) parameter.

e distfun: The function used to generate the dissimilarity function.

Author(s)

Kylie A. Bemis

References

R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. “Diagnosis of multiple cancer types by
shrunken centroids of gene expression.” Proceedings of the National Academy of Sciences of the
USA, vol. 99, no. 10, pp. 6567-6572, 2002.

R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. “Class prediction by nearest shrunken with
applications to DNA microarrays.” Statistical Science, vol. 18, no. 1, pp. 104-117, 2003.

See Also

rowDists, colDists

Examples

register(SerialParam())

set.seed(1)

n <- 100

p<-5

x <= matrix(rnorm(n * p), nrow=n, ncol=p)

colnames(x) <- paste@("x", seq_len(p))
y <- ifelse(x[,1L]1 > @ | x[,2L] < @, "a", "b")

nscentroids(x, y, s=1.5)

peakwidths Peak Summarization

Description

Summarize peaks based on their shapes and properties.

peakwidths 75

Usage

Get peak widths
peakwidths(x, peaks, domain = NULL,
fmax = 0.5, ref = c("height"”, "prominence"))

Get peak areas
peakareas(x, peaks, domain = NULL)

Get peak heights
peakheights(x, peaks)

Arguments
X A numeric vector.
peaks The indices (or domain values) of peaks for which the widths or areas should be
calculated.
domain The domain variable of the signal.
fmax The fraction of the peak’s height used for determining the peak’s width.
ref The reference value of the peak for determining the peak width: either the peak
height of the peak prominence.
Value

A numeric vector giving the widths, areas, or heights of the peaks with attributes ’left_bounds’ and
’right_bounds’ giving the left and right boundaries of the peak.

Author(s)

Kylie A. Bemis

See Also

findpeaks, findpeaks_cwt, binpeaks, mergepeaks

Examples
X <-c(0, 1,1, 2,3,2,1,4,5,1,1, 0
p <- findpeaks(x)

peakareas(x, p)
peakheights(x, p)

76

plot-vizi

pinv Pseudoinverse of a Matrix

Description

Calculate the Moore-Penrose pseudoinverse of a matrix.

Usage

pinv(x, tol = sqgrt(.Machine$double.eps))

Arguments

X A matrix.

tol The relative tolerance for detecting non-zero singular values.
Value

A matrix giving the pseudoinverse of x.

Examples

set.seed(1)
x <- diag(10) + rnorm(100)

pinv(x)

plot-vizi Plotting Graphical Marks

Description

These functions provide plotting methods for various graphical marks. They are not intended to be

called directly.

Usage

S3 method for class 'vizi_points'

plot(x, plot = NULL, ...,
n = Inf, downsampler = "1lttb", jitter = ""
sort = is.finite(n))

S3 method for class 'vizi_lines'

plot(x, plot = NULL, ...,
n = Inf, downsampler = "1lttb", jitter = ""
sort = is.finite(n))

S3 method for class 'vizi_peaks'
plot(x, plot = NULL, ...,
n = Inf, downsampler = "1lttb", jitter = ""

plot-vizi 77

sort = is.finite(n))

S3 method for class 'vizi_text'
plot(x, plot = NULL, ...,
adj = NULL, pos = NULL, offset = 0.5)

S3 method for class 'vizi_intervals'
plot(x, plot = NULL, ...,
length = 0.25, angle = 90)

S3 method for class 'vizi_rules'
plot(x, plot = NULL, ...)

S3 method for class 'vizi_bars'
plot(x, plot = NULL, s
width = 1, stack = FALSE)

S3 method for class 'vizi_boxplot'
plot(x, plot = NULL, ...,
range = 1.5, notch = FALSE, width = 0.8)

S3 method for class 'vizi_image'
plot(x, plot = NULL, ...,
alpha = NA, interpolate = TRUE, maxColorValue = 1)

S3 method for class 'vizi_pixels'

plot(x, plot = NULL, ...,
enhance = FALSE, smooth = FALSE, scale = FALSE,
useRaster = TRUE)

S3 method for class 'vizi_voxels'
plot(x, plot = NULL, ...,
xslice = NULL, yslice = NULL, zslice = NULL)

Arguments

X A graphical mark.

plot A vizi_plot object.

Additional graphical parameters passed to the underlying base graphics plotting
function.

n Transformation. Maximum number of points to plot. This is useful for down-
sampling series with far more data points than are useful to plot. See downsample
for details.

downsampler Transformation. If n is less than the number of points, then this is the downsam-
pling method to use. See downsample for details.

jitter Transformation. Should jitter be applied to one or more position channels? One
Of n ll’ HXH’ Hyl!’ ()I‘ ”Xy”'

sort Transformation. Should the data be sorted (along the x-axis) before plotting?

Mostly useful for line charts.
width The width of the bars or boxplots.

78

stack

adj, pos, of fset
length, angle
range, notch
alpha
interpolate
maxColorValue

enhance

smooth

scale

useRaster

plot_signal

Should bars be stacked versus grouped side-by-side?
See text.

See arrows.

See boxplot.

Opacity level from O to 1.

See rasterImage.

See col2rgb.

Transformation. The name of a contrast enhancement method, such as "hist”
or "adapt” for enhance_hist() and enhance_adapt(), etc. See enhance for
details.

Transformation. The name of a smoothing method, such as "gauss” or "bi”
for filt2_gauss() and filt2_bi(), etc. See filt2 for details.

Transformation. If TRUE, then all image values will be scaled to the range [0,
100]. This is useful for comparing images with differing intensity levels across
facets or layers.

Should a bitmap raster be used for plotting? This is typically faster on supported
devices. A fallback to polygon-based plotting is used if raster plotting is not
supported.

xslice, yslice, zslice

Details

Numeric vectors giving the X, y, and/or z coordinates of the volumetric slices to
plot. If none are provided, defaults to plotting all z-slices.

These methods are not intended to be called directly. They are presented here to document the
transformations and parameters they accept. These should be passed a list to the trans and params
arguments in add_mark.

See add_mark for supported encodings.

Author(s)

Kylie A. Bemis

See Also

vizi, add_mark

plot_signal

Plot a Signal or Image

Description

Plot a list of superposed or faceted signals or images (in 2D or 3D).

plot_signal 79

Usage

plot_signal(x, y, z, by, group = NULL, byrow = FALSE,

x1lim = NULL, ylim = NULL, col = NULL, alphapow = 1,
xlab = NULL, ylab = NULL, layout = NULL, free = "",
n = Inf, downsampler = "1ttb", key = TRUE, grid = TRUE,
isPeaks = FALSE, annPeaks = @, engine = NULL, ...)

plot_image(x, y, z, vals, by, group = NULL, byrow = FALSE,

zlim = NULL, xlim = NULL, ylim = NULL, col = NULL, alphapow = 1,
zlab = NULL, xlab = NULL, ylab = NULL, layout = NULL, free = "",
enhance = NULL, smooth = NULL, scale = NULL, key = TRUE,

rasterImages = NULL, rasterParams = NULL, useRaster = !is3d,
grid = TRUE, asp = 1, engine = NULL, ...)
Arguments
X, Y, z, vals Lists of vectors to plot such that x[[i]], y[[i]1], etc. indicate the plot values

for the ith signal or image. Attempts are made to flexibly coerce these into
the expected format. If only x is provided, it is interpreted as the signal or
image, and the indices or coordinates are inferred from the length or dimensions,
respectively. Specifying z will plot a 2D signal. For 2D images, only one of z
or vals should be provided. For 3D images, both should be provided.

by A vector of labels indicating facets (i.e., which values should be plotted as sep-
arate sub-plots).

group A vector of labels indicating groups (i.e., which values should be indicated by
color as belonging to the same group).

byrow If y (for plot_signal) or vals (for plot_image) is a matrix, should its rows or

columns be plotted?

x1lim, ylim, z1im The plot limits. See plot.window

xlab, ylab, z1ab Plotting labels.

col A vector giving the color map for encoding the image, or a function that returns
a vector of n colors.

alphapow The power scaling of the alpha channel (if used).

layout A vector of the form c(nrow, ncol) specifying the number of rows and columns
in the facet grid.

free A string specifying the free spatial dimensions during faceting. E.g., "", "x",
Hyll, or ”Xy”.

n, downsampler See downsample for details.

key Should a color key be generated for the image?

grid Should a rectangular grid be included in the plot?

isPeaks Whether the signal should be plotted as peaks or as a continuous signal.

annPeaks If isPeaks is TRUE, either an integer giving the number of peaks to annotate
(i.e., label with their x-value), or a plotting symbol (e.g., "circle", "cross", etc.)
to indicate the peak locations.

engine The plotting engine. Default is to use base graphics. Using "plotly" requires the

plotly package to be installed.

Additional graphical parameters (as in par) or arguments to the vizi plotting
method.

80

enhance

smooth

scale

asp

plot_signal

The name of a contrast enhancement method, such as "hist” or "adapt” for
enhance_hist() and enhance_adapt(), etc. See enhance for details.

The name of a smoothing method, such as "gauss” or "bi” for filt2_gauss()
and filt2_bi(), etc. See filt2 for details.

If TRUE, then all image values will be scaled to the range [0, 100]. This is useful
for comparing images with differing intensity levels across facets or layers.

The aspect ratio. See plot.window.

rasterlmages, rasterParams

useRaster

Value

A list of rasters and raster parameters (e.g., xmin, xmax, etc.) to plot before
plotting vals. These should be numeric arrays of 3 or 4 color channels with
values from O to 1. If the raster parameters are omitted, then the raster limits
are taken from the range of x and y. If the raster list has names, then these are
matched against the levels of by and plotted accordingly.

Should a bitmap raster be used for plotting? For 2D images, this is typically
faster on supported devices. A fallback to polygon-based plotting is used if
raster plotting is not supported. For 3D images, TRUE means to plot raster sur-
faces, and FALSE means to plot individual voxels as points.

An object of class vizi_plot.

Author(s)

Kylie A. Bemis

See Also

vizi, vizi_pixels

Examples

require(datasets)

plot signals
set.seed(1)
s <- simspec(6)

plot_signal(domain(s), s, group=colnames(s))

volcano image

pos <- expand.grid(x=1:nrow(volcano), y=1:ncol(volcano))
plot_image(posx, posy, volcano, col=cpal(”plasma”))

plot original and transformed images
volcano2 <- trans2d(volcano, rotate=15, translate=c(-5, 5))
plot_image(list(original=volcano, transformed=volcano2))

pls 81

pls Partial Least Squares

Description

Partial least squares (PLS), also called projection to latent structures, performs multivariate regres-
sion between a data matrix and a response matrix by decomposing both matrixes in a way that
explains the maximum amount of covariation between them. It is especially useful when the num-
ber of predictors is greater than the number of observations, or when the predictors are highly
correlated. Orthogonal partial least squares (OPLS) is also provided.

Usage

NIPALS algorithm

pls_nipals(x, y, k = 3L, center = TRUE, scale. = FALSE,
transpose = FALSE, niter = 100L, tol = le-5,

verbose = NA, BPPARAM = bpparam(), ...)

SIMPLS algorithm

pls_simpls(x, y, k = 3L, center = TRUE, scale. = FALSE,
transpose = FALSE, method = 1L, retscores = TRUE,
verbose = NA, BPPARAM = bpparam(), ...)

Kernel algorithm

pls_kernel(x, y, k = 3L, center = TRUE, scale. = FALSE,
transpose = FALSE, method = 1L, retscores = TRUE,
verbose = NA, BPPARAM = bpparam(), ...)

S3 method for class 'pls'
fitted(object, type = c("response”, "class"), ...)

S3 method for class 'pls'
predict(object, newdata, k,
type = c("response”, "class”), simplify = TRUE, ...)

O0-PLS algorithm

opls_nipals(x, y, k = 3L, center = TRUE, scale. = FALSE,
transpose = FALSE, niter = 100L, tol = 1e-9, regression = TRUE,
verbose = NA, BPPARAM = bpparam(), ...)

S3 method for class 'opls'
coef(object, ...)

S3 method for class 'opls'
residuals(object, ...)

S3 method for class 'opls'
fitted(object, type = c("response”, "class"”, "x"), ...)

S3 method for class 'opls'
predict(object, newdata, k,

82 pls

type = c("response”, "class”, "x"), simplify = TRUE, ...)

Variable importance in projection
vip(object, type = c("projection”, "weights"))

Arguments

X The data matrix of predictors.

y The response matrix. (Can also be a factor.)

k The number of PLS components to use. (Can be a vector for the predict
method.)

center A logical value indicating whether the variables should be shifted to be zero-
centered, or a centering vector of length equal to the number of columns of x.
The centering is performed implicitly and does not change the out-of-memory
data in x.

scale. A logical value indicating whether the variables should be scaled to have unit
variance, or a scaling vector of length equal to the number of columns of x. The
scaling is performed implicitly and does not change the out-of-memory data in
X.

transpose A logical value indicating whether x should be considered transposed or not.
This can be useful if the input matrix is (P x N) instead of (N x P) and storing the
transpose is expensive. This is not necessary for matter_mat and sparse_mat
objects, but can be useful for large in-memory (P x N) matrices.

niter The maximum number of iterations (per component).

tol The tolerance for convergence (per component).

verbose Should progress be printed for each iteration?

method The kernel algorithm to use, where 1 and 2 correspond to the two kernel algo-
rithms described by Dayal and MacGregor (1997). For 1, only of the covariance
matrix t(X) %*% Y is computed. For 2, the variance matrix t(X) %% X is also
computed. Typically 1 will be faster if the number of predictors is large. For a
smaller number of predictors, 2 will be more efficient.

retscores Should the scores be computed and returned? This also computes the amount
of explained covariance for each component. This is done automatically for
NIPALS, but requires additional computation for the kernel algorithms.

regression For O-PLS, should a 1-component PLS regression be fit to the processed data
(for each orthogonal component removed).

Not currently used.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.
Currently only used for centering and scaling. Use options(matter.matmul.bpparam=TRUE)
to enable parallel matrix multiplication for matter_mat and sparse_mat matri-
ces.

object An object inheriting from pls or opls.

newdata An optional data matrix to use for the prediction.

type The type of prediction, where "response” means the fitted response matrix
and "class” will be the vector of class predictions (only valid for discriminant
analyses).

simplify Should the predictions be simplified (from a list) to an array (type="response”)

or data frame (type="class") when k is a vector?

pls 83

Details

These functions implement partial least squares (PLS) using the original NIPALS algorithm by
Wold et al. (1983), the SIMPLS algorithm by de Jong (1993), or the kernel algorithms by Dayal and
MacGregor (1997). A function for calculating orthogonal partial least squares (OPLS) processing
using the NIPALS algorithm by Trygg and Wold (2002) is also provided.

Both regression and classification can be performed. If passed a factor, then partial least squares
discriminant analysis (PLS-DA) will be performed as described by M. Barker and W. Rayens
(2003).

The SIMPLS algorithm (pls_simpls()) is relatively fast as it does not require the deflation of the
data matrix. However, the results will differ slightly from the NIPALS and kernel algorithms for
multivariate responses. In these cases, only the first component will be identical. The differences
are not meaningful in most cases, but it is worth noting.

The kernel algorithms (pls_kernel()) tend to be faster than NIPALS for larger data matrices.
The original NIPALS algorithm (pls_nipals()) is the reference implementation. The results from
these algorithms are proven to be equivalent for both univariate and multivariate responses.

Note that the NIPALS algorithms cannot handle out-of-memory matter_mat and sparse_mat ma-
trices due to the need to deflate the data matrix for each component. x will be coerced to an
in-memory matrix.

Variable importance in projection (VIP) scores proposed by Wold et al. (1993) measure of the
influence each variable has on the PLS model. They can be calculated with vip(). Note that non-
NIPALS models must have retscores = TRUE for VIP to be calculated. In practice, a VIP score
greater than ~1 is a useful criterion for variable selection, although there is no statistical basis for
this rule.

Value
An object of class pls, with the following components:

» coefficients: The regression coefficients.

* projection: The projection weights of the regression used to calculate the coefficients from
the y-loadings or to project the data to the scores.

* residuals: The residuals from regression.

» fitted.values: The fitted y matrix.

* weights: (Optional) The x-weights of the regression.

* loadings: The x-loadings of the latent variables.

* scores: (Optional) The x-scores of the latent variables.

* y.loadings: The y-loadings of the latent variables.

* y.scores: (Optional) The y-scores of the latent variables.

* cvar: (Optional) The covariance explained by each component.

Or, an object of class opls, with the following components:

* weights: The orthogonal x-weights.
* loadings: The orthogonal x-loadings.
* scores: The orthogonal x-scores.

* ratio: The ratio of the orthogonal weights to the PLS loadings for each component. This
provides a measure of how much orthogonal variation is being removed by each component
and can be interpreted as a scree plot similar to PCA.

* x: The processed data matrix with orthogonal variation removed.
* regressions: (Optional.) The PLS 1-component regressions on the processed data.

84 prcomp

Author(s)
Kylie A. Bemis

References

S. Wold, H. Martens, and H. Wold. “The multivariate calibration method in chemistry solved by the
PLS method.” Proceedings on the Conference on Matrix Pencils, Lecture Notes in Mathematics,
Heidelberg, Springer-Verlag, pp. 286 - 293, 1983.

S. de Jong. “SIMPLS: An alternative approach to partial least squares regression.” Chemometrics
and Intelligent Laboratory Systems, vol. 18, issue 3, pp. 251 - 263, 1993.

B. S. Dayal and J. F. MacGregor. “Improved PLS algorithms.” Journal of Chemometrics, vol. 11,
pp. 73 - 85, 1997.

M. Barker and W. Rayens. “Partial least squares for discrimination.” Journal of Chemometrics, vol.
17, pp. 166-173, 2003.

J. Trygg and S. Wold. “Orthogonal projections to latent structures.” Journal of Chemometrics, vol.
16, issue 3, pp. 119 - 128, 2002.

S. Wold, A. Johansson, and M. Cocchi. “PLS: Partial least squares projections to latent structures.”
3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM Science Publishers: Lei-
den, pp. 523 - 550, 1993.

See Also

prcomp

Examples

register(SerialParam())
x <= cbind(
c(-2.18, 1.84, -0.48, 0.83),

c(-2.18, -0.16, 1.52, 0.83))
y <- as.matrix(c(2, 2, 0, -4))

pls_nipals(x, y, k=2)

prcomp Principal Components Analysis for “matter” Matrices

Description
This method allows computation of a truncated principal components analysis of matter_mat and
sparse_mat matrices using the implicitly restarted Lanczos method from the “irlba” package.
Usage

S4 method for signature 'matter_mat'

prcomp(x, k = 3L, retx = TRUE, center = TRUE, scale. = FALSE, ...)
S4 method for signature 'sparse_mat'
prcomp(x, k = 3L, retx = TRUE, center = TRUE, scale. = FALSE, ...)

prcomp 85

prcomp_lanczos(x, k = 3L, retx = TRUE,
center = TRUE, scale. FALSE, transpose = FALSE,

verbose = NA, BPPARAM = bpparam(), ...)
Arguments
X A matter matrix, or any matrix-like object for prcomp_lanczos.
k The number of principal components to return, must be less than min(dim(x)).
retx A logical value indicating whether the rotated variables should be returned.
center A logical value indicating whether the variables should be shifted to be zero-

centered, or a centering vector of length equal to the number of columns of x.
The centering is performed implicitly and does not change the out-of-memory
data in x.

scale. A logical value indicating whether the variables should be scaled to have unit
variance, or a scaling vector of length equal to the number of columns of x. The
scaling is performed implicitly and does not change the out-of-memory data in
X.

transpose A logical value indicating whether x should be considered transposed or not.
This can be useful if the input matrix is (P x N) instead of (N x P) and storing the
transpose is expensive. This is not necessary for matter_mat and sparse_mat
objects, but can be useful for large in-memory (P x N) matrices.

verbose Should progress messages be printed?
Additional options passed to rowStats or colStats.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.
Currently only used for centering and scaling. Use options(matter.matmul.bpparam=TRUE)
to enable parallel matrix multiplication for matter_mat and sparse_mat matri-
ces.

Value

An object of class ‘prcomp’. See ?prcomp for details.

Note

The built-in predict() method (from the stats package) is not compatible with the argument
transpose=TRUE.

Author(s)

Kylie A. Bemis

See Also

irlba prcomp_irlba

86 predscore

Examples

register(SerialParam())
set.seed(1)

x <- matter_mat(rnorm(1000), nrow=100, ncol=10)

prcomp(x)

predscore Score predictive performance

Description

Calculate performance metrics for predictions from classification or regression.

Usage

predscore(x, ref)

Arguments

X The predicted values.

ref The reference (observed) values.
Value

For classification, a numeric matrix with a row for each class and columns called "Recall" and
"Precision".

For regression, a numeric vector with elements named "RMSE", "MAE", and "MAPE".

Author(s)

Kylie A. Bemis

Examples

set.seed(1)

n <- 250

s <= c("a", "b", "c")

x <- sample(s, n, replace=TRUE)

pred <- ifelse(runif(n) > 0.1, x, sample(s, n, replace=TRUE))
predscore(pred, x)

rescale 87

rescale Signal Normalization

Description

Normalize or rescale a signal.

Usage

Rescale the root-mean-squared of the signal
rescale_rms(x, scale = 1)

Rescale the sum of (absolute values of) the signal
rescale_sum(x, scale = length(x))

Rescale according to a specific sample
rescale_ref(x, ref = 1L, scale = 1, domain = NULL)

Rescale the lower and upper limits of the signal
rescale_range(x, limits = c(0, 1))

Rescale the interquartile range
rescale_iqr(x, width = 1, center = 0)

Arguments
X A numeric vector.
scale The scaling value.
ref The sample (index or domain value) to use.
domain The domain variable of the signal.
limits The lower and upper limits to use.
width The interquartile range to use.
center The center to use.
Details

rescale_rms() and rescale_sum() simply divide the signal by its root-mean-square or absolute
sum, respectively, before multiplying by the given scaling factor.

rescale_ref() finds the closest matching sample to ref in domain if given (it is treated as an
index if domain is NULL), and then scales the entire signal to make that sample equal to scale.

rescale_range() simply rescales the signal to match the given upper and lower limits.

rescale_iqr() attempts to rescale the signal so that its interquartile range is approximately width.

Value

A rescaled numeric vector the same length as x.

Author(s)
Kylie A. Bemis

88 RNGStreams

Examples

set.seed(1)
x <= rnorm(100)

sqrt(mean(x*2))
y <- rescale_rms(x, 1)
sqrt(mean(y*2))

range(x)
z <- rescale_range(x, c(-1, 1))
range(z)

RNGStreams Parallel RNG Streams

Description

These functions provide utilities for working with multiple streams of pseudo-random numbers.
Usage

RNGStreams(n = length(size), size = 1L)

getRNGStream()

setRNGStream(seed = NULL, kind = NULL)

Arguments
n The number of RNG streams to create.
size If RNGkind is set to "L’Ecuyer-CMRG", then iterate this number of RNG sub-
streams between each returned stream.
seed A valid RNG stream to assign to .Random. seed, or a list with elements named
seed and kind.
kind The RNGkind to use when setting the RNG stream.
Value

For RNGStreams, a list of length n with RNG streams (with elements named seed and kind) for use
with setRNGStream.

Author(s)
Kylie A. Bemis

See Also

RNGkind, nextRNGStream

rocscore

Examples

create parallel RNG streams
register(SerialParam())
RNGkind("L'Ecuyer-CMRG")
set.seed(1)

seeds <- RNGStreams(4)

seeds

89

rocscore Compute area under ROC curve

Description

Calculate the area under the receiver operating characteristic curve (ROC AUC).

Usage

rocscore(x, ref, n = 32L)

Arguments

X The prediction scores.

ref The (logical) binary response.

n The number of points in the curve.
Value

A single number between 0 and 1 giving the ROC AUC, with an attribute called ROC which is a data

frame giving the full ROC curve.

Author(s)

Kylie A. Bemis

Examples

set.seed(1)

X <= runif(100)

y <- ifelse(x > 0.5 & runif(100) > ©.2, TRUE, FALSE)
rocscore(x, y)

90 rowDists

rollvec Rolling Summaries of a Vector

Description

Summarize a vector in rolling windows.

Usage

rollvec(x, width, stat = "sum”, prob = 0.5)

Arguments
X A numeric vector.
width The width of the rolling window. Must be odd.
stat The statistic used to summarize the values in each bin. Must be one of "sum",
"mean", "max", "min", "sd", "var", "mad", or "quantile".
prob The quantile for stat = "quantile”.
Value

An numeric vector with the same length as x with the summarized values from each rolling window.

Author(s)

Kylie A. Bemis

Examples

set.seed(1)
x <= sort(runif(20))

rollvec(x, 5L, "mean")

rowDists Compute Distances between Rows or Columns of a Matrix

Description

Compute and return the distances between specific rows or columns of matrices according to a
specific distance metric.

rowDists

Usage

S4 method for
rowDists(x, vy,

S4 method for
colDists(x, vy,

S4 method for
rowDists(x, vy,

S4 method for
colDists(x, vy,

S4 method for
rowDists(x, vy,

S4 method for
colDists(x, vy,

S4 method for

91

signature 'matrix,matrix
., BPPARAM = bpparam())

signature 'matrix,matrix
., BPPARAM = bpparam())

signature 'matter_mat,matrix’
., BPPARAM = bpparam())

signature 'matrix,matter_mat'
., BPPARAM = bpparam())

signature 'sparse_mat,matrix’
., BPPARAM = bpparam())

signature 'matrix,sparse_mat'
., BPPARAM = bpparam())

signature 'ANY,missing'’

rowDists(x, at, ., simplify = TRUE, BPPARAM = bpparam())

S4 method for signature 'ANY,missing'

colDists(x, at, ., simplify = TRUE, BPPARAM = bpparam())

.rowDists(x, y, metric = "euclidean”, p = 2,

weights = NULL, iter.dim = 1L, BPPARAM = bpparam(), ...)

.colDists(x, y, metric = "euclidean”, p = 2,

weights = NULL, iter.dim = 1L, BPPARAM = bpparam(), ...)

Low-level row/col distance functions

rowdist(x, y = x, metric = "euclidean”, p = 2, weights = NULL, ...)

coldist(x, y = x, metric = "euclidean”, p = 2, weights = NULL, ...)

rowdist_at(x, ix, y = x, iy = list(1L:nrow(y)),

metric = "euclidean”, p = 2, weights = NULL, ...)

coldist_at(x, ix, y = x, iy = list(1L:ncol(y)),

metric = "euclidean”, p = 2, weights = NULL, ...)

Arguments

X,y Numeric matrices for which distances should be calculated according to rows or
columns. If a parallel backend is provided, then the calculation is parallelized
over X, and y is passed to each worker.

at A list, matrix, or vector of specific row or column indices for which to calculate
the distances. Each row or column of x will be compared to the rows or columns
indicated by the corresponding element of at.

simplify Should the result be simplified into a matrix if possible?

metric Distance metric to compute. Supported metrics include "euclidean", "maxi-

non

mum", "manhattan”, and "minkowski".

92 rowDists

p The power for the Minkowski distance.

weights A numeric vector of weights for the distance components if calculating weighted
distances. For example, the weighted Euclidean distance is sqrt (sum(w * (x -
¥)"2)).

iter.dim The dimension to iterate over. Must be 1 or 2, where 1 indicates rows and 2

indicates columns.

ix, iy A list of specific row or column indices for which to calculate the pairwise dis-
tances. Numeric vectors will be coerced to lists. Each list element should give
a vector of indices to use for a distance computation. Elements of length 1 will
be recycled to an appropriate length.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

Additional arguments passed to rowdist () or coldist().

Details

rowdist() and coldist() calculate straightforward distances between each row or column, re-
spectively in x and y. If y = x (the default), then the output of rowdist() will match the output of
dist (except it will be an ordinary matrix).

rowdist_at() and coldist_at() allow passing a list of specific row or column indices for which
to calculate the distances.

rowDists() and colDists() are S4 generics. The current methods provide (optionally paral-
lelized) versions of rowdist () and coldist() for matter_mat and sparse_mat matrices.
Value

For rowdist() and coldist(), a matrix with rows equal to the number of observations in x and
columns equal to the number of observations in y.

For rowdist_at() and coldist_at(), a list where each element gives the pairwise distances cor-
responding to the indices given by ix and iy.

rowDists() and colDists() have corresponding return values depending on whether at has been
specified (and the value of simplify).

Author(s)
Kylie A. Bemis

See Also
dist

Examples
register(SerialParam())
set.seed(1)

x <= matrix(runif(25), nrow=5, ncol=5)
y <- matrix(runif(25), nrow=3, ncol=5)

rowDists(x) # same as as.matrix(dist(x))
rowDists(x, y)

seq_rel 93

distances between:
x[1,]1 vs x[,]
x[5,1 vs x[,]
rowdist_at(x, c(1,5))

distances between:

x[1,]1 vs x[1:3,]

x[5,]1 vs x[3:5,]

rowdist_at(x, ix=c(1,5), iy=list(1:3, 3:5))

distances between:
x[i,] vs x[(i-1):(i+1),]
rowDists(x, at=roll(1:5, width=3))

distances between:
x[,] vs x[1,]
rowDists(x, at=1)

seq_rel Relative Sequence Generation

Description

Generate a sequence with spacing based on relative differences.

Usage

seq_rel(from, to, by)

Arguments

from The start of the sequence.

to The end of the sequence.

by The relative difference between consecutive elements.
Details

Because the relative differences depend on whether we treat the lesser or greater term as the "ref-
erence”, the function actually treats each element as the center of a bin of width by (relative to that
element).

Value

A numeric vector of some (algorithmically-determined) length where consecutive elements are sep-
arated by consistent relative differences.

Author(s)
Kyle Dahlin and Kylie A. Bemis

See Also

seq

94 sgmix

Examples

create a sequence w/ le-4 relative diff spacing
x <- seq_rel(500, 505, by=1e-4)
X

relative spacing is averaged between lesser/greater element
head(diff(x) / x[-11)

head(diff(x) / x[-length(x)1)

dx <= 0.5 * ((diff(x) / x[-11) + (diff(x) / x[-length(x)1))
dx

sgmix Spatial Gaussian Mixture Model

Description

Spatially segment a single-channel image using a Dirichlet Gaussian mixture model (DGMM).

Usage

Spatial Gaussian mixture model

sgmix(x, y, vals, r =1, k = 2, beta = r, group = NULL,
weights = c("gaussian”, "bilateral”, "adaptive"),
metric = "maximum”, p = 2, neighbors = NULL,

annealing = TRUE, niter = 10L, tol = 1e-3,

compress = FALSE, byrow = FALSE,

verbose = NA, chunkopts=1list(),

BPPARAM = bpparam(), ...)

S3 method for class 'sgmix'
fitted(object,

type = c("mu”, "sigma", "class”), channel = NULL, ...)

S3 method for class 'sgmix'

logLik(object, ...)
Arguments
X, Yy, vals Pixel coordinates (x, y) and their intensity values (vals). If multiple image

channels should be segmented, then vals can be a list of images or a matrix of
flattened image vectors. Alternatively, x can be an array of images, in which
case the x and y coordinates are generated from the first 2 dimensions.

r The spatial smoothing radius.
k The number of segments (per group, if applicable).
beta The strength of spatial smoothing. This is used for initialization and then further

refined based on the data.

group A vector of pixel groups. Pixels belonging to each group will be segmented
independently, and will be assigned to different segments.

weights The type of spatial weights to use.

sgmix 95

metric Distance metric to use when finding neighboring pixels. Supported metrics in-
clude "euclidean", "maximum", "manhattan”, and "minkowski".

p The power for the Minkowski distance.

neighbors An optional list giving the neighboring pixel indices for each pixel.

annealing Should simulated annealing be attempted every iteration? (If FALSE, simulated

annealing will still be attempted if the log-likelihood decreases instead of in-
creases during an iteration.)

niter The maximum number of iterations.

tol The tolerance for convergence, as measured by the change in log-likelihood in
successive iterations.

compress Should the results be compressed? The resulting sgmix object will be larger
than the original image, so compression can be useful. If TRUE, then the class
component is compressed using drle, and the probability component is not

returned.

byrow If vals is a matrix of flattened image vectors, should its rows or columns be
plotted?

verbose Should progress be printed for each iteration?

chunkopts An (optional) list of chunk options including nchunks, chunksize, and serialize.
See chunkApply.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.
Ignored.

object An object inheriting from sgmix.

type The type of fitted values to extract.

channel The channel of fitted values to extract.

Details

Spatial segmentation is performed using a Gaussian mixture model from Guo et al. (2019) that uses
Dirichlet priors to incorporate spatial dependence. The strength of the spatial smoothing depends
on the smoothing radius (r) and the type of spatial weights. The "bilateral" and "adaptive" weights
can preserve edges better than the standard "gaussian" weights at the expense of a (potentially)
noisier segmentation.

The segmentation is initialized using k-means clustering. An expectation-maximization (E-M) algo-
rithm with gradient descent is then used to estimate the model parameters based on log-likelihood.
Optionally, simulated annealing can be used to prevent the model from getting stuck in local max-
ima.

Value

An object of class sgmix, with the following components:

* class: A list of class assignments for each channel.

* probability: (Optional) A matrix or array of posterior class probabilities.
* mu: The fitted class means.

e sigma: The fitted class standard deviations.

* alpha: The fitted Dirichlet priors.

* beta: The estimated strength of the spatial dependence.

* group: (Optional) The pixel groups.

96 shingles

Author(s)
Kylie A. Bemis

References

D. Guo, K. Bemis, C. Rawlins, J. Agar, and O. Vitek. “Unsupervised segmentation of mass spec-
trometric ion images characterizes morphology of tissues” Bioinformatics, vol. 35, issue 14, pp.
i208-i217, 2019.

See Also

kmeans

Examples

require(datasets)

set.seed(1)
seg <- sgmix(volcano, k=3)

image(fitted(seg, "class"”, channel=1L))

shingles Cleveland-Style Shingles

Description

Shingles are a generalization of factors to continuous variables. Cleveland-style shingles distribute
the range of a continuous variable into overlapping discrete intervals, which can be more useful for
visualization than mutually-exclusive bins.

Usage
shingles(x, breaks, overlap = 0.5, labels = NULL)

Arguments
X A numeric vector.
breaks Either the number of intervals or a matrix of breaks (as returned by co. intervals).
overlap The fraction of overlap between intervals.
labels The names of the intervals.
Value

A list giving the indices of x in each shingle with the following attributes:

* breaks: A matrix where each row gives the lower and upper limits for each shingle.
* counts: The number of observations in each shingle.

* mids: The center of each shingle.

simple_logger-class 97

Author(s)

Kylie A. Bemis

References

W. S. Cleveland. Visualizing Data. New Jersey: Summit Press. 1993.

See Also

co.intervals

Examples

set.seed(1)
x <= rnorm(100)

shingles(x, 6)

simple_logger-class Simple Logging

Description

A simple logger that uses R’s built-in signaling conditions.

Usage

Instance creation
simple_logger(file = NULL, bufferlimit = 50L, domain = NULL)

Get logger used by matter
matter_logger()

Additional methods documented below

Arguments
file The name of the log file. If NULL, then no log file is used, and the log is kept in
memory.
bufferlimit The maximum number of buffered log entries before they are flushed to the log
file.
domain See gettext for details. If NA, log entries will not be translated.
Value

An object of reference class simple_logger.

98 simple_logger-class

Fields

id: An identifier for file synchronization.

buffer: A character vector of buffered log entries that have not yet been flushed to the log file.
bufferlimit: The maximum number of buffered log entries before they are flushed to the log file.
logfile: The path to the log file.

domain: See gettext for details. If NA, log entries will not be translated.

Methods
Class-specific methods:

$flush(): Flush buffered log entries to the log file.
$append(entry): Append a plain text entry to the log.
$append_session(): Append the sessionInfo() to the log.
$append_trace(): Append the traceback() to the log.

$history(print = TRUE): Print the complete log to the console (TRUE) or return it as a character
vector (FALSE).

$log(..., signal = FALSE, call =NULL): Record a log entry with a timestamp, optionally sig-

n on

naling a "message”, "warning”, or "error” condition. For "warning” and "error"” condi-
tions (only), the call may also be passed to be deparsed and recorded in the log entry.

$message(...): Record a log entry with a timestamp and signal a message condition.
$warning(...): Record alog entry with a timestamp and signal a warning condition.
$stop(...): Record a log entry with a timestamp and signal an error condition.

$move(file): Move the log file to a new location. Moving the log file automatically appends the
current sessionInfo().

$copy(file): Copy the log file to a different location.

$close(): Flush buffered log entries (including sessionInfo()) and detach the log file. This is
called automatically at the end of an R session. Note that log files in the temporary directory
will be deleted after the R session ends if they are not $move()ed to a persistent directory
before quitting.

Standard generic methods:

path(x), path(x) <- value: Get or set the path to the log file. The replacement method is the
same as $move ().

Author(s)
Kylie A. Bemis

Examples
sl <- simple_logger(tempfile(fileext=".log"))

sl$log("This is a silent log entry that doesn't signal a condition.”)
sl$log("This log entry signals a message condition.”, signal=TRUE)

sl$log("This log entry signals a message condition.”, signal="message")
sl$message("This log entry also signals a message condition”)
s1$flush()

readLines(path(sl))

simspec

99

simspec Simulate Spectra

Description

Simulate spectra from noise and a list of peaks.

Usage

simspec(n = 1L, npeaks = 50L,
x = rlnorm(npeaks, 7, 0.3), y = rlnorm(npeaks, 1, 0.9),
domain = ¢c(0.9 * min(x), 1.1 * max(x)), size = 10000,

sdx = le-5, sdy = sdymult * loglp(y), sdymult = 0.2,

sdnoise =
baseline =

0.1, resolution = 1000, fmax = 0.5,
@, decay = 10, units = "relative")

simspecl1(x, y, xout, peakwidths = NA_real_,

sdnoise =

Arguments

n
npeaks

X’y
xout, domain
size

sdx

sdy

sdymult

sdnoise

resolution

fmax

peakwidths

baseline

decay

units

0, resolution = 1000, fmax = 0.5)

The number of spectra to simulate.

The number of peaks to simulate. Not used if x and y are provided.
The locations and values of the spectral peaks.

The output domain variable or its range.

The number of samples in each spectrum.

The standard deviation of the error in the observed locations of peaks, in units
indicated by units.

The standard deviation(s) for the distributions of observed peak values on the
log scale.

A multiplier used to calculate sdy based on the mean values of the peaks; used
to simulate multiplicative variance. Not used if sdy is provided.

The standard deviation of the random noise in the spectra on the log scale.

The resolution as defined by x / dx, where x is the observed peak location and
dx is the width of the peak at a proportion of its maximum height defined by
fmax (defaults to full-width-at-half-maximum — FWHM - definition).

The fraction of the maximum peak height to use when defining the resolution.

The peak widths at fmax. Typically, these are calculated automatically from
resolution.

The maximum intensity of the baseline. Note that baseline=0 means there is
no baseline.

A constant used to calculate the exponential decay of the baseline. Larger values
mean the baseline decays more sharply.

The units for sdx. Either "absolute” or "relative”.

100

Value

SnowfastParam-class

Either a numeric vector of the same length as size, giving the simulated spectrum, or a size x n
matrix of simulated spectra.

Author(s)
Kylie A. Bemis

Examples

set.seed(1)

y <- simspec(2)

x <- attr(y, "domain")

plot(x, y[,11, type="1", ylim=c(-max(y), max(y)))
lines(x, -y[,2], col="red")

SnowfastParam-class Fast Simple Network of Workstations (SNOW)-style Parallel Backend

Description

This class provides a enhanced version of the SnowParam parallel backend from BiocParallel
based on the newer PSOCK cluster implementation from the parallel package.

Usage

Instance creation

SnowfastParam(workers = snowWorkers(),
tasks = @OL, stop.on.error = TRUE, progressbar = FALSE,
RNGseed = NULL, timeout = WORKER_TIMEOUT,
exportglobals = TRUE, exportvariables = TRUE,

resultdir =

NA_character_, jobname = "BPJOB",

force.GC = FALSE, fallback = TRUE, useXDR = FALSE,
manager .hostname = NA_character_, manager.port = NA_character_, ...)

Additional methods documented below

Arguments

workers

tasks
stop.on.error
progressbar
RNGseed

timeout

exportglobals

Either the number of workers or the names of cluster nodes.

The number of tasks per job. See SnowParam for details.

Enable stop on error. See SnowParam for details.

Enable text progress bar. See SnowParam for details.

The seed for random number generation. See SnowParam for details.

Time (in seconds) allowed for workers to complete a task. See SnowParam for
details.

Export base: :options() from manager to workers? See SnowParam for de-
tails.

SnowfastParam-class 101

exportvariables
Automatically export variables defined in the global environment and used by
the function? See SnowParam for details.

resultdir Job results directory. See SnowParam for details.
jobname The name of the job for logging and results. See SnowParam for details.
force.GC Whether to invoke the garbage collector after each call to FUN. See SnowParam

for details.

fallback Fall back to using SerialParam if the cluster is not started and the number of
workers is no greater than 1? See SnowParam for details.

useXDR Should data be converted to network byte order when serializing from the man-
ager to the workers? The default (FALSE) assumes all nodes in the cluster are
little endian. Passed to makePSOCKcluster.

manager . hostname
Host name of the manager node.

manager .port Port on the manager with which workers communicate.

Additional arguments passed to makePSOCKcluster.

Details

SnowfastParam is a faster but somewhat more limited version of SnowParam. Like SnowParam, it
uses simple network of workstations (SNOW)-style parallelism so that it is available on all operating
systems.

The workers are initialized in parallel, so cluster startup can often be significantly faster than
SnowParam if utilizing a large number of workers.

Because the workers are started using makePSOCKcluster from the parallel package rather than
using BiocParallel’s startup script, some features of BiocParallel-managed backends such as
logging are unsupported or only partially available.

The default parameter useXDR=TRUE assumes that all nodes are little endian so that data can be sent
to workers without the overhead of conversion to network byte order. This should result in overall
faster performance for large datasets on compatible clusters.

SnowfastParam is intended to be used as a drop-in replacement for SnowParam in most situations
and as a more stable alternative to MulticoreParam for long-running jobs in graphical environments
like RStudio where forking the R process should be avoided.

Value

An parallel backend derived from class BiocParallelParam.

Methods

BiocParallelParam methods:

bpstart(x): Start the cluster.
bpstop(x): Stop the cluster.

Additional methods documented in BiocParallelParam.

Author(s)
Kylie A. Bemis

102

See Also

sparse_arr-class

SnowParam, MulticoreParam

Examples

X <- replicate(1000, runif(200), simplify=FALSE)

bp <- SnowfastParam(workers=4, tasks=20, progressbar=TRUE)

ans <- chunkLapply(x, sum, BPPARAM=bp)

sparse_arr-class

Sparse Vectors and Matrices

Description

The sparse_mat class implements sparse matrices, potentially stored out-of-memory. Both compressed-

sparse-column (CSC) and compressed-sparse-row (CSR) formats are supported. Sparse vectors are
also supported through the sparse_vec class.

Usage

Instance creation
sparse_mat(data, index, type = "double”,

nrow = NA_integer_, ncol

NA_integer_, dimnames = NULL,

pointers = NULL, domain = NULL, offset = @OL, rowMaj = FALSE,

tolerance =

c(abs=0), sampler = "none"”, ...)

sparse_vec(data, index, type = "double”,
length = NA_integer_, names = NULL,
domain = NULL, offset = @L, rowMaj = FALSE,

tolerance =

c(abs=0), sampler = "none"”, ...)

Check if an object is a sparse matrix

is.sparse(x)

Coerce an object to a sparse matrix

as.sparse(x,

>

Additional methods documented below

Arguments

data

index

Either the non-zero values of the sparse array, or (if index is missing) a numeric
vector or matrix from which to create the sparse array. For a sparse_vec, these
should be a numeric vector. For a sparse_mat these can be a numeric vector if
pointers is supplied, or a list of numeric vectors if pointers is NULL.

For sparse_vec, the indices of the non-zero items. For sparse_mat, either the
row-indices or column-indices of the non-zero items, depending on the value of
rowMaj.

sparse_arr-class

type

103

A ’character’ vector giving the storage mode of the data in virtual memory such.
See ?"matter-types” for possible values.

nrow, ncol, length

dimnames
names

pointers

domain

offset

rowMaj

tolerance

sampler

Value

The number of rows and columns, or the length of the array.
The names of the sparse matrix dimensions.
The names of the sparse vector elements.

The (zero-indexed) pointers to the start of either the rows or columns (depending
on the value of rowMaj) in data and index when they are numeric vectors rather
than lists.

Either NULL or a vector with length equal to the number of rows (for CSC ma-
trices) or the number of columns (for CSR matrices). If NULL, then index is
assumed to be row or column indices. If a vector, then they define the how the
non-zero elements are matched to rows or columns. The index value of each
non-zero element is matched against this domain using binary search. Must be
numeric.

If domain is NULL (i.e., index represents the actual row/column indices), then
this is the index of the first row/column. The default of 0 means that index is
indexed from O.

Whether the data should be stored using compressed-sparse-row (CSR) repre-
sentation (as opposed to compressed-sparse-column (CSC) representation). De-
faults to 'FALSE’, for efficient access to columns. Set to "TRUE’ for more
efficient access to rows instead.

For non-NULL domain, the tolerance used for floating-point equality when match-
ing index to the domain. The vector should be named. Use ’absolute’ to use
absolute differences, and ’relative’ to use relative differences.

For non-zero tolerances, how the data values should be combined when there
are multiple index values within the tolerance. Must be of ’none’, ’sum’,
’mean’, ‘'max’, ‘min’, ’area’, ’linear’, ’cubic’, ’gaussian’, or ’lanczos’. Note
that *none’ means nearest-neighbor interpolation.

An object to check if it is a sparse matrix or coerce to a sparse matrix.

Additional arguments to be passed to constructor.

An object of class sparse_mat.

Slots

data: The non-zero data values. Can be a numeric vector or a list of numeric vectors.

type: The storage mode of the accessed data when read into R. This is a *factor’ with levels 'raw’,
"logical’, ’integer’, ‘numeric’, or ’character’.

dim: Either NULL for vectors, or an integer vector of length one of more giving the maximal indices
in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either NULL or the names for the dimensions. If not NULL, then this should be a list of
character vectors of the length given by ’dim’ for each dimension. This is always NULL for

vectors.

index: The indices of the non-zero items. Can be a numeric vector or a list of numeric vectors.

104 sparse_arr-class

pointers: The pointers to the beginning of the rows or columns if index and data use vector
storage rather than list storage.

domain: Either NULL or a vector with length equal to the number of rows (for CSC matrices) or the
number of columns (for CSR matrices). If NULL, then index is assumed to be row or column
indices. If a vector, then they define the how the non-zero elements are matched to rows or
columns. The index value of each non-zero element is matched against this domain using
binary search. Must be numeric.

offset: If domain is NULL (i.e., index represents the actual row/column indices), then this is the
index of the first row/column. The default of 0 means that index is indexed from 0.

tolerance: For non-NULL domain, the tolerance used for floating-point equality when matching
index to the domain. The vector should be named. Use *absolute’ to use absolute differences,
and ’relative’ to use relative differences.

sampler: The type of summarization or interpolation performed when there are multiple index
values within the tolerance of the requested domain value(s).

ops: Deferred arithmetic operations.

transpose Indicates whether the data is stored in row-major order (TRUE) or column-major order
(FALSE). For a matrix, switching the order that the data is read is equivalent to transposing
the matrix (without changing any data).

Extends

matter

Creating Objects

sparse_mat and sparse_vec instances can be created through sparse_mat () and sparse_vec(),
respectively.

Methods
Class-specific methods:

atomdata(x): Access the ’data’ slot.

adata(x): An alias for atomdata(x).

atomindex(x): Access the ’index’ slot.

aindex(x): An alias for atomindex(x).

pointers(x): Access the *pointers’ slot.

domain(x): Access the ’domain’ slot.

tolerance(x), tolerance(x) <- value: Get or set resampling "tolerance’.
sampler(x), sampler(x) <- value: Get or set the ’sampler’ method.
fetch(x, ...): Pull data into shared memory.

flash(x, ...): Push data to a temporary file.

Standard generic methods:

dim(x): Get’dim’.

dimnames(x), dimnames(x) <- value: Get or set ’"dimnames’.

x[i, j, ..., drop], x[i, j]<-value: Get or set the elements of the sparse matrix. Use drop =
NULL to return a subset of the same class as the object.

stream_stat 105

cbind(x, ...), rbind(x, ...): Combine sparse matrices by row or column.

t(x): Transpose a matrix. This is a quick operation which only changes metadata and does not
touch the data representation.

rowMaj(x): Check the data orientation.

Author(s)
Kylie A. Bemis

See Also

matter
Examples
x <- matrix(rbinom(100, 1, 0.2), nrow=10, ncol=10)

y <- sparse_mat(x)

y[]

stream_stat Streaming Summary Statistics

Description

These functions allow calculation of streaming statistics. They are useful, for example, for calcu-
lating summary statistics on small chunks of a larger dataset, and then combining them to calculate
the summary statistics for the whole dataset.

This is not particularly interesting for simpler, commutative statistics like sum(), but it is useful for
calculating non-commutative statistics like running sd() or var () on pieces of a larger dataset.

Usage
calculate streaming univariate statistics
s_stat(x, stat, group, na.rm = FALSE, ...)
s_range(x, ..., na.rm = FALSE)
s_min(x, ..., na.rm = FALSE)
s_max(x, ..., na.rm = FALSE)
s_prod(x, ..., na.rm = FALSE)
s_sum(x, ..., na.rm = FALSE)
s_mean(x, ..., na.rm = FALSE)
s_var(x, ..., na.rm = FALSE)

s_sd(x, ..., na.rm = FALSE)

106 stream_stat

s_any(x, ..., na.rm = FALSE)
s_all(x, ..., na.rm = FALSE)
s_nnzero(x, ..., na.rm = FALSE)

calculate streaming matrix statistics
s_rowstats(x, stat, group, na.rm = FALSE, ...)

s_colstats(x, stat, group, na.rm = FALSE, ...)

calculate combined summary statistics

stat_c(x, vy, ...)
Arguments
XY, ... Object(s) on which to calculate a summary statistic, or a summary statistic to
combine.
stat The name of a summary statistic to compute over the rows or columns of a ma-

non non non non

trix. Allowable values include: "range", "min", "max", "prod", "sum", "mean",

non

"var", "sd", "any", "all", and "nnzero".

group A factor or vector giving the grouping. If not provided, no grouping will be
used.
na.rm If TRUE, remove NA values before summarizing.
Details

These summary statistics methods are intended to be applied to chunks of a larger dataset. They
can then be combined either with the individual summary statistic functions, or with stat_c(), to
produce the combined summary statistic for the full dataset. This is most useful for calculating
running variances and standard deviations iteratively, which would be difficult or impossible to
calculate on the full dataset.

The variances and standard deviations are calculated using running sum of squares formulas which
can be calculated iteratively and are accurate for large floating-point datasets (see reference).
Value

For all univariate functions except s_range(), a single number giving the summary statistic. For
s_range (), two numbers giving the minimum and the maximum values.

For s_rowstats() and s_colstats(), a vector of summary statistics.

Author(s)
Kylie A. Bemis

References

B. P. Welford. “Note on a Method for Calculating Corrected Sums of Squares and Products.”
Technometrics, vol. 4, no. 3, pp. 1-3, Aug. 1962.

B. O’Neill. “Some Useful Moment Results in Sampling Problems.” The American Statistician, vol.
68, no. 4, pp. 282-296, Sep. 2014.

struct 107

See Also

Summary

Examples

set.seed(1)
X <- sample(1:100, size=10)
y <- sample(1:100, size=10)

sx <- s_var(x)
sy <- s_var(y)

var(c(x, ¥))
stat_c(sx, sy) # should be the same

sxy <- stat_c(sx, sy)

calculate with 1 new observation
var(c(x, y, 99))
stat_c(sxy, 99)

calculate over rows of a matrix
set.seed(2)

A <- matrix(rnorm(100), nrow=10)
B <- matrix(rnorm(100), nrow=10)

sx <- s_rowstats(A, "var")
sy <- s_rowstats(B, "var")

apply(cbind(A, B), 1, var)
stat_c(sx, sy) # should be the same

struct C-Style Structs Stored in Virtual Memory

Description

This is a convenience function for creating and reading C-style structs in a single file stored in
virtual memory.

Usage
struct(..., path = NULL, readonly = FALSE, offset = @, filename)

Arguments

Named integers giving the members of the struct. They should be of the form
name=c(type=length).

path, filename A single string giving the name of the file.
readonly Should the file be treated as read-only?
offset A scalar integer giving the offset from the beginning of the file.

108 summary-stats

Details

This is simply a convenient wrapper around the wrapper around matter_list that allows easy
specification of C-style structs in a file.

Value

A object of class matter_list.

Author(s)
Kylie A. Bemis

See Also

matter_list
Examples
X <- struct(first=c(int=1), second=c(double=1))

x$first <- 2L
x$second <- 3.33

x$first
x$second

summary-stats Summary Statistics for “matter” Objects

Description

These functions efficiently calculate summary statistics for matter_arr objects. For matrices, they
operate efficiently on both rows and columns.

Usage

S4 method for signature 'matter_arr'
range(x, ..., na.rm)

S4 method for signature 'matter_arr'
min(x, ..., na.rm)

S4 method for signature 'matter_arr'
max(x, ..., na.rm)

S4 method for signature 'matter_arr'
prod(x, ..., na.rm)

S4 method for signature 'matter_arr'’
mean(x, ..., nha.rm)

S4 method for signature 'matter_arr'’
sum(x, ..., na.rm)

S4 method for signature 'matter_arr'
sd(x, na.rm)
S4 method for signature 'matter_arr'
var(x, na.rm)

summary-stats 109

S4 method for signature 'matter_arr'’

any(x, ..., na.rm)
S4 method for signature 'matter_arr'
all(x, ..., na.rm)

S4 method for signature 'matter_mat'

colMeans(x, na.rm, dims =1, ...)
S4 method for signature 'matter_mat'
colSums(x, na.rm, dims =1, ...)

S4 method for signature 'matter_mat'
rowMeans(x, na.rm, dims =1, ...)
S4 method for signature 'matter_mat'
rowSums(x, na.rm, dims =1, ...)

Arguments

X A matter_arr object.

Arguments passed to chunk_lapply (), chunk_rowapply (), or chunk_colapply().

na.rm If TRUE, remove NA values before summarizing.
dims Not used.
Details

These summary statistics methods operate on chunks of data which are loaded into memory and
then freed before reading the next chunk.

For row and column summaries on matrices, the iteration scheme is dependent on the layout of the
data. Column-major matrices will always be iterated over by column, and row-major matrices will
always be iterated over by row. Row statistics on column-major matrices and column statistics on
row-major matrices are calculated iteratively.

Variance and standard deviation are calculated using a running sum of squares formula which can
be calculated iteratively and is accurate for large floating-point datasets (see reference).

Value

For mean, sd, and var, a single number. For the column summaries, a vector of length equal to the
number of columns of the matrix. For the row summaries, a vector of length equal to the number of
rows of the matrix.

Author(s)
Kylie A. Bemis

References
B. P. Welford, “Note on a Method for Calculating Corrected Sums of Squares and Products,” Tech-
nometrics, vol. 4, no. 3, pp. 1-3, Aug. 1962.

See Also

stream_stat

110 to_raster

Examples

register(SerialParam())
x <- matter(1:100, nrow=10, ncol=10)

sum(x)
mean(x)
var(x)
sd(x)

colSums(x)
colMeans(x)

rowSums (x)
rowMeans (x)

to_raster Rasterize a Scattered 2D or 3D Signal

Description

Estimate the raster dimensions of a scattered 2D or 3D signal based on its pixel coordinates.

Usage

Rasterize a 2D signal
to_raster(x, y, vals)

Rasterize a 3D signal
to_raster3(x, y, z, vals)

Check if coordinates are gridded
is_gridded(x, tol = sqrt(.Machine$double.eps))

Arguments
X,Y, Z The coordinates of the data to be rasterized. For is_gridded(), a numeric ma-
trix or data frame where each column gives the pixel coordinates for a different
dimension.
vals The data values to be rasterized.
tol The tolerance allowed when estimating the resolution. Noise in the sampling
rate will be allowed up to this amount when determining if the data is approxi-
mately gridded or not.
Details

This is meant to be a more efficient version of approx2() when the data is already (approximately)
gridded. Otherwise, approx2() is used.

Value

A numeric vector giving the estimated raster dimensions.

trans2d

Author(s)
Kylie A. Bemis

See Also

approx2

Examples

create an image
set.seed(1)

i <- seq(-4, 4, 1
j <- seq(1, 3, le
co <- expand.grid
z <- matrix(atan(
vals <- 10 * (z -

scatter coordin
d <- expand.grid(
d$vals <- as.vect

rasterize
to_raster(dx, d

111

ength.out=12)

ngth.out=9)

(x=1, y=3)

cox / coy), nrow=12, ncol=9)
min(z)) / diff(range(z))

ates and flatten image

x=jitter(1:12), y=jitter(1:9))
or(z)

y, d$vals)

trans2d

2D Spatial Transformation

Description

Perform linear spatial transformations on a matrix, including rigid, similarity, and affine transfor-

mations.

Usage

trans2d(x, vy, z

, pmat,

rotate = @, translate = c(@, 0), scale = c(1, 1),

interp = "linear"”, dimout = dim(z), ...)
Arguments
X, Y, Z The data to be interpolated. Alternatively, x can be a matrix, in which case

pmat

rotate
translate
scale
interp

dimout

the matrix elements are used for z and x and y are generated from the matrix’s
dimensions.

A 3 x 2 transformation matrix for performing an affine transformation. Auto-
matically generated from rotate, translate, and scale if not provided.

Rotation in degrees.

Translation vector, in the same units as x and y, if given.
Scaling factors.

Interpolation method. See approx2.

The dimensions of the returned matrix.

Additional arguments passed to approx2.

112 uuid

Value

If x is a matrix or z is provided, returns a transformed matrix with the dimensions of dimout.

Otherwise, only the transformed coordinates are returned in a data. frame.

Author(s)
Kylie A. Bemis

See Also

approx2

Examples

set.seed(1)

X <- matrix(@, nrow=32, ncol=32)

x[9:24,9:24] <- 10

X <= x + runif(length(x))

xt <- trans2d(x, rotate=15, translate=c(-5, 5))

par(mfcol=c(1,2))
image(x, col=hcl.colors(256), main="original")
image(xt, col=hcl.colors(256), main="transformed")

uuid Universally Unique Identifiers

Description

Generate a UUIDv4.

Usage
uuid(uppercase = FALSE)

hex2raw(x)

raw2hex(x, uppercase = FALSE)

Arguments
X A vector to convert between raw bytes and hexadecimal strings.
uppercase Should the result be in uppercase?

Details

uuid generates a random (version 4) universally unique identifier. A private RNG stream is used to
avoid collisions due to set. seed and to avoid altering the global .Random. seed.

hex2raw converts a hexadecimal string to a raw vector.

raw2hex converts a raw vector to a hexadecimal string.

vizi 113

Value
For uuid, a list of length 2:

* string: A character vector giving the UUID.
* bytes: The raw bytes of the UUID.

For hex2raw, a raw vector.

For raw2hex, a character vector of length 1.

Author(s)
Kylie A. Bemis

Examples

id <= uuid()

id
hex2raw(id$string)
raw2hex(id$bytes)

vizi A Simple Grammar of Base Graphics

Description

These functions provide a simple grammar of graphics approach to programming with R’s base
graphics system.

Usage

Initialize a plot
vizi(data, ..., encoding = NULL, mark = NULL, params = NULL)

Add plot components
add_mark(plot, mark, ..., encoding = NULL, data = NULL,
trans = NULL, params = NULL)

add_facets(plot, by = NULL, data = NULL,
nrow = NA, ncol = NA, labels = NULL,
drop = TRUE, free = "")

Set plot attributes

set_title(plot, title)

set_channel(plot, channel, label = NULL,

limits = NULL, scheme = NULL, key = TRUE)

set_coord(plot, xlim = NULL, ylim = NULL, zlim = NULL,
rev = "" log = "", asp = NA, grid = TRUE)

set_engine(plot, engine = c("base”, "plotly"))

114

set_par(plot,

Vizi

., style = NULL)

Combine plots

as_layers(plotlist, ...)
as_facets(plotlist, ..., nrow = NA, ncol = NA,
labels = NULL, drop = TRUE, free = "")

Coercion

as_plotly(plot,

Arguments

data

encoding
mark

params

plot, plotlist
title

channel
label, labels

limits

scheme

key

xlim, ylim, z1im
rev

log, asp

grid

engine

style

trans

source = "A")

A data.frame.

For vizi and add_mark, these should be named arguments specifying the en-
coding for the plot. The argument names should specify channels, using either
base R-style (e.g., pch, cex) or ggplot-style names (e.g., shape, size). One-sided
formula arguments will be evaluated in the environment of data. Non-formula
arguments will be used as-is. For set_par, these specify additional graphical
parameters (as in par) or arguments to persp for 3D plots. For as_facets,
these should be additional subplots.

Encodings specified as a list rather than using

The name of a supported mark, such as "points", "lines", etc.

Additional graphical parameters that are not mapped to the data, using either
base R-style (e.g., pch, cex) or ggplot-style names (e.g., shape, size)

A vizi_plot object, or a list of such objects, respectively.

The title of the plot.

The channel to modify, using ggplot-style names (e.g., shape, size).

Plotting labels.

The limits for the channel, specified as c(min, max) for continuous variables

or a character vector of possible levels for discrete variables. The data will be
constrained to these limits before plotting.

A function or vector giving the scheme for encoding the channel. For example,
a vector of colors, or a function that returns a vector of n colors.

Should a key be generated for the channel?

The plot limits. These only affect the plotting window, not the data. See
plot.window

nno n,n

A string specifying spatial dimensions that should be reversed. E.g., "", "x",

no,n

y ,or ”Xy”.
See plot.window.
Should a rectangular grid be included in the plot?

The plotting engine. Default is to use base graphics. Using "plotly" requires the
plotly package to be installed.

The visual style to use for plotting. Currently supported styles are "light",
"dark", and "classic".

A list providing parameters for any transformations the mark supports.

vizi 115
by A vector or formula giving the facet specification.
nrow, ncol The number of rows and columns in the facet grid.
drop Should empty facets be dropped?
free A string specifying the free spatial dimensions during faceting. E.g., "", "x",
”yll’ Or ”Xy“_
source See plot_ly.
Details

Currently supported marks include:

points: Points (i.e., scatterplots).

lines: Lines (i.e., line charts).

peaks: Height (histogram) lines.

text: Text labels.

rules: Reference lines.

bars: Bars for bar charts or histograms.

intervals: Line intervals for representing error bars or confidence intervals.
boxplot: Box-and-whisker plots.

image: Raster graphics.

pixels: 2D image from pixels.

voxels: 3D image from voxels.

Currently supported encodings include:

Value

X, Yy, z: Positions.

xmin, xmax, ymin, ymax: Position limits for intervals and image.

image: Rasters for image.

shape: Shape of points (pch).

size: Size of points (cex).

color, colour: Color (col, fg).

fill: Fill color (bg).

alpha: Opacity.

linetype, linewidth, lineend, linejoin, linemetre: Line properties (Ity, lwd, lend,
ljoin, Imitre).

An object of class vizi_plot.

Author(s)

Kylie A. Bemis

See Also

vizi_points,vizi_lines,vizi_peaks, vizi_text,vizi_intervals,vizi_rules,vizi_bars,
vizi_boxplot, vizi_image, vizi_pixels, vizi_voxels

116

Examples

require(datasets)

mtcars <- transform(mtcars,
am=factor(am, labels=c("auto”, "manual")))

faceted scatter plot

vizi(mtcars, x=~disp, y=~mpg) |>
add_mark("points”) |>
add_facets(~mtcars$am)

faceted scatter plot with color
vizi(mtcars, x=~disp, y=~mpg, color=~am) |>
add_mark("points”,
params=list(shape=20, size=2, alpha=0.8)) |>
add_facets(~mtcars$am)

coords <- expand.grid(x=1:nrow(volcano), y=1:ncol(volcano))

volcano image

vizi(coords, x=~x, y=~y, color=volcano) |>
add_mark("pixels") |>
set_coord(grid=FALSE) |>
set_par(xaxs="i", yaxs="i")

vizi_style

vizi_style Set Graphical Parameters

Description

Set global parameters for plotting vizi graphics.

Usage

Set style and palettes
vizi_style(style = "light"”, dpal = "Tableau 10", cpal = "Viridis")

Set plotting engine
vizi_engine(engine = c("base”, "plotly"))

Set graphical parameters
vizi_par(..., style = getOption("matter.vizi.style"))

Arguments

style The visual style to use for plotting. Currently supported styles are "light",

"dark", "voidlight", "voiddark", and "transparent".

dpal, cpal The name of discrete and continous color palettes. See palette.pals and

hcl.pals.

engine The plotting engine. Default is to use base graphics. Using "plotly" requires the

plotly package to be installed.

These specify additional graphical parameters (as in par).

warpl

Value

117

A character vector or list with the current parameters.

Author(s)
Kylie A. Bemis

See Also

vizi

warp1l

Warping to Align 1D Signals

Description

Two signals often need to be aligned in order to compare them. The signals may contain a similar
pattern, but shifted or stretched by some amount. These functions warp the first signal to align it as
closely as possible to the second signal.

Usage

Signal warping based on local events
warpl_loc(x, y, tx = seq_along(x), ty = seq_along(y),

events =
interp =

c("maxmin”,
c("linear”, "loess", "spline"),

n n

max"”, "min"), n = length(y),

tol = NA_real_, tol.ref = "abs")

Dynamic time warping
warpl_dtw(x, y, tx = seq_along(x), ty = seq_along(y),
n = length(y), tol = NA_real_, tol.ref = "abs")

Correlation optimized warping

warpl_cow(x, y, tx = seq_along(x), ty = seq_along(y),
nbins = NA_integer_, n = length(y),
tol = NA_real_, tol.ref = "abs")

Arguments

X? y
tx, ty

events

interp
tol, tol.ref

nbins

Signals to be aligned by warping x to match y.

The domain variable of the signals. If ty is specified but y is missing, then ty are
interpreted as locations of reference peaks, and a dummy signal will be created
for the warping (using simspec1).

The type of events to use for calculating the alignment.

The number of samples in the warped x to be returned. By default, it matches
the length of y.

The interpolation method used when warping the signal.

A tolerance specifying the maximum allowed distance between aligned samples.
See bsearch for details. If missing, the tolerance is estimated as 5% of the
signal’s domain range.

The number of signal segments used for warping. The correlation is maximized
for each segment.

118 warpl

Details

warp1_loc() uses a simple event-based alignment. Events are defined as local extrema. The events
are matched between each signal based on proximity. The shift between the events in x and y are
calculated and interpolated to find shifts for each sample. The warped signal is then calculated from
these shifts. This is a simple heuristic method, but it is relatively fast and typically good enough for
aligning peak locations.

warpl_dtw() performs dynamic time warping. In dynamic time warping, each sample in x is
matched to a corresponding sample in y using dynamic programming to find the optimal matches.
The version implemented here is constrained by the given tolerance. This both reduces the nec-
essary memory, and in practice tends to give more realistic (and therefore accurate) results than
an unconstrained alignment. An unconstrained alignment can still be obtained by setting a high
tolerance, but this may use a lot of memory.

warp1_cow() performs correlation optimized. In correlation optimized warping, each signal is
divided into some number of segments. Dynamic programming is then used to find the placement
of the segment boundaries that maximizes the correlation of all the segments.

Value

A numeric vector the same length as y with the warped x.

Author(s)

Kylie A. Bemis

References

G. Tomasi, F. van den Berg, and C. Andersson. “Correlation optimized warping and dynamic time
warping as preprocessing methods for chromatographic data.” Journal of Chemometrics, vol. 18,
pp- 231-241, July 2004.

N. V. Nielsen, J. M. Carstensen, and J. Smedsgaard. “Aligning of single and multiple wavelength
chromatographic profiles for chemometric data analysis using correlation optimised warping.” Jour-
nal of Chromatography A, vol. 805, pp. 17-35, Jan. 1998.

Examples

set.seed(1)

t <- seq(from=0, to=6 * pi, length.out=2000)
dt <- 0.3 x (sin(t) + 0.6 * sin(2.6 * t))

x <= sin(t + dt) + 0.6 * sin(2.6 * (t + dt))
y <- sin(t) + 0.6 * sin(2.6 * t)

xw <- warpl_dtw(x, y)

plot(y, type="1")
lines(x, col="blue")
lines(xw, col="red"”, lty=2)

warp2 119

warp?2 Warping to Align 2D Signals

Description

Register two images by warping a "moving" image to align with the "fixed" image.

Usage

Transformation-based registration
warp2_trans(x, y, control = list(),
trans = c("rigid”, "similarity”, "affine"),
metric = c("cor”, "mse"”, "mi"), nbins = 64L,
scale = TRUE, dimout = dim(y))

Mutual information
mi(x, y, n = 64L)

Arguments
X,y Images to be aligned by warping x (which is "moving") to match y (which is
"fixed").
control A list of optimization control parameters. Passed to optim().
trans The type of transformation allowed: "rigid" means translation and rotation,
"similarity" means translation, rotation, and scaling, and "affine" means a gen-
eral affine transformation.
metric The metric to optimize.
nbins, n The number of histogram bins to use when calculating mutual information.
scale Should the images be normalized to have the same intensity range?
dimout The dimensions of the returned matrix.
Details

warp2_trans() performs a simple transformation-based registration using optim for optimization.

Value

A numeric vector the same length as y with the warped x.

Author(s)

Kylie A. Bemis

See Also

trans2d, optim

120 warp2

Examples

set.seed(1)

x <- matrix(@, nrow=32, ncol=32)

x[9:24,9:24] <- 10

x <= x + runif(length(x))

xt <- trans2d(x, rotate=15, translate=c(-5, 5))
xw <- warp2_trans(xt, x)

par(mfcol=c(1,3))

image(x, col=hcl.colors(256), main="original")
image(xt, col=hcl.colors(256), main="transformed")
image(xw, col=hcl.colors(256), main="registered")

Index

* 10
fetch, 37
matter-class, 54
matter-types, 58
matter_arr-class, 59
matter_fct-class, 61
matter_list-class, 63
matter_str-class, 65
struct, 107

x algebra
pinv, 76

* aplot
plot-vizi, 76
vizi, 113

* arith
deferred-ops, 25

* array
colscale, 16
colStats, 17
colsweep, 18
matter-class, 54
matter_arr-class, 59
matter_fct-class, 61
matter_list-class, 63
matter_str-class, 65
rowDists, 90
sparse_arr-class, 102
struct, 107

* classes
chunked-class, 14
drle-class, 27
matter-class, 54
matter_arr-class, 59
matter_fct-class, 61
matter_list-class, 63
matter_str-class, 65

SnowfastParam-class, 100

sparse_arr-class, 102
* classif

cv_do, 23

mi_learn, 68

nscentroids, 72

pls, 81

predscore, 86
rocscore, 89

* cluster

sgmix, 94

* color

cpal, 22
vizi_style, 116

* datagen

simspec, 99

+ debugging

simple_logger-class, 97

* device

vizi_style, 116

+ dplot

estdim, 32
shingles, 96
to_raster, 110
vizi, 113

+ hplot

plot-vizi, 76
plot_signal, 78
vizi, 113

* internal

matter-utils, 59

* iteration

chunkApply, 11

* manip

chunked-class, 14

* methods

deferred-ops, 25

* misc

matter-options, 56

* models

sgmix, 94

* multivariate

fastmap, 35
nnmf, 70
pls, 81
prcomp, 84

* regression

cv_do, 23
pls, 81

* smooth

122

convolve_at, 20
enhance, 29
filt1, 38
filt2, 41
filtn, 43

* spatial
enhance, 29
filt2, 41
filtn, 43
findpeaks_knn, 48
inpoly, 50
knnsearch, 53
sgmix, 94
trans2d, 111
warpl, 117
warp2, 119

* tree
knnsearch, 53

* 1S
approx1, 3
approx2, 4
binpeaks, 7
convolve_at, 20
downsample, 26
estbase, 30
estnoise, 32
estres, 34
filt1, 38
findpeaks, 45
findpeaks_cwt, 46
peakwidths, 74
rescale, 87
simspec, 99

* univar
avg, 6
colStats, 17
stream_stat, 105
summary-stats, 108

+ utilities
binvec, 8
bsearch, 9
checksum, 10
coscore, 21
cv_do, 23
fetch, 37
inpoly, 50
iQuote, 51
isofun, 52
knnsearch, 53
matter-utils, 59
mem, 67
predscore, 86

INDEX

RNGStreams, 88
rocscore, 89
rollvec, 90
seq_rel, 93
simple_logger-class, 97
struct, 107
trans2d, 111
uuid, 112
.colDists (rowDists), 90
.colStats (colStats), 17
.rowDists (rowDists), 90
.rowStats (colStats), 17
[,atoms,ANY,ANY, ANY-method
(matter-class), 54
[,atoms-method (matter-class), 54
[, chunked, ANY,ANY, ANY-method
(chunked-class), 14

[,drle,ANY,ANY,ANY-method (drle-class),

27
[,drle_fct,ANY,ANY,ANY-method

(drle-class), 27
[,matter_arr,ANY,ANY,ANY-method

(matter_arr-class), 59

[,matter_arr-method (matter_arr-class),

59
[,matter_fct,ANY,ANY,ANY-method
(matter_fct-class), 61

[,matter_fct-method (matter_fct-class),

61
[,matter_list,ANY,ANY,ANY-method
(matter_list-class), 63
[,matter_list-method
(matter_list-class), 63
[,matter_mat,ANY,ANY, ANY-method
(matter_arr-class), 59

[,matter_mat-method (matter_arr-class),

59
[,matter_str,ANY, ANY, ANY-method
(matter_str-class), 65

[,matter_str-method (matter_str-class),

65
[,sparse_arr,ANY,ANY,ANY-method
(sparse_arr-class), 102
[<-,matter_arr,ANY,ANY, ANY-method
(matter_arr-class), 59
[<-,matter_arr-method
(matter_arr-class), 59
[<-,matter_fct,ANY,ANY, ANY-method
(matter_fct-class), 61
[<-,matter_fct-method
(matter_fct-class), 61
[<-,matter_list,ANY,ANY,ANY-method

INDEX

(matter_list-class), 63
[<-,matter_list-method
(matter_list-class), 63
[<-,matter_mat, ANY,ANY, ANY-method
(matter_arr-class), 59
[<-,matter_mat-method
(matter_arr-class), 59
[<-,matter_str,ANY, ANY,ANY-method
(matter_str-class), 65
[<-,matter_str-method
(matter_str-class), 65
[<-,sparse_arr,ANY,ANY, ANY-method
(sparse_arr-class), 102
[<-, sparse_arr-method
(sparse_arr-class), 102
[[,atoms,ANY,ANY-method (matter-class),
54
[[,atoms-method (matter-class), 54
[[,chunked_list-method (chunked-class),
14
[[, chunked_mat-method (chunked-class),
14
[[,chunked_vec-method (chunked-class),
14
[[,matter_list,ANY,ANY-method
(matter_list-class), 63
[[,matter_list-method
(matter_list-class), 63
[[<-,matter_list, ANY,ANY-method
(matter_list-class), 63
[[<-,matter_list-method
(matter_list-class), 63
$,matter_list-method
(matter_list-class), 63
$<-,matter_list-method
(matter_list-class), 63
%*%,matrix,matter_mat-method
(matter_arr-class), 59
%*%,matrix,sparse_mat-method
(sparse_arr-class), 102
%*%,matter_mat,matrix-method
(matter_arr-class), 59
%*%,matter_mat,vector-method
(matter_arr-class), 59
%*%,sparse_mat,matrix-method
(sparse_arr-class), 102
%*%,sparse_mat,vector-method
(sparse_arr-class), 102
%*%,vector,matter_mat-method
(matter_arr-class), 59
%*%,vector, sparse_mat-method
(sparse_arr-class), 102

123

adata (matter-class), 54
adata,matter-method (matter-class), 54
add_alpha (cpal), 22
add_facets (vizi), 113
add_mark, 78
add_mark (vizi), 113
aindex (matter-class), 54
aindex,matter-method (matter-class), 54
aindex, sparse_arr-method
(sparse_arr-class), 102
all,matter_arr-method (summary-stats),
108
any,matter_arr-method (summary-stats),
108
apply, 13
approx, 4, 5
approx1, 3, 5,27
approx2,4,4,54,111, 112
Arith, 25
Arith (deferred-ops), 25
Arith,array,matter_arr-method
(deferred-ops), 25
Arith,array, sparse_arr-method
(deferred-ops), 25
Arith,matter_arr,array-method
(deferred-ops), 25
Arith,matter_arr,vector-method
(deferred-ops), 25
Arith, sparse_arr,array-method
(deferred-ops), 25
Arith,sparse_arr,vector-method
(deferred-ops), 25
Arith,vector,matter_arr-method
(deferred-ops), 25
Arith,vector,sparse_arr-method
(deferred-ops), 25
array_ind (matter-utils), 59
arrows, 78
as.altrep (matter-utils), 59
as.altrep,matter_arr-method
(matter-utils), 59
as.altrep,matter_fct-method
(matter-utils), 59
as.altrep,matter_list-method
(matter-utils), 59
as.altrep,matter_mat-method
(matter-utils), 59
as.altrep,matter_str-method
(matter-utils), 59
as.altrep,matter_vec-method
(matter-utils), 59
as.array,matter_arr-method

124

as

as.

as

as

as

as.

as.

as.
as.

as.

as.
as.

as.
as.

as.

as.

as.

as.

as

as.
as.
as.

as.
as.
.vector (matter_arr-class), 59
as.
.vector,matter_arr-method

as

as

as

(matter_arr-class), 59

.array, sparse_arr-method

(sparse_arr-class), 102
character,matter_str-method
(matter_str-class), 65

.data.frame, atoms-method

(matter-class), 54

.data.frame,drle-method (drle-class),

27

.data.frame, stream_stat-method

(stream_stat), 105
factor,drle_fct-method (drle-class),
27
factor,matter_fct-method
(matter_fct-class), 61
integer,drle-method (drle-class), 27
integer,matter_arr-method
(matter_arr-class), 59
integer, sparse_arr-method
(sparse_arr-class), 102
list,atoms-method (matter-class), 54
list,chunked-method (chunked-class),
14
list,drle-method (drle-class), 27
list,matter_list-method
(matter_list-class), 63
logical,matter_arr-method
(matter_arr-class), 59
logical, sparse_arr-method
(sparse_arr-class), 102
matrix,matter_arr-method
(matter_arr-class), 59
matrix,sparse_arr-method
(sparse_arr-class), 102

.matter (matter-class), 54
as.
as.

numeric,drle-method (drle-class), 27
numeric,matter_arr-method
(matter_arr-class), 59
numeric, sparse_arr-method
(sparse_arr-class), 102
raw,matter_arr-method
(matter_arr-class), 59
raw, sparse_arr-method
(sparse_arr-class), 102
shared (matter-class), 54
sparse (sparse_arr-class), 102

vector,drle-method (drle-class), 27

(matter_arr-class), 59

.vector,matter_fct-method

(matter_fct-class), 61

INDEX

as.vector,matter_list-method
(matter_list-class), 63
as.vector,matter_str-method
(matter_str-class), 65
as.vector,sparse_arr-method
(sparse_arr-class), 102
as_facets (vizi), 113
as_layers (vizi), 113
as_plotly (vizi), 113
asearch, 4, 5, 10
asearch (deprecated), 26
atomdata (matter-class), 54
atomdata,matter-method (matter-class),
54
atomdata, sparse_arr-method
(sparse_arr-class), 102
atomdata<- (matter-class), 54
atomdata<-,matter-method
(matter-class), 54
atomindex (matter-class), 54
atomindex,matter-method (matter-class),
54
atomindex, sparse_arr-method
(sparse_arr-class), 102
atomindex<- (matter-class), 54
atomindex<-, sparse_arr-method
(sparse_arr-class), 102
atoms (matter-class), 54
atoms-class (matter-class), 54

avg, 6
binpeaks, 7, 46,48, 75
binvec, 8
BiocParallelParam, 101
boxplot, 78

bpislocal (SnowfastParam-class), 100
bplapply, 12, 16, 18, 24, 57,73, 82, 85, 92, 95
bplocalized (SnowfastParam-class), 100
bpstart, SnowfastParam-method

(SnowfastParam-class), 100
bpstop, SnowfastParam-method

(SnowfastParam-class), 100
bptrystart (SnowfastParam-class), 100
bptrystop (SnowfastParam-class), 100
bsearch, 7,9, 54, 117

c,atoms-method (matter-class), 54

c,drle-method (drle-class), 27

c,matter-method (matter-class), 54

c,matter_arr-method (matter_arr-class),
59

c,matter_list-method
(matter_list-class), 63

INDEX

c,matter_str-method (matter_str-class),
65
c,vizi_facets-method (vizi), 113
c,vizi_plot-method (vizi), 113
cbind2,atoms,ANY-method (matter-class),
54
cbind2,matter_mat,matter_mat-method
(matter_arr-class), 59
cbind2,matter_mat,matter_vec-method
(matter_arr-class), 59
cbind2,matter_vec,matter_mat-method
(matter_arr-class), 59
cbind2,matter_vec,matter_vec-method
(matter_arr-class), 59
cbind2, sparse_mat, sparse_mat-method
(sparse_arr-class), 102
checksum, 10
checksum, atoms-method (checksum), 10
checksum, character-method (checksum), 10
checksum,matter_-method (checksum), 10
chunk_apply (chunkApply), 11
chunk_colapply, 37
chunk_colapply (chunkApply), 11
chunk_lapply, 37
chunk_lapply (chunkApply), 11
chunk_mapply (chunkApply), 11
chunk_rowapply, 37
chunk_rowapply (chunkApply), 11
chunk_writer (chunkApply), 11
chunkApply, 11, 15, 56, 73, 95
chunked, 15
chunked (chunked-class), 14
chunked-class, 14
chunked_arr (chunked-class), 14
chunked_arr-class (chunked-class), 14
chunked_list (chunked-class), 14
chunked_list-class (chunked-class), 14
chunked_mat (chunked-class), 14
chunked_mat-class (chunked-class), 14
chunked_vec (chunked-class), 14
chunked_vec-class (chunked-class), 14
chunkify (chunked-class), 14
chunkLapply (chunkApply), 11
chunkMapply (chunkApply), 11
class:atoms (matter-class), 54
class:chunked (chunked-class), 14
class:chunked_arr (chunked-class), 14
class:chunked_list (chunked-class), 14
class:chunked_mat (chunked-class), 14
class:chunked_vec (chunked-class), 14
class:drle (drle-class), 27
class:drle_fct (drle-class), 27

125

class:matter (matter-class), 54

class:matter_arr (matter_arr-class), 59

class:matter_fct (matter_fct-class), 61

class:matter_list (matter_list-class),
63

class:matter_mat (matter_arr-class), 59

class:matter_str (matter_str-class), 65

class:matter_vec (matter_arr-class), 59

class:simple_logger
(simple_logger-class), 97

class:SnowfastParam
(SnowfastParam-class), 100

class:sparse_arr (sparse_arr-class), 102

class:sparse_mat (sparse_arr-class), 102

class:sparse_vec (sparse_arr-class), 102

cmdscale, 37

co.intervals, 96, 97

coef.opls (pls), 81

col2rgb, 78

coldist (rowDists), 90

coldist_at (rowDists), 90

colDists, 36, 37,73, 74

colDists (rowDists), 90

colDists,ANY,missing-method (rowDists),
90

colDists,matrix,matrix-method
(rowDists), 90

colDists,matrix,matter_mat-method
(rowDists), 90

colDists,matrix, sparse_mat-method
(rowDists), 90

colDists,matter_mat,matrix-method
(rowDists), 90

colDists, sparse_mat,matrix-method
(rowDists), 90

colMeans (summary-stats), 108

colMeans,matter_mat-method
(summary-stats), 108

colMeans, sparse_mat-method
(summary-stats), 108

colscale, 16

colscale,ANY-method (colscale), 16

colStats, 17

colStats,ANY-method (colStats), 17

colStats,matter_mat-method (colStats),
17

colStats, sparse_mat-method (colStats),
17

colSums, 18

colSums (summary-stats), 108

colSums,matter_mat-method
(summary-stats), 108

126

colSums, sparse_mat-method
(summary-stats), 108

colsweep, 18

colsweep,ANY-method (colsweep), 18

colsweep,matter_mat-method (colsweep),
18

colsweep, sparse_mat-method (colsweep),
18

combine,ANY,ANY-method (matter-utils),
59

combine, atoms, ANY-method
(matter-class), 54

combine,drle,drle-method (drle-class),
27

combine,drle,numeric-method
(drle-class), 27

combine,drle_fct,drle_fct-method
(drle-class), 27

combine,matter_arr,ANY-method
(matter_arr-class), 59

combine,matter_fct,ANY-method
(matter_fct-class), 61

combine,matter_list,ANY-method
(matter_list-class), 63

combine,matter_str,ANY-method
(matter_str-class), 65

combine,numeric,drle-method
(drle-class), 27

combine, stream_stat,ANY-method
(stream_stat), 105

combine,vizi_facets,vizi_facets-method
(vizi), 113

combine,vizi_plot,vizi_plot-method
(vizi), 113

Compare, 25

Compare (deferred-ops), 25

convolve_at, 20

coscore, 21

cpal, 22

cpals (cpal), 22

crossprod,ANY,matter_mat-method
(matter_arr-class), 59

crossprod, ANY, sparse_mat-method
(sparse_arr-class), 102

crossprod,matter_mat,ANY-method
(matter_arr-class), 59

crossprod, sparse_mat,ANY-method
(sparse_arr-class), 102

cv_do, 23

cwt (findpeaks_cwt), 46

deferred-ops, 25
deprecated, 26

INDEX

describe_for_display (matter-utils), 59
describe_for_display,ANY-method
(matter-utils), 59
describe_for_display,atoms-method
(matter-utils), 59
describe_for_display, chunked-method
(chunked-class), 14
describe_for_display,drle-method
(matter-utils), 59
describe_for_display,drle_fct-method
(matter-utils), 59
describe_for_display,matter_arr-method
(matter-utils), 59
describe_for_display,matter_fct-method
(matter-utils), 59
describe_for_display,matter_list-method
(matter-utils), 59
describe_for_display,matter_mat-method
(matter-utils), 59
describe_for_display,matter_str-method
(matter-utils), 59
describe_for_display,matter_vec-method
(matter-utils), 59
describe_for_display, sparse_mat-method
(matter-utils), 59
describe_for_display, sparse_vec-method
(matter-utils), 59
digest, 11
dim,atoms-method (matter-class), 54
dim,matter-method (matter-class), 54
dim,matter_list-method
(matter_list-class), 63
dim,matter_str-method
(matter_str-class), 65
dim,matter_vec-method
(matter_arr-class), 59
dim, sparse_vec-method
(sparse_arr-class), 102
dim<-,matter-method (matter-class), 54
dim<-,matter_arr-method
(matter_arr-class), 59
dim<-,matter_vec-method
(matter_arr-class), 59
dimnames,matter-method (matter-class),
54
dimnames<-,matter,ANY-method
(matter-class), 54
dims,atoms-method (matter-class), 54
dist, 92
domain (sparse_arr-class), 102
domain,array-method (sparse_arr-class),
102

INDEX

domain, sparse_arr-method
(sparse_arr-class), 102

domain,vector-method
(sparse_arr-class), 102

domain<- (sparse_arr-class), 102

domain<-,array-method
(sparse_arr-class), 102

domain<-, sparse_arr-method
(sparse_arr-class), 102

domain<-,vector-method
(sparse_arr-class), 102

downsample, 26, 77, 79

dpal (cpal), 22

dpals (cpal), 22

dQuote, 51

drle, 28

drle (drle-class), 27

drle-class, 27

drle_fct (drle-class), 27

drle_fct-class (drle-class), 27

droplevels,drle_fct-method
(drle-class), 27

Encoding,matter_str-method
(matter_str-class), 65
Encoding<-,matter_str-method
(matter_str-class), 65
enhance, 29, 78, 80
enhance_adapt (enhance), 29
enhance_adj (enhance), 29
enhance_hist (enhance), 29
environment, 52
estbase, 30
estbase_hull (estbase), 30
estbase_loc (estbase), 30
estbase_med (estbase), 30
estbase_snip (estbase), 30
estdim, 32
estnoise, 32
estnoise_diff, 45, 46,49
estnoise_diff (estnoise), 32
estnoise_filt, 45, 46, 49
estnoise_filt (estnoise), 32
estnoise_mad, 46, 49
estnoise_mad (estnoise), 32
estnoise_quant, 45, 46, 49
estnoise_quant (estnoise), 32
estnoise_sd, 46, 49
estnoise_sd (estnoise), 32
estres, 34
eval_at (matter-utils), 59
eval_exprs (matter-utils), 59

exp,matter_arr-method
(matter_arr-class), 59
exp, sparse_arr-method
(sparse_arr-class), 102
expand.grid, 5

fastmap, 35
fetch, 37
fetch,array-method (fetch), 37
fetch,character-method (fetch), 37
fetch, factor-method (fetch), 37
fetch,list-method (fetch), 37
fetch,logical-method (fetch), 37
fetch,matrix-method (fetch), 37
fetch,matter_arr-method
(matter_arr-class), 59
fetch,matter_fct-method
(matter_fct-class), 61
fetch,matter_list-method
(matter_list-class), 63
fetch,matter_mat-method
(matter_arr-class), 59
fetch,matter_str-method
(matter_str-class), 65
fetch,matter_vec-method
(matter_arr-class), 59
fetch,numeric-method (fetch), 37
fetch,raw-method (fetch), 37
fetch, sparse_arr-method
(sparse_arr-class), 102
filt1, 38
filt1_adapt (filt1), 38
filt1_bi (filt1), 38
filt1_conv (filt1), 38
filt1_diff (filt1), 38
filt1_gauss (filt1), 38
filt1_guide (filt1), 38
filt1_ma (filt1), 38
filt1_pag (filt1), 38
filt1l_sg(filt1), 38
filt2, 41,78, 80
filt2_adapt (filt2), 41
filt2_bi (filt2), 41
filt2_conv (filt2), 41
filt2_diff (filt2), 41
filt2_gauss (filt2), 41
filt2_guide (filt2), 41
filt2_ma (filt2), 41
filtn, 43
filtn_adapt (filtn), 43
filtn_bi (filtn), 43
filtn_conv (filtn), 43
filtn_gauss (filtn), 43

127

128

filtn_ma (filtn), 43

findbins (downsample), 26
findInterval, 10
findpeaks, 45, 48, 49, 75
findpeaks_cwt, 46, 46, 75
findpeaks_knn, 46, 48
findridges (findpeaks_cwt), 46
fitted.cv (cv_do), 23

fitted.nscentroids (nscentroids), 72

fitted.opls (pls), 81
fitted.pls (pls), 81
fitted.sgmix (sgmix), 94

flash (fetch), 37
flash,array-method (fetch), 37

flash,character-method (fetch), 37

flash, factor-method (fetch), 37
flash,list-method (fetch), 37
flash,logical-method (fetch), 37
flash,matrix-method (fetch), 37
flash,matter_arr-method
(matter_arr-class), 59
flash,matter_fct-method
(matter_fct-class), 61
flash,matter_list-method
(matter_list-class), 63
flash,matter_mat-method
(matter_arr-class), 59
flash,matter_str-method
(matter_str-class), 65
flash,matter_vec-method
(matter_arr-class), 59
flash,numeric-method (fetch), 37
flash,raw-method (fetch), 37
flash, sparse_arr-method
(sparse_arr-class), 102

gc, 67, 68
getRNGStream (RNGStreams), 88
gettext, 97, 98

hcl.pals, 22,116
hex2raw (uuid), 112

icor (warp1), 117

image, 23

inpoly, 50

iQuote, 51

irlba, 71, 85

is.drle (drle-class), 27
is.matter (matter-class), 54
is.shared (matter-class), 54
is.sparse (sparse_arr-class), 102
is_gridded (to_raster), 110

INDEX

isoclos (isofun), 52
isofun, 52

kdsearch, 51

kdsearch (knnsearch), 53
kdtree (knnsearch), 53
kmeans, 96

knnmax (findpeaks_knn), 48
knnmin (findpeaks_knn), 48
knnsearch, 53

lapply, I3

length, atoms-method (matter-class), 54

length, chunked-method (chunked-class),
14

length,drle-method (drle-class), 27

length,matter-method (matter-class), 54

length,matter_list-method
(matter_list-class), 63

length,matter_str-method
(matter_str-class), 65

length, sparse_arr-method
(sparse_arr-class), 102

length<-,matter-method (matter-class),
54

lengths,atoms-method (matter-class), 54

lengths, chunked-method (chunked-class),
14

lengths,matter_list-method
(matter_list-class), 63

lengths,matter_str-method
(matter_str-class), 65

lengths, sparse_arr-method
(sparse_arr-class), 102

levels,drle_fct-method (drle-class), 27

levels,matter_fct-method
(matter_fct-class), 61

levels<-,drle_fct-method (drle-class),
27

levels<-,matter_fct-method
(matter_fct-class), 61

linear_ind (matter-utils), 59

locmax (findpeaks), 45

locmin (findpeaks), 45

log,matter_arr-method
(matter_arr-class), 59

log, sparse_arr-method
(sparse_arr-class), 102

log10,matter_arr-method
(matter_arr-class), 59

log10, sparse_arr-method
(sparse_arr-class), 102

INDEX

logip,matter_arr-method
(matter_arr-class), 59
loglp, sparse_arr-method
(sparse_arr-class), 102
log2,matter_arr-method
(matter_arr-class), 59
log?2, sparse_arr-method
(sparse_arr-class), 102
Logic, 25
Logic (deferred-ops), 25
loglLik.nscentroids (nscentroids), 72
logLik.sgmix (sgmix), 94

makePSOCKcluster, 101

mapply, 13

match, 10

Math, 25

matter, 10, 25, 37, 55, 60-64, 66, 85, 104, 105

matter (matter-class), 54

matter-class, 54

matter-options, 56

matter-types, 58

matter-utils, 59

matter_arr, 25, 56, 60, 108, 109

matter_arr (matter_arr-class), 59

matter_arr-class, 59

matter_defaults (matter-options), 56

matter_error (matter-utils), 59

matter_fct, 56, 62

matter_fct (matter_fct-class), 61

matter_fct-class, 61

matter_list, 56, 64, 66, 108

matter_list (matter_list-class), 63

matter_list-class, 63

matter_log (matter-utils), 59

matter_logger (simple_logger-class), 97

matter_mat, 24, 56, 71, 73, 82-85, 92

matter_mat (matter_arr-class), 59

matter_mat-class (matter_arr-class), 59

matter_message (matter-utils), 59

matter_shared_resource (matter-utils),
59

matter_shared_resource_list
(matter-utils), 59

matter_shared_resource_pool
(matter-utils), 59

matter_str, 56, 65

matter_str (matter_str-class), 65

matter_str-class, 65

matter_vec, 56, 62, 63

matter_vec (matter_arr-class), 59

matter_vec-class (matter_arr-class), 59

matter_warn (matter-utils), 59

129

max,matter_arr-method (summary-stats),
108

mean, 6

mean,matter_arr-method (summary-stats),
108

median, 6

mem, 67

mem_realized (matter-utils), 59

mem_realized, ANY-method (matter-utils),
59

mem_realized, chunked-method
(matter-utils), 59

mem_realized,list-method
(matter-utils), 59

mem_realized,matter_arr-method
(matter-utils), 59

mem_realized,matter_list-method
(matter-utils), 59

mem_realized,matter_str-method
(matter-utils), 59

mem_realized, sparse_arr-method
(matter-utils), 59

memcl (mem), 67

memtime (mem), 67

mergepeaks, 46, 48, 75

mergepeaks (binpeaks), 7

mi (warp2), 119

mi_learn, 23, 24, 68

min,matter_arr-method (summary-stats),
108

MulticoreParam, 102

names,matter-method (matter-class), 54

names<-,matter-method (matter-class), 54

nextRNGStream, 88

nndsvd (nnmf), 70

nnmf, 70

nnmf_als (nnmf), 70

nnmf_mult (nnmf), 70

nnpairs (deprecated), 26

nnzero, sparse_arr-method
(sparse_arr-class), 102

nscentroids, 69, 72

opls (pls), 81
opls_nipals (pls), 81
Ops, 25

Ops (deferred-ops), 25
optim, 719

palette.pals, 22,116
panel_dim (matter-utils), 59
panel_get (matter-utils), 59

130

panel_grid (matter-utils), 59

panel_next (matter-utils), 59

panel_prev (matter-utils), 59

panel_set (matter-utils), 59

par, 79,114,116

parse_formula (matter-utils), 59

path (matter-class), 54

path,atoms-method (matter-class), 54

path,matter_-method (matter-class), 54

path,simple_logger-method
(simple_logger-class), 97

path<- (matter-class), 54

path<-,atoms-method (matter-class), 54

path<-,matter_-method (matter-class), 54

path<-,simple_logger-method
(simple_logger-class), 97

peakareas, 46, 48

peakareas (peakwidths), 74

peakheights, 46, 48

peakheights (peakwidths), 74

peakwidths, 46, 48, 74

persp, 114

pinv, 76

plot,vizi_bars,ANY-method (plot-vizi),
76

plot,vizi_boxplot, ANY-method
(plot-vizi), 76

plot,vizi_colorkey,ANY-method (vizi),
113

plot,vizi_facets,ANY-method (vizi), 113

plot,vizi_image,ANY-method (plot-vizi),
76

plot,vizi_intervals,ANY-method
(plot-vizi), 76

plot,vizi_key,ANY-method (vizi), 113

plot,vizi_lines,ANY-method (plot-vizi),
76

plot,vizi_peaks,ANY-method (plot-vizi),
76

plot,vizi_pixels,ANY-method
(plot-vizi), 76

plot,vizi_plot,ANY-method (vizi), 113

plot,vizi_points,ANY-method
(plot-vizi), 76

plot,vizi_rules,ANY-method (plot-vizi),
76

plot,vizi_text,ANY-method (plot-vizi),
76

plot,vizi_voxels,ANY-method
(plot-vizi), 76

plot-vizi, 76

plot.vizi_bars (plot-vizi), 76

INDEX

plot.vizi_boxplot (plot-vizi), 76
plot.vizi_image (plot-vizi), 76
plot.vizi_intervals (plot-vizi), 76
plot.vizi_lines (plot-vizi), 76
plot.vizi_peaks (plot-vizi), 76
plot.vizi_pixels (plot-vizi), 76
plot.vizi_points (plot-vizi), 76
plot.vizi_rules (plot-vizi), 76
plot.vizi_text (plot-vizi), 76
plot.vizi_voxels (plot-vizi), 76
plot.window, 79, 80, 114
plot_image (plot_signal), 78
plot_ly, 715
plot_signal, 78
pls, 81
pls_kernel (pls), 81
pls_nipals (pls), 81
pls_simpls (pls), 81
pmatch, 10
pointers (sparse_arr-class), 102
pointers, sparse_arr-method
(sparse_arr-class), 102
pointers<- (sparse_arr-class), 102
pointers<-,sparse_arr-method
(sparse_arr-class), 102
prcomp, 37,72, 84, 84, 85
prcomp,matter_mat-method (prcomp), 84
prcomp, sparse_mat-method (prcomp), 84
prcomp_irlba, 85
prcomp_lanczos (prcomp), 84
predict.fastmap (fastmap), 35
predict.nnmf (nnmf), 70
predict.nscentroids (nscentroids), 72
predict.opls (pls), 81
predict.pls (pls), 81
predscore, 25, 86
preplot,vizi_facets-method (vizi), 113
preplot,vizi_plot-method (vizi), 113
preview_for_display (matter-utils), 59
preview_for_display,ANY-method
(matter-utils), 59
preview_for_display, atoms-method
(matter-utils), 59
preview_for_display, chunked-method
(chunked-class), 14
preview_for_display, chunked_list-method
(chunked-class), 14
preview_for_display,drle-method
(matter-utils), 59
preview_for_display,matter_arr-method
(matter-utils), 59
preview_for_display,matter_fct-method

INDEX

(matter-utils), 59
preview_for_display,matter_list-method
(matter-utils), 59
preview_for_display,matter_mat-method
(matter-utils), 59
preview_for_display,matter_str-method
(matter-utils), 59
preview_for_display,matter_vec-method
(matter-utils), 59
preview_for_display, sparse_mat-method
(matter-utils), 59
preview_for_display, sparse_vec-method
(matter-utils), 59
print,vizi_facets,ANY-method (vizi), 113
print,vizi_plot,ANY-method (vizi), 113
prod,matter_arr-method (summary-stats),
108
profmem (deprecated), 26

gmad (matter-utils), 59
gmedian (matter-utils), 59
gorder (matter-utils), 59
grank (matter-utils), 59
gselect (matter-utils), 59

range,matter_arr-method
(summary-stats), 108

rasterImage, 78

raw2hex (uuid), 112

rbind2,atoms,ANY-method (matter-class),
54

rbind2,matter_mat,matter_mat-method
(matter_arr-class), 59

rbind2,matter_mat,matter_vec-method
(matter_arr-class), 59

rbind2,matter_vec,matter_mat-method
(matter_arr-class), 59

rbind2,matter_vec,matter_vec-method
(matter_arr-class), 59

rbind2, sparse_mat, sparse_mat-method
(sparse_arr-class), 102

read_atom (matter-utils), 59

read_atoms (matter-utils), 59

readonly (matter-class), 54

readonly, atoms-method (matter-class), 54

readonly,matter_-method (matter-class),
54

readonly<- (matter-class), 54

readonly<-,atoms-method (matter-class),
54

readonly<-,matter_-method
(matter-class), 54

reldiff (bsearch), 9

131

rescale, 87

rescale_iqr (rescale), 87

rescale_range (rescale), 87

rescale_ref (rescale), 87

rescale_rms (rescale), 87

rescale_sum (rescale), 87

residuals.opls (pls), 81

ricker (findpeaks_cwt), 46

rle, 28

RNGkind, 13, 88

RNGStreams, /3, 88

rocscore, 89

roll (rollvec), 90

rollvec, 90

rowdist (rowDists), 90

rowdist_at (rowDists), 90

rowDists, 36, 37, 73, 74, 90

rowDists,ANY,missing-method (rowDists),
90

rowDists,matrix,matrix-method
(rowDists), 90

rowDists,matrix,matter_mat-method
(rowDists), 90

rowDists,matrix, sparse_mat-method
(rowDists), 90

rowDists,matter_mat,matrix-method
(rowDists), 90

rowDists, sparse_mat,matrix-method
(rowDists), 90

rowMaj (matter_arr-class), 59

rowMaj,Matrix-method
(matter_arr-class), 59

rowMaj,matrix-method
(matter_arr-class), 59

rowMaj,matter_arr-method
(matter_arr-class), 59

rowMaj, sparse_arr-method
(sparse_arr-class), 102

rowMeans (summary-stats), 108

rowMeans,matter_mat-method
(summary-stats), 108

rowMeans, sparse_mat-method
(summary-stats), 108

rowscale (colscale), 16

rowscale,ANY-method (colscale), 16

rowStats, 85

rowStats (colStats), 17

rowStats,ANY-method (colStats), 17

rowStats,matter_mat-method (colStats),
17

rowStats, sparse_mat-method (colStats),
17

132

rowSums (summary-stats), 108

rowSums,matter_mat-method
(summary-stats), 108

rowSums, sparse_mat-method
(summary-stats), 108

rowsweep (colsweep), 18

rowsweep,ANY-method (colsweep), 18

rowsweep,matter_mat-method (colsweep),
18

rowsweep, sparse_mat-method (colsweep),
18

s_all (stream_stat), 105

s_any (stream_stat), 105

s_colstats, I8

s_colstats (stream_stat), 105

s_max (stream_stat), 105

s_mean (stream_stat), 105

s_min (stream_stat), 105

s_nnzero (stream_stat), 105

s_prod (stream_stat), 105

s_range (stream_stat), 105

s_rowstats, /8

s_rowstats (stream_stat), 105

s_sd (stream_stat), 105

s_stat (stream_stat), 105

s_sum (stream_stat), 105

s_var (stream_stat), 105

sampler (sparse_arr-class), 102

sampler, sparse_arr-method
(sparse_arr-class), 102

sampler<- (sparse_arr-class), 102

sampler<-,sparse_arr-method
(sparse_arr-class), 102

scale, 16

sd,matter_arr-method (summary-stats),
108

seq, 93

seq_rel, 93

set_channel (vizi), 113

set_coord (vizi), 113

set_engine (vizi), 113

set_par (vizi), 113

set_title(vizi), 113

setRNGStream (RNGStreams), 88

sgmix, 94

sgmixn (deprecated), 26

shingles, 96

shm_used (matter-utils), 59

shm_used, ANY-method (matter-utils), 59

shm_used, array-method (matter-utils), 59

shm_used, atoms-method (matter-utils), 59

INDEX

shm_used, chunked-method (matter-utils),
59

shm_used,drle-method (matter-utils), 59

shm_used,matter_-method (matter-utils),
59

shm_used, sparse_arr-method
(matter-utils), 59

shm_used, vector-method (matter-utils),
59

simple_logger (simple_logger-class), 97

simple_logger-class, 97

simspec, 99

simspecl, 117

simspec1 (simspec), 99

size_bytes (matter-utils), 59

sizeof (matter-utils), 59

SnowfastParam, /3

SnowfastParam (SnowfastParam-class), 100

SnowfastParam-class, 100

SnowParam, 100—-102

sparse_arr, 25

sparse_arr (sparse_arr-class), 102

sparse_arr-class, 102

sparse_mat, 24,71, 73, 82-85, 92, 103

sparse_mat (sparse_arr-class), 102

sparse_mat-class (sparse_arr-class), 102

sparse_vec (sparse_arr-class), 102

sparse_vec-class (sparse_arr-class), 102

sQuote, 51

stat_c (stream_stat), 105

stream_stat, 105, 109

struct, 107

sum,matter_arr-method (summary-stats),
108

Summary, 107

Summary (summary-stats), 108

summary-stats, 108

svd, 72

sweep, 18, 19

t,matter_arr-method (matter_arr-class),
59

t,matter_vec-method (matter_arr-class),
59

t,sparse_arr-method (sparse_arr-class),
102

t,sparse_vec-method (sparse_arr-class),
102

tcrossprod, ANY,matter_mat-method
(matter_arr-class), 59

tcrossprod, ANY, sparse_mat-method
(sparse_arr-class), 102

INDEX

tcrossprod,matter_mat, ANY-method
(matter_arr-class), 59
tcrossprod, sparse_mat, ANY-method
(sparse_arr-class), 102
tempfile, 59, 62, 63, 65
tempmem (uuid), 112
text, 78
to_raster, 110
to_raster3 (to_raster), 110
tolerance, sparse_arr-method
(sparse_arr-class), 102
tolerance<- (sparse_arr-class), 102
tolerance<-, sparse_arr-method
(sparse_arr-class), 102
trans2d, 111, 119
type (matter-class), 54
type,array-method (matter-class), 54
type,atoms-method (matter-class), 54
type,drle-method (drle-class), 27
type,matter-method (matter-class), 54
type,vector-method (matter-class), 54
type<- (matter-class), 54
type<-,atoms-method (matter-class), 54
type<-,matter-method (matter-class), 54
types (matter-types), 58

uuid, 112

var,matter_arr-method (summary-stats),
108

vip (pls), 81

vizi, 23,78-80, 113, 116, 117

vizi_bars, 115

vizi_bars (plot-vizi), 76

vizi_boxplot, 115

vizi_boxplot (plot-vizi), 76

vizi_engine (vizi_style), 116

vizi_image, 115

vizi_image (plot-vizi), 76

vizi_intervals, 115

vizi_intervals (plot-vizi), 76

vizi_lines, 115

vizi_lines (plot-vizi), 76

vizi_par (vizi_style), 116

vizi_peaks, 115

vizi_peaks (plot-vizi), 76

vizi_pixels, 80, 115

vizi_pixels (plot-vizi), 76

vizi_points, 115

vizi_points (plot-vizi), 76

vizi_rules, 115

vizi_rules (plot-vizi), 76

vizi_style, 116

133

vizi_text, 115

vizi_text (plot-vizi), 76

vizi_voxels, 115

vizi_voxels (plot-vizi), 76

vm_used (matter-utils), 59

vm_used, ANY-method (matter-utils), 59

vm_used, array-method (matter-utils), 59

vm_used, atoms-method (matter-utils), 59

vm_used, chunked-method (matter-utils),
59

vm_used,drle-method (matter-utils), 59

vm_used,matter_-method (matter-utils),
59

vm_used, sparse_arr-method
(matter-utils), 59

vm_used, vector-method (matter-utils), 59

warpl, 117

warp1_cow (warp1), 117
warpl_dtw (warp1), 117
warp1_loc (warp1), 117

warp2, 119

warp2_trans (warp2), 119
write_atom (matter-utils), 59
write_atoms (matter-utils), 59

	approx1
	approx2
	avg
	binpeaks
	binvec
	bsearch
	checksum
	chunkApply
	chunked-class
	colscale
	colStats
	colsweep
	convolve_at
	coscore
	cpal
	cv_do
	deferred-ops
	deprecated
	downsample
	drle-class
	enhance
	estbase
	estdim
	estnoise
	estres
	fastmap
	fetch
	filt1
	filt2
	filtn
	findpeaks
	findpeaks_cwt
	findpeaks_knn
	inpoly
	iQuote
	isofun
	knnsearch
	matter-class
	matter-options
	matter-types
	matter-utils
	matter_arr-class
	matter_fct-class
	matter_list-class
	matter_str-class
	mem
	mi_learn
	nnmf
	nscentroids
	peakwidths
	pinv
	plot-vizi
	plot_signal
	pls
	prcomp
	predscore
	rescale
	RNGStreams
	rocscore
	rollvec
	rowDists
	seq_rel
	sgmix
	shingles
	simple_logger-class
	simspec
	SnowfastParam-class
	sparse_arr-class
	stream_stat
	struct
	summary-stats
	to_raster
	trans2d
	uuid
	vizi
	vizi_style
	warp1
	warp2
	Index

