Package 'infinityFlow'

July 28, 2025

Title Augmenting Massively Parallel Cytometry Experiments Using Multivariate Non-Linear Regressions

Version 1.19.0

Description Pipeline to analyze and merge data files produced by BioLegend's LEGEND-Screen or BD Human Cell Surface Marker Screening Panel (BD Lyoplates).

Depends R (>= 4.0.0), flowCore

License GPL-3

Encoding UTF-8

LazyData false

Imports stats, grDevices, utils, graphics, pbapply, matlab, png, raster, grid, uwot, gtools, Biobase, generics, parallel, methods, xgboost

Suggests knitr, rmarkdown, keras, tensorflow, glmnetUtils, e1071

VignetteBuilder knitr

RoxygenNote 7.3.0

biocViews Software, FlowCytometry, CellBasedAssays, SingleCell, Proteomics

git_url https://git.bioconductor.org/packages/infinityFlow

git_branch devel

git_last_commit 166c477

git_last_commit_date 2025-04-15

Repository Bioconductor 3.22

Date/Publication 2025-07-28

Author Etienne Becht [cre, aut]

Maintainer Etienne Becht <etienne.becht@protonmail.com>

Contents

fitter_glmnet	2
fitter_linear	2
fitter_nn	3
fitter_svm	3
fitter_xgboost	4

fitter_linear

10

infinity_flow			•	•		•	•	•	•		•	•	•	•
select_backbone_and_exploratory_markers														
steady_state_lung														
steady_state_lung_annotation														
steady_state_lung_backbone_specification .														

Index

fitter_glmnet	Wrapper to glmnet.	Defined	separetely	to avoid	passing	too	many
	objects in parLapplyL	LB					

Description

Wrapper to glmnet. Defined separetely to avoid passing too many objects in parLapplyLB

Usage

fitter_glmnet(x = NULL, params = NULL)

Arguments

х	passed from fit_regressions
params	passed from fit_regressions

Value

A list with two elements: predictions and a fitted model

Examples

fitter_glmnet()

fitter_linear	Wrapper to linear model training. Defined separetely to avoid passing
	too many objects in parLapplyLB

Description

Wrapper to linear model training. Defined separetely to avoid passing too many objects in parLapplyLB

Usage

fitter_linear(x = NULL, params = NULL)

Arguments

х	passed from fit_regressions
params	passed from fit_regressions

fitter_nn

Value

A list with two elements: predictions and a fitted model

Examples

fitter_linear()

fitter_nn	Wrapper to Neural Network training.	Defined separetely to avoid
	passing too many objects in parLapplyL	B

Description

Wrapper to Neural Network training. Defined separetely to avoid passing too many objects in parLapplyLB

Usage

fitter_nn(x, params)

Arguments

x	passed from fit_regressions. Defines model architecture
params	passed from fit_regressions

Value

A list with two elements: predictions and a fitted model

Examples

fitter_xgboost()

fitter_svm	Wrapper to SVM training. Defined separetely to avoid passing too
	many objects in parLapplyLB

Description

Wrapper to SVM training. Defined separetely to avoid passing too many objects in parLapplyLB

Usage

fitter_svm(x = NULL, params = NULL)

Arguments

х	passed from fit_regressions
params	passed from fit_regressions

Value

A list with two elements: predictions and a fitted model

Examples

fitter_svm()

fitter_xgboost	Wrapper to XGBoost training. Defined separetely to avoid passing too
	many objects in parLapplyLB

Description

Wrapper to XGBoost training. Defined separetely to avoid passing too many objects in parLap-plyLB

Usage

fitter_xgboost(x = NULL, params = NULL)

Arguments

х	passed from fit_regressions
params	passed from fit_regressions

Value

A list with two elements: predictions and a fitted model

Examples

fitter_xgboost()

infinity_flow Wrapper to the Infinity Flow pipeline

Description

Wrapper to the Infinity Flow pipeline

infinity_flow

Usage

```
infinity_flow(
 path_to_fcs,
 path_to_output,
 path_to_intermediary_results = tempdir(),
 backbone_selection_file = NULL,
 annotation = NULL,
 isotype = NULL,
 input_events_downsampling = Inf,
 prediction_events_downsampling = 1000,
 cores = 1L,
 your_random_seed = 123,
 verbose = TRUE,
 extra_args_read_FCS = list(emptyValue = FALSE, truncate_max_range = FALSE,
   ignore.text.offset = TRUE),
 regression_functions = list(XGBoost = fitter_xgboost),
 extra_args_regression_params = list(list(nrounds = 500, eta = 0.05)),
 extra_args_UMAP = list(n_neighbors = 15L, min_dist = 0.2, metric = "euclidean", verbose
   = verbose, n_epochs = 1000L, n_threads = cores, n_sgd_threads = cores),
 extra_args_export = list(FCS_export = c("split", "concatenated", "none")[1], CSV_export
   = FALSE),
 extra_args_correct_background = list(FCS_export = c("split", "concatenated",
    "none")[1], CSV_export = FALSE),
 extra_args_plotting = list(chop_quantiles = 0.005),
 neural_networks_seed = NULL
```

Arguments

)

path_to_fcs	Path to the input directory where input FCS files are stored (one file per well). Will look for FCS files recursively in that directory.	
path_to_output	Path to the output directory where final results will be stored	
path_to_intermediary_results		
	Path to results to store temporary data. If left blank, will default to a temporary directory. It may be useful to store the intermediary results to further explore the data, tweak the pipeline or to resume computations.	
backbone_selection_file		
	If that argument is missing and R is run interactively, the user will be prompted to state whether each channel in the FCS file should be considered backbone measurement, exploratory measurement or ignored. Otherwise, the user should run select_backbone_and_exploratory_markers in an interactive R session, save its output using <i>write.csv(row.names=FALSE)</i> and set this <i>backbone_selection_file</i> parameter to the path of the saved output.	
annotation	Named character vector. Elements should be the targets of the exploratory anti- bodies, names should be the name of the FCS file where that exploratory anti- body was measured.	
isotype	Named character vector. Elements should be the isotype used in each of the well and that (e.g. IgG2). The corresponding isotype should be present in <i>annotation</i> (e.g. Isotype_IgG2, with this capitalization exactly). Autofluorescence measurements should be listed here as "Blank"	

input_events_downsampling		
		How many event should be kept per input FCS file. Default to no downsampling. In any case, half of the events will be used to train regression models and half to test the performance. Predictions will be made only on events from the test set, and downsampled according to prediction_events_downsampling.
	prediction_even	ts_downsampling
		How many event should be kept per input FCS file to output prediction for. Default to 1000.
	cores	Number of cores to use for parallel computing. Defaults to 1 (no parallel computing)
your_random_seed		
		Deprecated: was used to set a seed for computationally reproducible results but is not allowed by Bioconductor. Please set a random seed yourself using set.seed(somenumber) if you desire computionally-reproducible results.
	verbose	Whether to print information about progress
	extra_args_read	
		list of named arguments to pass to flowCore:read.FCS. Defaults to list(emptyValue=FALSE,truncate_) which in our experience avoided issues with data loading.
	regression_func	
		named list of fitter_* functions (see ls("package:infinityFlow") for the complete list). The names should be desired names for the different models. Each object
		of the list will correspond to a machine learning model to train. Defaults to
		list(XGBoost = fitter_xgboost).
	extra_args_regr	ression_params
		list of lists the same length as the regression_functions argument. Each element
		should be a named list, that will be passed as named arguments to the corre- ording fitter function. Defaulte to list(list(neuronds = 500, etc = 0.05))
	extra_args_UMAP	sponding fitter_function. Defaults to list(list(nrounds = 500 , eta = 0.05)).
		list of named arguments to pass to uwot:umap. Defaults to list(n_neighbors=15L,min_dist=0.2,metric
	extra_args_expo	
		Whether raw imputed data should be exported. Possible values are list(FCS_export
		= "split") to export one FCS file per input well, list(FCS_export = "concate-
		nated") to export a single concatenated FCS file containing all the dataset, list(FCS_export
		= "csv") for a single CSV file containing all the dataset. You can export multiple modalities by using for instance extra_args_export = list(FCS_export = c("split",
		"concatenated", "csv"))
extra_args_correct_background		
		Whether background-corrected imputed data should be exported. Possible val-
		ues are list(FCS_export = "split") to export one FCS file per input well, list(FCS_export
		= "concatenated") to export a single concatenated FCS file containing all the dataset, list(FCS_export = "csv") for a single CSV file containing all the dataset.
		You can export multiple modalities by using for instance extra_args_export =
		list(FCS_export = c("split", "concatenated", "csv"))
	extra_args_plot	ting
		list of named arguments to pass to plot_results. Defaults to list(chop_quantiles=0.005)
		which removes the top 0.05% and bottom 0.05% of the scale for each marker
	neural notworks	when mapping color palettes to intensities.
	neural_networks	Seed for computationally reproducible results when using neural networks (in
		additional to the other sources of stochasticity - sampling - that are made repro-
		ducible by the your_random_seed argument.

Value

Raw and background-corrected imputed expression data for every Infinity antibody

select_backbone_and_exploratory_markers

For each parameter in the FCS files, interactively prompts whether it is part of the Backbone, the Infinity (exploratory) markers or should be ignored.

Description

This function will load the first of the input FCS files and extract the measured parameters as well as their labels. For each of these, it will ask the user whether it is part of the backbone measurements (which will be used as a predictor variable in regressions models), Infinity (exploratory) measurements (usually PE-conjugated or APC-conjugated, used as dependent/target variable in regressions) or discarded (e.g. for parameter such as Time, Sample IDs, Event number IDs, ...).

Usage

select_backbone_and_exploratory_markers(files)

Arguments

files character vector of paths to FCS files

Value

A data.frame

Examples

```
data(steady_state_lung)
dir <- tempdir()
fcs_tmp <- file.path(dir, "tmp.fcs")
library(flowCore)
write.FCS(steady_state_lung[[1]], file <- fcs_tmp)
if(interactive()){
    select_backbone_and_exploratory_markers(fcs_tmp)
}
```

steady_state_lung

Description

Subset of a massively parallel cytometry experiment of mouse lung single cells

Usage

data(steady_state_lung)

Format

a flowSet containing 10 flowFrames (thus corresponding to 10 FCS files)

Source

https://flowrepository.org/id/FR-FCM-Z2LP

steady_state_lung_annotation

Target and isotypes annotation for the data object infinityFlow::steady_state_lnug

Description

Target and isotypes annotation for the data object infinityFlow::steady_state_lnug

Usage

```
data(steady_state_lung_annotation)
```

Format

a data.frame specifying the Infinity antibody targets and isotypes for each flowFrame of the steady_state_lung flowSet

steady_state_lung_backbone_specification

Backbone and Infinity antibodies specification for the data object infinityFlow::steady_state_lnug

Description

Backbone and Infinity antibodies specification for the data object infinityFlow::steady_state_lnug

Usage

data(steady_state_lung_backbone_specification)

Format

a data.frame specifying the Infinity antibody targets and isotypes for each flowFrame of the steady_state_lung flowSet

Index

* datasets steady_state_lung, 8steady_state_lung_annotation, 8 steady_state_lung_backbone_specification, 9 fitter_glmnet, 2 fitter_linear, 2 $\texttt{fitter_nn, 3}$ fitter_svm, 3 fitter_xgboost, 4 $infinity_flow, 4$ select_backbone_and_exploratory_markers, 5,7 steady_state_lung, 8 $\texttt{steady_state_lung_annotation, 8}$ steady_state_lung_backbone_specification, 9