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DESeq2-package DESeq?2 package for differential analysis of count data
Description

The DESeq?2 package is designed for normalization, visualization, and differential analysis of high-
dimensional count data. It makes use of empirical Bayes techniques to estimate priors for log fold
change and dispersion, and to calculate posterior estimates for these quantities.

Details

The main functions are:

* DESeqgDataSet - build the dataset, see tximeta & tximport packages for preparing input
* DESeq - perform differential analysis

* results - build a results table

* 1fcShrink - estimate shrunken LFC (posterior estimates) using apeglm & ashr pakges
* vst - apply variance stabilizing transformation, e.g. for PCA or sample clustering

* Plots, e.g.: plotPCA, plotMA, plotCounts

For detailed information on usage, see the package vignette, by typing vignette("DESeq2"), or
the workflow linked to on the first page of the vignette.

All software-related questions should be posted to the Bioconductor Support Site:
https://support.bioconductor.org

The code can be viewed at the GitHub repository, which also lists the contributor code of conduct:

https://github.com/mikelove/tximport

Author(s)

Michael Love, Wolfgang Huber, Simon Anders

References

Love, M.I,, Huber, W., Anders, S. (2014) Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2. Genome Biology, 15:550. https://doi.org/10.1186/s13059-014-0550-8


https://support.bioconductor.org
https://github.com/mikelove/tximport
https://doi.org/10.1186/s13059-014-0550-8
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See Also
Useful links:

* https://github.com/thelovelab/DESeq2

coef.DESeqDataSet Extract a matrix of model coefficients/standard errors

Description

Note: results tables with log2 fold change, p-values, adjusted p-values, etc. for each gene are best
generated using the results function. The coef function is designed for advanced users who wish
to inspect all model coefficients at once.

Usage
## S3 method for class 'DESeqDataSet'
coef(object, SE = FALSE, ...)
Arguments
object a DESeqDataSet returned by DESeq, nbinomWaldTest, or nbinomLRT.
SE whether to give the standard errors instead of coefficients. defaults to FALSE so

that the coefficients are given.

additional arguments

Details

Estimated model coefficients or estimated standard errors are provided in a matrix form, number
of genes by number of parameters, on the log2 scale. The columns correspond to columns of the
model matrix for final GLM fitting, i.e., attr(dds, "modelMatrix").

Author(s)
Michael Love

Examples

dds <- makeExampleDESeqDataSet(m=4)
dds <- DESeq(dds)

coef(dds)[1,]

coef(dds, SE=TRUE)[1,]


https://github.com/thelovelab/DESeq2
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collapseReplicates Collapse technical replicates in a RangedSummarizedExperiment or
DESeqDataSet

Description

Collapses the columns in object by summing within levels of a grouping factor groupby. The
purpose of this function is to sum up read counts from technical replicates to create an object with a
single column of read counts for each sample. This function will issue a warning if there are other
assays other than "counts”, see details below in *Value’.

Usage

collapseReplicates(object, groupby, run, renameCols = TRUE)

Arguments
object A RangedSummarizedExperiment or DESeqDataSet
groupby a grouping factor, as long as the columns of object
run optional, the names of each unique column in object. if provided, a new column
runsCollapsed will be added to the colData which pastes together the names
of run
renameCols whether to rename the columns of the returned object using the levels of the
grouping factor
Details

Note: by "technical replicates", we mean multiple sequencing runs of the same library, in constrast
to "biological replicates" in which multiple libraries are prepared from separate biological units.
Optionally renames the columns of returned object with the levels of the grouping factor. Note: this
function is written very simply and can be easily altered to produce other behavior by examining
the source code.

Value

the object with as many columns as levels in groupby. This object has "counts” data which is
summed from the various columns which are grouped together, and the colData is subset using the
first column for each group in groupby. Other assays are dropped, as it is not unambiguous the
correct form of combination, and a warning is printed if they are present, so the user is aware they
should take care of such assays manually.

Examples
dds <- makeExampleDESeqDataSet(m=12)

# make data with two technical replicates for three samples
dds$sample <- factor(sample(paste@(”sample”,rep(1:9, c(2,1,1,2,1,1,2,1,1)))))
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dds$run <- paste@("run”",1:12)
ddsColl <- collapseReplicates(dds, dds$sample, dds$run)

# examine the colData and column names of the collapsed data
colData(ddsColl)
colnames(ddsColl)

# check that the sum of the counts for "samplel” is the same

# as the counts in the "samplel” column in ddsColl

matchFirstLevel <- dds$sample == levels(dds$sample)[1]
stopifnot(all(rowSums(counts(dds[,matchFirstLevel])) == counts(ddsColl[,1])))

counts,DESeqDataSet-method
Accessors for the ’counts’ slot of a DESeqDataSet object.

Description

The counts slot holds the count data as a matrix of non-negative integer count values, one row for
each observational unit (gene or the like), and one column for each sample.

Usage

## S4 method for signature 'DESeqDataSet'
counts(object, normalized = FALSE, replaced = FALSE)

## S4 replacement method for signature 'DESegDataSet,matrix’
counts(object) <- value

Arguments
object a DESeqgDataSet object.
normalized logical indicating whether or not to divide the counts by the size factors or nor-
malization factors before returning (normalization factors always preempt size
factors)
replaced after a DESeq call, this argument will return the counts with outliers replaced
instead of the original counts, and optionally normalized. The replaced counts
are stored by DESeq in assays(object)[['replaceCounts'1].
value an integer matrix
Author(s)

Simon Anders
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See Also

sizeFactors, normalizationFactors

Examples

dds <- makeExampleDESeqgDataSet(m=4)
head(counts(dds))

dds <- estimateSizeFactors(dds) # run this or DESeq() first
head(counts(dds, normalized=TRUE))

DESeq Differential expression analysis based on the Negative Binomial (a.k.a.
Gamma-Poisson) distribution

Description
This function performs a default analysis through the steps:

1. estimation of size factors: estimateSizeFactors
2. estimation of dispersion: estimateDispersions
3. Negative Binomial GLM fitting and Wald statistics: nbinomWaldTest

For complete details on each step, see the manual pages of the respective functions. After the
DESeq function returns a DESeqDataSet object, results tables (log2 fold changes and p-values)
can be generated using the results function. Shrunken LFC can then be generated using the
1fcShrink function. All support questions should be posted to the Bioconductor support site:
http://support.bioconductor.org.

Usage
DESeq(
object,
test = c("Wald", "LRT"),
fitType = c("parametric”, "local”, "mean”, "glmGamPoi"),
sfType = c("ratio”, "poscounts”, "iterate"),
betaPrior,
full = design(object),
reduced,

quiet = FALSE,
minReplicatesForReplace = 7,

modelMatrixType,
useT = FALSE,
minmu = if (fitType == "glmGamPoi") 1e-06 else 0.5,

parallel = FALSE,
BPPARAM = bpparam()


http://support.bioconductor.org
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Arguments

object a DESeqDataSet object, see the constructor functions DESeqgDataSet, DESeqDataSetFromMatrix,
DESegDataSetFromHTSeqCount.

test either "Wald" or "LRT", which will then use either Wald significance tests (de-
fined by nbinomWaldTest), or the likelihood ratio test on the difference in de-
viance between a full and reduced model formula (defined by nbinomLRT)

fitType either "parametric”, "local", "mean", or "glmGamPoi" for the type of fitting of
dispersions to the mean intensity. See estimateDispersions for description.

sfType either "ratio", "poscounts”, or "iterate" for the type of size factor estimation. See
estimateSizeFactors for description.

betaPrior whether or not to put a zero-mean normal prior on the non-intercept coefficients
See nbinomWaldTest for description of the calculation of the beta prior. In
versions >=1.16, the default is set to FALSE, and shrunken LFCs are obtained
afterwards using 1fcShrink.

full for test="LRT", the full model formula, which is restricted to the formula in
design(object). alternatively, it can be a model matrix constructed by the
user

reduced for test="LRT", a reduced formula to compare the full against, i.e., the full
formula with the term(s) of interest removed. alternatively, it can be a model
matrix constructed by the user

quiet whether to print messages at each step

minReplicatesForReplace
the minimum number of replicates required in order to use replaceQutliers
on a sample. If there are samples with so many replicates, the model will be refit
after these replacing outliers, flagged by Cook’s distance. Set to Inf in order to
never replace outliers. It set to Inf for fitType="glmGamPoi".
modelMatrixType
either "standard" or "expanded", which describe how the model matrix, X of
the GLM formula is formed. "standard" is as created by model.matrix using
the design formula. "expanded" includes an indicator variable for each level of
factors in addition to an intercept. for more information see the Description of
nbinomWaldTest. betaPrior must be set to TRUE in order for expanded model
matrices to be fit.

useT logical, passed to nbinomWaldTest, default is FALSE, where Wald statistics are
assumed to follow a standard Normal

minmu lower bound on the estimated count for fitting gene-wise dispersion and for
use with nbinomWaldTest and nbinomLRT. If fitType="glmGamPoi", then le-
6 will be used (as this fitType is optimized for single cell data, where a lower
minmu is recommended), otherwise the default value as evaluated on bulk datasets
is 0.5

parallel if FALSE, no parallelization. if TRUE, parallel execution using BiocParallel,
see next argument BPPARAM. Two notes on running in parallel using BiocParallel:
1) it is recommended to filter out genes where all samples have low counts be-
fore running DESeq?2 in parellel: this improves efficiency as otherwise you will
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be sending data to child processes, though those have little power for detection
of differences, and will likely be removed by independent filtering anyway; 2)
it may be advantageous to remove large, unneeded objects from your current
R environment before calling DESeq, as it is possible that R’s internal garbage
collection will copy these files while running on worker nodes.

BPPARAM an optional parameter object passed internally to bplapply when parallel=TRUE.
If not specified, the parameters last registered with register will be used.

Details

The differential expression analysis uses a generalized linear model of the form:

Kij ~ NB(pij, o)
Hij = 554
logy(qi5) = ;.5

where counts K;; for gene i, sample j are modeled using a Negative Binomial distribution with
fitted mean p;; and a gene-specific dispersion parameter c;. The fitted mean is composed of a
sample-specific size factor s; and a parameter g;; proportional to the expected true concentration
of fragments for sample j. The coefficients (3; give the log2 fold changes for gene i for each col-
umn of the model matrix X. The sample-specific size factors can be replaced by gene-specific
normalization factors for each sample using normalizationFactors.

For details on the fitting of the log2 fold changes and calculation of p-values, see nbinomWaldTest
if using test="Wald", or nbinomLRT if using test="LRT".

Experiments without replicates do not allow for estimation of the dispersion of counts around the
expected value for each group, which is critical for differential expression analysis. Analysis with-
out replicates was deprecated in v1.20 and is no longer supported since v1.22.

The argument minReplicatesForReplace is used to decide which samples are eligible for auto-
matic replacement in the case of extreme Cook’s distance. By default, DESeq will replace outliers
if the Cook’s distance is large for a sample which has 7 or more replicates (including itself). Out-
lier replacement is turned off entirely for fitType="glmGamPoi”. This replacement is performed
by the replaceOutliers function. This default behavior helps to prevent filtering genes based
on Cook’s distance when there are many degrees of freedom. See results for more information
about filtering using Cook’s distance, and the ’Dealing with outliers’ section of the vignette. Unlike
the behavior of replaceOutliers, here original counts are kept in the matrix returned by counts,
original Cook’s distances are kept in assays(dds)[["cooks"]], and the replacement counts used
for fitting are kept in assays(dds)[["replaceCounts”]].

Note that if a log2 fold change prior is used (betaPrior=TRUE) then expanded model matrices will
be used in fitting. These are described in nbinomWaldTest and in the vignette. The contrast
argument of results should be used for generating results tables.

Value

a DESeqgDataSet object with results stored as metadata columns. These results should accessed by
calling the results function. By default this will return the log2 fold changes and p-values for the
last variable in the design formula. See results for how to access results for other variables.
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Author(s)
Michael Love

References

Love, M.I,, Huber, W., Anders, S. (2014) Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2. Genome Biology, 15:550. https://doi.org/10.1186/s13059-014-0550-8

For fitType="glmGamPoi":

Ahlmann-Eltze, C., Huber, W. (2020) glmGamPoi: Fitting Gamma-Poisson Generalized Linear
Models on Single Cell Count Data. Bioinformatics. https://doi.org/10.1093/bioinformatics/
btaa1009

See Also

link{results}, 1fcShrink, nbinomWaldTest, nbinomLRT

Examples

# see vignette for suggestions on generating

# count tables from RNA-Seq data

cnts <- matrix(rnbinom(n=1000, mu=100, size=1/0.5), ncol=10)
cond <- factor(rep(1:2, each=5))

# object construction
dds <- DESegDataSetFromMatrix(cnts, DataFrame(cond), ~ cond)

# standard analysis
dds <- DESeq(dds)
res <- results(dds)

# moderated log2 fold changes
resultsNames(dds)
resLFC <- 1fcShrink(dds, coef=2, type="apeglm")

# an alternate analysis: likelihood ratio test
ddsLRT <- DESeq(dds, test="LRT"”, reduced= ~ 1)
resLRT <- results(ddsLRT)

DESegDataSet-class DESegDataSet object and constructors

Description

DESegDataSet is a subclass of RangedSummarizedExperiment, used to store the input values, in-
termediate calculations and results of an analysis of differential expression. The DESeqDataSet
class enforces non-negative integer values in the "counts" matrix stored as the first element in the
assay list. In addition, a formula which specifies the design of the experiment must be provided.


https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1093/bioinformatics/btaa1009
https://doi.org/10.1093/bioinformatics/btaa1009
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The constructor functions create a DESeqDataSet object from various types of input: a Ranged-
SummarizedExperiment, a matrix, count files generated by the python package HTSeq, or a list
from the tximport function in the tximport package. See the vignette for examples of construction
from different types.

Usage

DESegDataSet(se

, design, ignoreRank = FALSE, skipIntegerMode = FALSE)

DESegDataSetFromMatrix(

countData,
colData,
design,

tidy = FALSE,

ignoreRank = FALSE,

)

DESegDataSetFromHTSeqCount (

sampleTable,
directory =
design,

n

n
’

ignoreRank = FALSE,

)

DESegDataSetFromTximport(txi, colData, design, ...)

Arguments

se

design

ignoreRank

skipIntegerMode

a RangedSummarizedExperiment with columns of variables indicating sample
information in colData, and the counts as the first element in the assays list,
which will be renamed "counts". A RangedSummarizedExperiment object can
be generated by the function summarizeOverlaps in the GenomicAlignments
package.

a formula or matrix. the formula expresses how the counts for each gene de-
pend on the variables in colData. Many R formula are valid, including designs
with multiple variables, e.g., ~ group + condition, and designs with interac-
tions, e.g., ~ genotype + treatment + genotype:treatment. See results for
a variety of designs and how to extract results tables. By default, the functions
in this package will use the last variable in the formula for building results tables
and plotting. ~ 1 can be used for no design, although users need to remember to
switch to another design for differential testing.

use of this argument is reserved for DEXSeq developers only. Users will imme-
diately encounter an error upon trying to estimate dispersion using a design with
a model matrix which is not full rank.

do not convert counts to integer mode (glmGamPoi allows non-integer counts)
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countData

colData

tidy

sampleTable

directory

txi

Details

DESeqDataSet-class

for matrix input: a matrix of non-negative integers

for matrix input: a DataFrame or data.frame with at least a single column.
Rows of colData correspond to columns of countData

for matrix input: whether the first column of countData is the rownames for the
count matrix

arguments provided to SummarizedExperiment including rowRanges and meta-
data. Note that for Bioconductor 3.1, rowRanges must be a GRanges or GRanges-
List, with potential metadata columns as a DataFrame accessed and stored with
mcols. If a user wants to store metadata columns about the rows of the count-
Data, but does not have GRanges or GRangesList information, first construct the
DESeqgDataSet without rowRanges and then add the DataFrame with mcols(dds).

for htseq-count: a data. frame with three or more columns. Each row describes
one sample. The first column is the sample name, the second column the file
name of the count file generated by htseq-count, and the remaining columns are
sample metadata which will be stored in colData

for htseq-count: the directory relative to which the filenames are specified. de-
faults to current directory

for tximport: the simple list output of the tximport function

Note on the error message "assay colnames() must be NULL or equal colData rownames()": this
means that the colnames of countData are different than the rownames of colData. Fix this with:
colnames(countData) <- NULL

Value

A DESeqDataSet object.

References

See http://www-huber.embl.de/users/anders/HTSeq for htseq-count

Examples

countData <- matrix(1:100,ncol=4)
condition <- factor(c(”A","A","B","B"))
dds <- DESegDataSetFromMatrix(countData, DataFrame(condition), ~ condition)


http://www-huber.embl.de/users/anders/HTSeq
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DESegResults-class DESeqResults object and constructor

Description

This constructor function would not typically be used by "end users". This simple class indirectly
extends the DataFrame class defined in the S4Vectors package to allow other packages to write
methods for results objects from the DESeq2 package. It is used by results to wrap up the results
table.

Usage

DESegResults(DataFrame, priorInfo = list())

Arguments
DataFrame a DataFrame of results, standard column names are: baseMean, log2FoldChange,
IfcSE, stat, pvalue, padj.
priorInfo a list giving information on the log fold change prior
Value
a DESeqResults object

DESeqTransform-class  DESeqgTransform object and constructor

Description

This constructor function would not typically be used by "end users". This simple class extends the
RangedSummarizedExperiment class of the SummarizedExperiment package. It is used by rlog
and varianceStabilizingTransformation to wrap up the results into a class for downstream
methods, such as plotPCA.

Usage

DESeqTransform(SummarizedExperiment)

Arguments
SummarizedExperiment
a RangedSummarizedExperiment
Value

a DESeqTransform object
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design,DESeqDataSet-method
Accessors for the ’design’ slot of a DESeqDataSet object.

Description

The design holds the R formula which expresses how the counts depend on the variables in
colData. See DESeqDataSet for details.

Usage

## S4 method for signature 'DESeqgDataSet'
design(object)

## S4 replacement method for signature 'DESegDataSet,formula’
design(object) <- value

## S4 replacement method for signature 'DESegDataSet,matrix'
design(object) <- value

Arguments

object a DESegDataSet object

value a formula used for estimating dispersion and fitting Negative Binomial GLMs
Examples

dds <- makeExampleDESeqDataSet(m=4)
design(dds) <- formula(~ 1)

dispersionFunction Accessors for the ’dispersionFunction’ slot of a DESeqDataSet object.

Description

The dispersion function is calculated by estimateDispersions and used by varianceStabilizingTransformation.
Parametric dispersion fits store the coefficients of the fit as attributes in this slot.
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Usage
dispersionFunction(object, ...)
dispersionFunction(object, ...) <- value

## S4 method for signature 'DESeqgDataSet'
dispersionFunction(object)

## S4 replacement method for signature 'DESegDataSet,function'
dispersionFunction(object) <- value

Arguments
object a DESeqgDataSet object.
additional arguments
value a function
Details

Using this setter function will also overwrite mcols(object)$dispFit and the estimate of the
variance of dispersion residuals.

See Also

estimateDispersions

Examples

dds <- makeExampleDESeqDataSet(m=4)
dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)
dispersionFunction(dds)

dispersions Accessor functions for the dispersion estimates in a DESeqDataSet
object.

Description

The dispersions for each row of the DESeqDataSet. Generally, these are set by estimateDispersions.
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Usage

dispersions(object, ...)
dispersions(object, ...) <- value

## S4 method for signature 'DESeqgDataSet'
dispersions(object)

## S4 replacement method for signature 'DESegDataSet,numeric'
dispersions(object) <- value
Arguments

object a DESeqgDataSet object.
additional arguments

value the dispersions to use for the Negative Binomial modeling

Author(s)

Simon Anders

See Also

estimateDispersions

estimateBetaPrior Var

estimateBetaPriorVar  Steps for estimating the beta prior variance

Description

These lower-level functions are called within DESeq or nbinomWaldTest. End users should use
those higher-level function instead. NOTE: estimateBetaPriorVar returns a numeric vector, not a
DESEqDataSet! For advanced users: to use these functions, first run estimateMLEForBetaPriorVar

and then run estimateBetaPriorVvar.

Usage

estimateBetaPriorVar(
object,
betaPriorMethod = c("weighted”, "quantile"),
upperQuantile = 0.05,
modelMatrix = NULL

estimateMLEForBetaPriorVar(
object,
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maxit = 100,
useOptim = TRUE,
useQR = TRUE,
modelMatrixType = NULL
)
Arguments
object a DESegDataSet
betaPriorMethod

the method for calculating the beta prior variance, either "quanitle" or "weighted":
"quantile" matches a normal distribution using the upper quantile of the finite
MLE betas. "weighted" matches a normal distribution using the upper quantile,
but weighting by the variance of the MLE betas.

upperQuantile the upper quantile to be used for the "quantile" or "weighted" method of beta
prior variance estimation

modelMatrix an optional matrix, typically this is set to NULL and created within the function
maxit as defined in link{nbinomWaldTest}

useOptim as defined in 1ink{nbinomWaldTest}

useQR as defined in 1ink{nbinomWaldTest}

modelMatrixType

an optional override for the type which is set internally

Value

for estimateMLEForBetaPriorVar, a DESeqDataSet, with the necessary information stored in
order to calculate the prior variance. for estimateBetaPriorVar, the vector of variances for the
prior on the betas in the DESeq GLM

estimateDispersions,DESeqDataSet-method
Estimate the dispersions for a DESeqDataSet

Description

This function obtains dispersion estimates for Negative Binomial distributed data.

Usage
## S4 method for signature 'DESeqDataSet'
estimateDispersions(
object,
fitType = c("parametric”, "local”, "mean”, "glmGamPoi"),
maxit = 100,

useCR = TRUE,
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weightThreshold = 9.01,
quiet = FALSE,
modelMatrix = NULL,

minmu = if (fitType == "glmGamPoi") 1e-06 else 0.5
)
Arguments
object a DESeqgDataSet
fitType either "parametric”, "local", "mean", or "glmGamPoi" for the type of fitting of
dispersions to the mean intensity.

 parametric - fit a dispersion-mean relation of the form:

dispersion = asymptDisp + extraPois/mean
via a robust gamma-family GLM. The coefficients asymptDisp and extraPois
are given in the attribute coefficients of the dispersionFunction of the
object.

* local - use the locfit package to fit a local regression of log dispersions over
log base mean (normal scale means and dispersions are input and output
for dispersionFunction). The points are weighted by normalized mean
count in the local regression.

* mean - use the mean of gene-wise dispersion estimates.

* glmGamPoi - use the glmGamPoi package to fit the gene-wise dispersion,
its trend and calculate the MAP based on the quasi-likelihood framework.
The trend is calculated using a local median regression.

maxit control parameter: maximum number of iterations to allow for convergence

useCR whether to use Cox-Reid correction - see McCarthy et al (2012)

weightThreshold
threshold for subsetting the design matrix and GLM weights for calculating the
Cox-Reid correction

quiet whether to print messages at each step

modelMatrix an optional matrix which will be used for fitting the expected counts. by default,
the model matrix is constructed from design(object)

minmu lower bound on the estimated count for fitting gene-wise dispersion

Details

Typically the function is called with the idiom:
dds <- estimateDispersions(dds)

The fitting proceeds as follows: for each gene, an estimate of the dispersion is found which max-
imizes the Cox Reid-adjusted profile likelihood (the methods of Cox Reid-adjusted profile likeli-
hood maximization for estimation of dispersion in RNA-Seq data were developed by McCarthy, et
al. (2012), first implemented in the edgeR package in 2010); a trend line capturing the dispersion-
mean relationship is fit to the maximum likelihood estimates; a normal prior is determined for
the log dispersion estimates centered on the predicted value from the trended fit with variance
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equal to the difference between the observed variance of the log dispersion estimates and the ex-
pected sampling variance; finally maximum a posteriori dispersion estimates are returned. This
final dispersion parameter is used in subsequent tests. The final dispersion estimates can be ac-
cessed from an object using dispersions. The fitted dispersion-mean relationship is also used
in varianceStabilizingTransformation. All of the intermediate values (gene-wise dispersion
estimates, fitted dispersion estimates from the trended fit, etc.) are stored in mcols(dds), with
information about these columns in mcols(mcols(dds)).

The log normal prior on the dispersion parameter has been proposed by Wu, et al. (2012) and is
also implemented in the DSS package.

In DESeq2, the dispersion estimation procedure described above replaces the different methods of
dispersion from the previous version of the DESeq package.

Since version 1.29, DESeq2 can call the glmGamPoi package, which can speed up the inference
and is optimized for fitting many samles with very small counts (for example single cell RNA-seq
data). To call functions from the glmGamPoi package, make sure that it is installed and set fitType
= "glmGamPoi". In addition, to the gene estimates, the trend and the MAP, the glmGamPoi package
calculates the corresponding quasi-likelihood estimates. Those can be used with the nbinomLRT ()
test to get more precise p-value estimates.

The lower-level functions called by estimateDispersions are: estimateDispersionsGeneEst,
estimateDispersionsFit, and estimateDispersionsMAP.

Value

The DESeqDataSet passed as parameters, with the dispersion information filled in as metadata
columns, accessible via mcols, or the final dispersions accessible via dispersions.

References

» Simon Anders, Wolfgang Huber: Differential expression analysis for sequence count data.
Genome Biology 11 (2010) R106, http://dx.doi.org/10.1186/gb-2010-11-10-r106

* McCarthy, DJ, Chen, Y, Smyth, GK: Differential expression analysis of multifactor RNA-Seq
experiments with respect to biological variation. Nucleic Acids Research 40 (2012), 4288-
4297, http://dx.doi.org/10.1093/nar/gks042

* Wu, H,, Wang, C. & Wu, Z. A new shrinkage estimator for dispersion improves differential
expression detection in RNA-seq data. Biostatistics (2012). http://dx.doi.org/10.1093/
biostatistics/kxs@33

* Ahlmann-Eltze, C., Huber, W. glmGamPoi: Fitting Gamma-Poisson Generalized Linear Mod-
els on Single Cell Count Data. Bioinformatics (2020). https://doi.org/10.1093/bioinformatics/
btaal009

Examples

dds <- makeExampleDESeqDataSet()
dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)
head(dispersions(dds))


http://dx.doi.org/10.1186/gb-2010-11-10-r106
http://dx.doi.org/10.1093/nar/gks042
http://dx.doi.org/10.1093/biostatistics/kxs033
http://dx.doi.org/10.1093/biostatistics/kxs033
https://doi.org/10.1093/bioinformatics/btaa1009
https://doi.org/10.1093/bioinformatics/btaa1009
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estimateDispersionsGeneEst
Low-level functions to fit dispersion estimates

Description

Normal users should instead use estimateDispersions. These low-level functions are called by
estimateDispersions, but are exported and documented for non-standard usage. For instance, it
is possible to replace fitted values with a custom fit and continue with the maximum a posteriori
dispersion estimation, as demonstrated in the examples below.

Usage
estimateDispersionsGeneEst(

object,

minDisp = 1e-08,

kappa_0 = 1,

dispTol = 1e-06,

maxit = 100,

useCR = TRUE,

weightThreshold = 9.01,
quiet = FALSE,
modelMatrix = NULL,

niter = 1,
linearMu = NULL,
minmu = if (type == "glmGamPoi") 1e-06 else 0.5,

alphalnit = NULL,
type = c("DESeqg2”, "glmGamPoi")

)
estimateDispersionsFit(
object,
fitType = c("parametric”, "local”, "mean”, "glmGamPoi"),

minDisp = 1e-08,
quiet = FALSE
)

estimateDispersionsMAP(
object,
outlierSD = 2,
dispPriorVar,
minDisp = 1e-08,
kappa_0 = 1,
dispTol = 1e-06,
maxit = 100,
useCR = TRUE,
weightThreshold = 9.01,
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modelMatrix

= NULL,

type = c("DESeq2”, "glmGamPoi"),
quiet = FALSE

)

estimateDispersionsPriorVar(object, minDisp = 1e-08, modelMatrix = NULL)

Arguments

object a DESegDataSet

minDisp small value for the minimum dispersion, to allow for calculations in log scale,
one order of magnitude above this value is used as a test for inclusion in mean-
dispersion fitting

kappa_o control parameter used in setting the initial proposal in backtracking search,
higher kappa_0 results in larger steps

dispTol control parameter to test for convergence of log dispersion, stop when increase
in log posterior is less than dispTol

maxit control parameter: maximum number of iterations to allow for convergence

useCR whether to use Cox-Reid correction

weightThreshold
threshold for subsetting the design matrix and GLM weights for calculating the
Cox-Reid correction

quiet whether to print messages at each step

modelMatrix for advanced use only, a substitute model matrix for gene-wise and MAP dis-
persion estimation

niter number of times to iterate between estimation of means and estimation of dis-
persion

linearMu estimate the expected counts matrix using a linear model, default is NULL, in
which case a lienar model is used if the number of groups defined by the model
matrix is equal to the number of columns of the model matrix

minmu lower bound on the estimated count for fitting gene-wise dispersion

alphalnit initial guess for the dispersion estimate, alpha

type can either be "DESeq2" or "glmGamPoi". Specifies if the glmGamPoi package
is used to calculate the dispersion. This can be significantly faster if there are
many replicates with small counts.

fitType either "parametric”, "local", "mean", or "glmGamPoi" for the type of fitting of
dispersions to the mean intensity. See estimateDispersions for description.

outlierSD the number of standard deviations of log gene-wise estimates above the prior
mean (fitted value), above which dispersion estimates will be labelled outliers.
Outliers will keep their original value and not be shrunk using the prior.

dispPriorVar  the variance of the normal prior on the log dispersions. If not supplied, this is

calculated as the difference between the mean squared residuals of gene-wise
estimates to the fitted dispersion and the expected sampling variance of the log
dispersion
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Value
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a DESegDataSet with gene-wise, fitted, or final MAP dispersion estimates in the metadata columns
of the object.

estimateDispersionsPriorVar is called inside of estimateDispersionsMAP and stores the dis-
persion prior variance as an attribute of dispersionFunction(dds), which can be manually pro-
vided to estimateDispersionsMAP for parallel execution.

See Also
estimateDispersions
Examples
dds <- makeExampleDESeqDataSet()
dds <- estimateSizeFactors(dds)
dds <- estimateDispersionsGeneEst(dds)
dds <- estimateDispersionsFit(dds)
dds <- estimateDispersionsMAP(dds)
plotDispEsts(dds)

# after having run estimateDispersionsFit()
# the dispersion prior variance over all genes
# can be obtained like so:

dispPriorVar <- estimateDispersionsPriorVar(dds)

estimateSizeFactors,DESegDataSet-method

Estimate the size factors for a DESegDataSet

Description

This function estimates the size factors using the "median ratio method" described by Equation 5 in
Anders and Huber (2010). The estimated size factors can be accessed using the accessor function
sizeFactors. Alternative library size estimators can also be supplied using the assignment function

sizeFactors<-
Usage
## S4 method for signature 'DESeqDataSet'
estimateSizeFactors(
object,
type = c("ratio”, "poscounts”, "iterate"),
locfunc = stats::median,
geoMeans,

controlGenes,
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normMatrix,
quiet = FALSE

)

Arguments

object
type

locfunc

geoMeans

controlGenes

normMatrix

quiet

Details

a DESeqgDataSet

Method for estimation: either "ratio", "poscounts”, or "iterate". "ratio" uses
the standard median ratio method introduced in DESeq. The size factor is the
median ratio of the sample over a "pseudosample": for each gene, the geomet-
ric mean of all samples. "poscounts” and "iterate" offer alternative estimators,
which can be used even when all genes contain a sample with a zero (a prob-
lem for the default method, as the geometric mean becomes zero, and the ratio
undefined). The "poscounts" estimator deals with a gene with some zeros, by
calculating a modified geometric mean by taking the n-th root of the product
of the non-zero counts. This evolved out of use cases with Paul McMurdie’s
phyloseq package for metagenomic samples. The "iterate" estimator iterates be-
tween estimating the dispersion with a design of ~1, and finding a size factor
vector by numerically optimizing the likelihood of the ~1 model.

a function to compute a location for a sample. By default, the median is used.
However, especially for low counts, the shorth function from the genefilter
package may give better results.

by default this is not provided and the geometric means of the counts are cal-
culated within the function. A vector of geometric means from another count
matrix can be provided for a "frozen" size factor calculation. The size factors
will be scaled to have a geometric mean of 1 when supplying geoMeans.

optional, numeric or logical index vector specifying those genes to use for size
factor estimation (e.g. housekeeping or spike-in genes)

optional, a matrix of normalization factors which do not yet control for li-
brary size. Note that this argument should not be used (and will be ignored)
if the dds object was created using tximport. In this case, the information in
assays(dds)[["avgTxLength”]] is automatically used to create appropriate
normalization factors. Providing normMatrix will estimate size factors on the
count matrix divided by normMatrix and store the product of the size factors
and normMatrix as normalizationFactors. It is recommended to divide out
the row-wise geometric mean of normMatrix so the rows roughly are centered
on 1.

whether to print messages

Typically, the function is called with the idiom:

dds <- estimateSizeFactors(dds)

See DESeq for a description of the use of size factors in the GLM. One should call this function
after DESeqDataSet unless size factors are manually specified with sizeFactors. Alternatively,
gene-specific normalization factors for each sample can be provided using normalizationFactors
which will always preempt sizeFactors in calculations.
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Internally, the function calls estimateSizeFactorsForMatrix, which provides more details on
the calculation.
Value

The DESeqDataSet passed as parameters, with the size factors filled in.

Author(s)

Simon Anders

References

Reference for the median ratio method:

Simon Anders, Wolfgang Huber: Differential expression analysis for sequence count data. Genome
Biology 2010, 11:106. http://dx.doi.org/10.1186/gb-2010-11-10-r106

See Also

estimateSizeFactorsForMatrix

Examples

dds <- makeExampleDESeqDataSet(n=1000, m=4)
dds <- estimateSizeFactors(dds)
sizeFactors(dds)

dds <- estimateSizeFactors(dds, controlGenes=1:200)

m <- matrix(runif (1000 * 4, .5, 1.5), ncol=4)
dds <- estimateSizeFactors(dds, normMatrix=m)
normalizationFactors(dds)[1:3,]

geoMeans <- exp(rowMeans(log(counts(dds))))
dds <- estimateSizeFactors(dds,geoMeans=geoMeans)
sizeFactors(dds)

estimateSizeFactorsForMatrix
Low-level function to estimate size factors with robust regression.

Description

Given a matrix or data frame of count data, this function estimates the size factors as follows:
Each column is divided by the geometric means of the rows. The median (or, if requested, an-
other location estimator) of these ratios (skipping the genes with a geometric mean of zero) is
used as the size factor for this column. Typically, one will not call this function directly, but use
estimateSizeFactors.


http://dx.doi.org/10.1186/gb-2010-11-10-r106
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Usage
estimateSizeFactorsForMatrix(
counts,
locfunc = stats::median,
geoMeans,
controlGenes,
type = c("ratio”, "poscounts”)
)
Arguments
counts a matrix or data frame of counts, i.e., non-negative integer values
locfunc a function to compute a location for a sample. By default, the median is used.
However, especially for low counts, the shorth function from genefilter may
give better results.
geoMeans by default this is not provided, and the geometric means of the counts are cal-
culated within the function. A vector of geometric means from another count
matrix can be provided for a "frozen" size factor calculation
controlGenes  optional, numeric or logical index vector specifying those genes to use for size
factor estimation (e.g. housekeeping or spike-in genes)
type standard median ratio ("ratio") or where the geometric mean is only calculated
over positive counts per row (”"poscounts”)
Value

a vector with the estimates size factors, one element per column

Author(s)

Simon Anders

See Also

estimateSizeFactors

Examples

dds <- makeExampleDESeqgDataSet()
estimateSizeFactorsForMatrix(counts(dds))

geoMeans <- exp(rowMeans(log(counts(dds))))
estimateSizeFactorsForMatrix(counts(dds),geoMeans=geoMeans)
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fpkm FPKM: fragments per kilobase per million mapped fragments

Description

The following function returns fragment counts normalized per kilobase of feature length per mil-
lion mapped fragments (by default using a robust estimate of the library size, as in estimateSizeFactors).

Usage

fpkm(object, robust = TRUE)

Arguments
object a DESeqgDataSet
robust whether to use size factors to normalize rather than taking the column sums of
the raw counts, using the fpm function.
Details

The length of the features (e.g. genes) is calculated one of two ways: (1) If there is a matrix named
"avgTxLength" in assays(dds), this will take precedence in the length normalization. This occurs
when using the tximport-DESeq2 pipeline. (2) Otherwise, feature length is calculated from the
rowRanges of the dds object, if a column basepairs is not present in mcols(dds). The calculated
length is the number of basepairs in the union of all GRanges assigned to a given row of object, e.g.,
the union of all basepairs of exons of a given gene. Note that the second approach over-estimates the
gene length (average transcript length, weighted by abundance is a more appropriate normalization
for gene counts), and so the FPKM will be an underestimate of the true value.

Note that, when the read/fragment counting has inter-feature dependencies, a strict normalization
would not incorporate the basepairs of a feature which overlap another feature. This inter-feature
dependence is not taken into consideration in the internal union basepair calculation.

Value

a matrix which is normalized per kilobase of the union of basepairs in the GRangesList or GRanges

of the mcols(object), and per million of mapped fragments, either using the robust median ratio

method (robust=TRUE, default) or using raw counts (robust=FALSE). Defining a column mcols(object) $basepairs
takes precedence over internal calculation of the kilobases for each row.

See Also

fpm
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Examples

# create a matrix with 1 million counts for the
# 2nd and 3rd column, the 1st and 4th have
# half and double the counts, respectively.
m <- matrix(1e6 * rep(c(.125, .25, .25, .5), each=4),
ncol=4, dimnames=1list(1:4,1:4))
mode(m) <- "integer”
se <- SummarizedExperiment(list(counts=m), colData=DataFrame(sample=1:4))
dds <- DESegDataSet(se, ~ 1)

# create 4 GRanges with lengths: 1, 1, 2, 2.5 Kb

gr1 <- GRanges("chr1”,IRanges(1,1000)) # 1kb

gr2 <- GRanges("chr1”,IRanges(c(1,1001),c( 500,1500))) # 1kb
gr3 <- GRanges("chr1”,IRanges(c(1,1001),c(1000,2000))) # 2kb
gr4 <- GRanges("chr1"”,IRanges(c(1,1001),c(200,1300))) # 500bp
rowRanges(dds) <- GRangesList(gr1,gr2,gr3,gr4)

# the raw counts
counts(dds)

# the FPM values
fpm(dds)

# the FPKM values
fpkm(dds)

fpm FPM: fragments per million mapped fragments

Description

Calculates either a robust version (default) or the traditional matrix of fragments/counts per million
mapped fragments (FPM/CPM). Note: this function is written very simply and can be easily altered
to produce other behavior by examining the source code.

Usage

fpm(object, robust = TRUE)

Arguments
object a DESegDataSet
robust whether to use size factors to normalize rather than taking the column sums of

the raw counts. If TRUE, the size factors and the geometric mean of column
sums are multiplied to create a robust library size estimate. Robust normaliza-
tion is not used if average transcript lengths are present.



28 IfcShrink

Value

a matrix which is normalized per million of mapped fragments, either using the robust median ratio
method (robust=TRUE, default) or using raw counts (robust=FALSE).

See Also

fpkm

Examples

# generate a dataset with size factors: .5, 1, 1, 2

dds <- makeExampleDESegDataSet(m = 4, n = 1000,
interceptMean=1log2(l1e3),
interceptSD=0,
sizeFactors=c(.5,1,1,2),
dispMeanRel=function(x) .01)

# add a few rows with very high count
counts(dds)[4:10,] <- 2e5L

# in this robust version, the counts are comparable across samples
round(head(fpm(dds), 3))

# in this column sum version, the counts are still skewed:
# samplel < sample2 & 3 < sample 4
round(head(fpm(dds, robust=FALSE), 3))

# the column sums of the robust version
# are not equal to 1e6, but the
# column sums of the non-robust version
# are equal to 1e6 by definition

colSums(fpm(dds))/1e6
colSums(fpm(dds, robust=FALSE))/1e6

1fcShrink Shrink log2 fold changes

Description

Adds shrunken log2 fold changes (LFC) and SE to a results table from DESeq run without LFC
shrinkage. For consistency with results, the column name 1fcSE is used here although what
is returned is a posterior SD. Three shrinkage estimators for LFC are available via type (see the
vignette for more details on the estimators). The apeglm publication demonstrates that ’apeglm’
and ’ashr’ outperform the original *normal’ shrinkage estimator.
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Usage

1fcShrink(
dds,
coef,
contrast,
res,
type = c("apeglm”, "ashr”, "normal"),
1fcThreshold = 0,
svalue = FALSE,
returnList = FALSE,
format = c("DataFrame”, "GRanges", "GRangesList"),
saveCols = NULL,
apeAdapt = TRUE,
apeMethod = "nbinomCR",
parallel = FALSE,
BPPARAM = bpparam(),
quiet = FALSE,

Arguments

dds a DESeqDataSet object, after running DESeq

coef the name or number of the coefficient (LFC) to shrink, consult resul tsNames (dds)
after running DESeq(dds). note: only coef or contrast can be specified, not
both. apeglm requires use of coef. For normal, one of coef or contrast must
be provided.

contrast see argument description in results. only coef or contrast can be specified,
not both.

res a DESeqResults object. Results table produced by the default pipeline, i.e.
DESeq followed by results. If not provided, it will be generated internally
using coef or contrast. For ashr, if res is provided, then coef and contrast
are ignored.

type "apeglm” is the adaptive Student’s t prior shrinkage estimator from the ’apeglm’

package; "ashr” is the adaptive shrinkage estimator from the *ashr’ package,
using a fitted mixture of normals prior - see the Stephens (2016) reference below
for citation; "normal” is the 2014 DESeq?2 shrinkage estimator using a Normal
prior;
1fcThreshold  anon-negative value which specifies a log2 fold change threshold (as in results).

This can be used with any shrinkage type. It will produce new p-values or
s-values testing whether the LFC is greater in absolute value than the thresh-
old. The s-values returned in combination with apeglm or ashr provide the
probability of FSOS events, "false sign or small", among the tests with equal
or smaller s-value than a given gene’s s-value, where "small" is specified by
1fcThreshold.

svalue logical, should p-values and adjusted p-values be replaced with s-values when
using apeglm or ashr. s-values provide the probability of false signs among the
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tests with equal or smaller s-value than a given given’s s-value. See Stephens
(2016) reference on s-values.

returnList logical, should 1fcShrink return a list, where the first element is the results
table, and the second element is the output of apeglm or ashr

format same as defined in results, either "DataFrame"”, "GRanges", or "GRangesList"

saveCols same as defined in results, which metadata columns to pass into output

apeAdapt logical, should apeglm use the MLE estimates of LFC to adapt the prior, or use
default or specified prior.control

apeMethod what method to run apeglm, which can differ in terms of speed

parallel if FALSE, no parallelization. if TRUE, parallel execution using BiocParallel,
see same argument of DESeq parallelization only used with normal or apeglm

BPPARAM see same argument of DESeq

quiet whether to print messages

arguments passed to apeglm and ashr

Details

See vignette for a comparison of shrinkage estimators on an example dataset. For all shrinkage
methods, details on the prior is included in priorInfo(res), including the fitted_g mixture for
ashr.

For type="apeglm'': Specifying apeglm passes along DESeq2 MLE log?2 fold changes and stan-
dard errors to the apeglm function in the apeglm package, and re-estimates posterior LFCs for the
coefficient specified by coef.

For type="ashr'': Specifying ashr passes along DESeq2 MLE log2 fold changes and standard er-
rors to the ash function in the ashr package, with arguments mixcompdist="normal"” and method="shrink".

For type=""mormal'': For design as a formula, shrinkage cannot be applied to coefficients in a
model with interaction terms. For user-supplied model matrices, shrinkage is only supported via
coef. coef will make use of standard model matrices, while contrast will make use of expanded
model matrices, and for the latter, a results object should be provided to res. With numeric- or list-
style contrasts, it is possible to use 1fcShrink, but likely easier to use DESeq with betaPrior=TRUE
followed by results, because the numeric or list should reference the coefficients from the ex-
panded model matrix. These coefficients will be printed to console if ’contrast’ is used.

Value

a DESeqResults object with the 1og2FoldChange and 1fcSE columns replaced with shrunken LFC
and SE. For consistency with results (and similar to the output of bayesglm) the column name
1fcSE is used here, although what is returned is a posterior SD. For normal and for apeglm the esti-
mate is the posterior mode, for ashr it is the posterior mean. priorInfo(res) contains information
about the shrinkage procedure, relevant to the various methods specified by type.

References

Publications for the following shrinkage estimators:

type="apeglm":
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Zhu, A., Ibrahim, J.G., Love, M.I. (2018) Heavy-tailed prior distributions for sequence count data:
removing the noise and preserving large differences. Bioinformatics. https://doi.org/10.1093/
bioinformatics/bty895

type="ashr":

Stephens, M. (2016) False discovery rates: a new deal. Biostatistics, 18:2. https://doi.org/10.
1093/biostatistics/kxw@41

type="normal":

Love, M.I,, Huber, W., Anders, S. (2014) Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2. Genome Biology, 15:550. https://doi.org/10.1186/s13059-014-0550-8

Related work, the bayesglm function in the arm package:

Gelman, A., Jakulin, A., Pittau, M.G. and Su, Y.-S. (2009). A Weakly Informative Default Prior
Distribution For Logistic And Other Regression Models. The Annals of Applied Statistics 2:4.
http://www.stat.columbia.edu/~gelman/research/published/priorsi1.pdf

Examples

set.seed(1)

dds <- makeExampleDESeqDataSet(n=500,betaSD=1)
dds <- DESeq(dds)

res <- results(dds)

# these are the coefficients from the model
# we can specify them using 'coef' by name or number below
resultsNames(dds)

res.ape <- 1fcShrink(dds=dds, coef=2, type="apeglm")
res.ash <- 1fcShrink(dds=dds, coef=2, type="ashr")
res.norm <- 1fcShrink(dds=dds, coef=2, type="normal")

makeExampleDESegDataSet
Make a simulated DESegDataSet

Description

Constructs a simulated dataset of Negative Binomial data from two conditions. By default, there
are no fold changes between the two conditions, but this can be adjusted with the betaSD argument.

Usage

makeExampleDESegDataSet (
n = 1000,
m=12,
betaSD = 0,
interceptMean = 4,


https://doi.org/10.1093/bioinformatics/bty895
https://doi.org/10.1093/bioinformatics/bty895
https://doi.org/10.1093/biostatistics/kxw041
https://doi.org/10.1093/biostatistics/kxw041
https://doi.org/10.1186/s13059-014-0550-8
http://www.stat.columbia.edu/~gelman/research/published/ priors11.pdf
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interceptSD = 2,
dispMeanRel = function(x) 4/x + 0.1,
sizeFactors = rep(1, m)

)
Arguments
n number of rows
m number of columns
betaSD the standard deviation for non-intercept betas, i.e. beta ~ N(0,betaSD)
interceptMean the mean of the intercept betas (log2 scale)
interceptSD the standard deviation of the intercept betas (log2 scale)
dispMeanRel a function specifying the relationship of the dispersions on 2*trueIntercept
sizeFactors multiplicative factors for each sample
Value

a DESeqgDataSet with true dispersion, intercept and beta values in the metadata columns. Note that
the true betas are provided on the log2 scale.

Examples
dds <- makeExampleDESeqDataSet()
dds
nbinomLRT Likelihood ratio test (chi-squared test) for GLMs
Description

This function tests for significance of change in deviance between a full and reduced model which
are provided as formula. Fitting uses previously calculated sizeFactors (or normalizationFactors)
and dispersion estimates.

Usage
nbinomLRT (
object,
full = design(object),
reduced,
betaTol = 1e-08,
maxit = 100,

useOptim = TRUE,
quiet = FALSE,
useQR = TRUE,
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minmu = if (type == "glmGamPoi") 1e-06 else 0.5,
type = c("DESeqg2”, "glmGamPoi")
)
Arguments

object a DESeqDataSet

full the full model formula, this should be the formula in design(object). alterna-
tively, can be a matrix

reduced a reduced formula to compare against, e.g. the full model with a term or terms
of interest removed. alternatively, can be a matrix

betaTol control parameter defining convergence

maxit the maximum number of iterations to allow for convergence of the coefficient
vector

useOptim whether to use the native optim function on rows which do not converge within
maxit

quiet whether to print messages at each step

useQR whether to use the QR decomposition on the design matrix X while fitting the
GLM

minmu lower bound on the estimated count while fitting the GLM

type either "DESeq2" or "glmGamPoi". If type = "DESeq2" a classical likelihood ra-
tio test based on the Chi-squared distribution is conducted. If type = "glmGamPoi”
and previously the dispersion has been estimated with glmGamPoi as well, a
quasi-likelihood ratio test based on the F-distribution is conducted. It is sup-
posed to be more accurate, because it takes the uncertainty of dispersion esti-
mate into account in the same way that a t-test improves upon a Z-test.

Details

The difference in deviance is compared to a chi-squared distribution with df = (reduced resid-
ual degrees of freedom - full residual degrees of freedom). This function is comparable to the
nbinomGLMTest of the previous version of DESeq and an alternative to the default nbinomWaldTest.

Value

a DESegDataSet with new results columns accessible with the results function. The coefficients
and standard errors are reported on a log2 scale.

See Also

DESeq, nbinomWaldTest
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Examples

nbinomWaldTest

dds <- makeExampleDESegDataSet()
dds <- estimateSizeFactors(dds)

dds <- estimateDispersions(dds)

dds <- nbinomLRT(dds, reduced = ~ 1)
res <- results(dds)

nbinomWaldTest

Wald test for the GLM coefficients

Description

This function tests for significance of coefficients in a Negative Binomial GLM, using previously
calculated sizeFactors (or normalizationFactors) and dispersion estimates. See DESeq for the

GLM formula.

Usage

nbinomWaldTest(

object,

betaPrior = FALSE,

betaPriorVvar,

modelMatrix = NULL,
modelMatrixType,
betaTol = 1e-08,

maxit = 100,

useOptim = TRUE,
quiet = FALSE,

useT = FALSE,
df,
useQR = TRUE,
minmu = 0.5
)
Arguments
object
betaPrior
betaPriorVar
modelMatrix

a DESeqDataSet
whether or not to put a zero-mean normal prior on the non-intercept coefficients

a vector with length equal to the number of model terms including the intercept.
betaPriorVar gives the variance of the prior on the sample betas on the log2
scale. if missing (default) this is estimated from the data

an optional matrix, typically this is set to NULL and created within the function
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modelMatrixType
either "standard" or "expanded", which describe how the model matrix, X of the
formula in DESeq, is formed. "standard" is as created by model.matrix using
the design formula. "expanded" includes an indicator variable for each level of
factors in addition to an intercept. betaPrior must be set to TRUE in order for
expanded model matrices to be fit.

betaTol control parameter defining convergence

maxit the maximum number of iterations to allow for convergence of the coefficient
vector

useOptim whether to use the native optim function on rows which do not converge within
maxit

quiet whether to print messages at each step

useT whether to use a t-distribution as a null distribution, for significance testing of

the Wald statistics. If FALSE, a standard normal null distribution is used. See
next argument df for information about which t is used. If useT=TRUE then
further calls to results will make use of mcols(object)$tDegreesFreedom
that is stored by nbinomWaldTest.

df the degrees of freedom for the t-distribution. This can be of length 1 or the
number of rows of object. If this is not specified, the degrees of freedom
will be set by the number of samples minus the number of columns of the de-
sign matrix used for dispersion estimation. If "weights"” are included in the
assays(object), then the sum of the weights is used in lieu of the number of

samples.

useQR whether to use the QR decomposition on the design matrix X while fitting the
GLM

minmu lower bound on the estimated count while fitting the GLM

Details

The fitting proceeds as follows: standard maximum likelihood estimates for GLM coefficients
(synonymous with "beta", "log2 fold change", "effect size") are calculated. Then, optionally, a
zero-centered Normal prior distribution (betaPrior) is assumed for the coefficients other than the
intercept.

Note that this posterior log2 fold change estimation is now not the default setting for nbinomWaldTest,
as the standard workflow for coefficient shrinkage has moved to an additional function 1ink{1fcShrink3}.

For calculating Wald test p-values, the coefficients are scaled by their standard errors and then
compared to a standard Normal distribution. The results function without any arguments will
automatically perform a contrast of the last level of the last variable in the design formula over
the first level. The contrast argument of the results function can be used to generate other
comparisons.

The Wald test can be replaced with the nbinomLRT for an alternative test of significance.
Notes on the log2 fold change prior:

The variance of the prior distribution for each non-intercept coefficient is calculated using the ob-
served distribution of the maximum likelihood coefficients. The final coefficients are then maximum
a posteriori estimates using this prior (Tikhonov/ridge regularization). See below for details on the
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prior variance and the Methods section of the DESeq2 manuscript for more detail. The use of a prior
has little effect on genes with high counts and helps to moderate the large spread in coefficients for
genes with low counts.

The prior variance is calculated by matching the 0.05 upper quantile of the observed MLE coef-
ficients to a zero-centered Normal distribution. In a change of methods since the 2014 paper, the
weighted upper quantile is calculated using the wtd. quantile function from the Hmisc package
(function has been copied into DESeq?2 to avoid extra dependencies). The weights are the inverse
of the expected variance of log counts, so the inverse of 1/fi + 4, using the mean of normal-
ized counts and the trended dispersion fit. The weighting ensures that noisy estimates of log fold
changes from small count genes do not overly influence the calculation of the prior variance. See
estimateBetaPriorVar. The final prior variance for a factor level is the average of the estimated
prior variance over all contrasts of all levels of the factor.

When a log?2 fold change prior is used (betaPrior=TRUE), then nbinomWaldTest will by default use
expanded model matrices, as described in the modelMatrixType argument, unless this argument is
used to override the default behavior. This ensures that log2 fold changes will be independent of
the choice of reference level. In this case, the beta prior variance for each factor is calculated as
the average of the mean squared maximum likelihood estimates for each level and every possible
contrast.

Value

a DESeqDataSet with results columns accessible with the results function. The coefficients and
standard errors are reported on a log2 scale.

See Also

DESeq, nbinomLRT

Examples

dds <- makeExampleDESeqDataSet()
dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)
dds <- nbinomWaldTest(dds)

res <- results(dds)

normalizationFactors Accessor functions for the normalization factors in a DESeqDataSet
object.

Description

Gene-specific normalization factors for each sample can be provided as a matrix, which will pre-
empt sizeFactors. In some experiments, counts for each sample have varying dependence on
covariates, e.g. on GC-content for sequencing data run on different days, and in this case it makes
sense to provide gene-specific factors for each sample rather than a single size factor.
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Usage
normalizationFactors(object, ...)
normalizationFactors(object, ...) <- value

## S4 method for signature 'DESeqDataSet'’
normalizationFactors(object)

## S4 replacement method for signature 'DESegDataSet,matrix'
normalizationFactors(object) <- value

Arguments
object a DESeqgDataSet object.
additional arguments
value the matrix of normalization factors
Details

Normalization factors alter the model of DESeq in the following way, for counts K;; and normal-
ization factors IV F;; for gene i and sample j:

Kij ~ NB(pij, o)
ti; = NFijq;;

Note

Normalization factors are on the scale of the counts (similar to sizeFactors) and unlike offsets,
which are typically on the scale of the predictors (in this case, log counts). Normalization factors
should include library size normalization. They should have row-wise geometric mean near 1,
as is the case with size factors, such that the mean of normalized counts is close to the mean of
unnormalized counts. See example code below.

Examples

dds <- makeExampleDESeqDataSet(n=100, m=4)

normFactors <- matrix(runif(nrow(dds)*ncol(dds),@.5,1.5),
ncol=ncol (dds),nrow=nrow(dds),
dimnames=1list(1:nrow(dds),1:ncol(dds)))

# the normalization factors matrix should not have @'s in it
# it should have geometric mean near 1 for each row
normFactors <- normFactors / exp(rowMeans(log(normFactors)))
normalizationFactors(dds) <- normFactors

dds <- DESeq(dds)
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normalizeGenelLength Normalize for gene length

Description

Normalize for gene length using the output of transcript abundance estimators

Usage

normalizeGenelLength(...)

Arguments

Details

This function is deprecated and moved to a new general purpose package, tximport, which will be
added to Bioconductor.

normTransform Normalized counts transformation

Description
A simple function for creating a DESeqTransform object after applying: f (count(dds,normalized=TRUE)
+ pc).

Usage

normTransform(object, f = log2, pc = 1)

Arguments
object a DESeqDataSet object
f a function to apply to normalized counts
pc a pseudocount to add to normalized counts
See Also

varianceStabilizingTransformation, rlog
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plotCounts Plot of normalized counts for a single gene
Description
Normalized counts plus a pseudocount of 0.5 are shown by default.
Usage
plotCounts(
dds,
gene,
intgroup = "condition”,
normalized = TRUE,
transform = TRUE,
main,
xlab = "group”,
returnData = FALSE,
replaced = FALSE,
pc,
)
Arguments
dds a DESeqgDataSet
gene a character, specifying the name of the gene to plot
intgroup interesting groups: a character vector of names in colData(x) to use for group-
ing. Must be factor variables. If you want to plot counts over numeric, choose
returnData=TRUE
normalized whether the counts should be normalized by size factor (default is TRUE)
transform whether to have log scale y-axis or not. defaults to TRUE
main as in "plot’
xlab as in "plot’
returnData should the function only return the data.frame of counts and covariates for cus-
tom plotting (default is FALSE)
replaced use the outlier-replaced counts if they exist
pc pseudocount for log transform
arguments passed to plot
Examples

dds <- makeExampleDESeqDataSet()
plotCounts(dds, "genel")
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plotDispEsts Plot dispersion estimates

Description

A simple helper function that plots the per-gene dispersion estimates together with the fitted mean-
dispersion relationship.

Usage

## S4 method for signature 'DESeqDataSet'
plotDispEsts(

object,

ymin,

CV = FALSE,

genecol = "black”,

fitcol = "red"”,

finalcol = "dodgerblue”,

legend = TRUE,

xlab,
ylab,
]_Og = IIXyII R
cex = 0.45,
)
Arguments
object a DESeqDataSet, with dispersions estimated
ymin the lower bound for points on the plot, points beyond this are drawn as triangles
at ymin
cv logical, whether to plot the asymptotic or biological coefficient of variation (the
square root of dispersion) on the y-axis. As the mean grows to infinity, the
square root of dispersion gives the coefficient of variation for the counts. Default
is FALSE, plotting dispersion.
genecol the color for gene-wise dispersion estimates
fitcol the color of the fitted estimates
finalcol the color of the final estimates used for testing
legend logical, whether to draw a legend
xlab xlab
ylab ylab
log log
cex cex

further arguments to plot
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Author(s)

Simon Anders

Examples

dds <- makeExampleDESeqDataSet()
dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)
plotDispEsts(dds)

plotMA MA-plot from base means and log fold changes

Description

A simple helper function that makes a so-called "MA-plot", i.e. a scatter plot of log2 fold changes
(on the y-axis) versus the mean of normalized counts (on the x-axis).

Usage

## S4 method for signature 'DESeqgDataSet'
plotMA(

object,

alpha = 0.1,

main = "",

xlab = "mean of normalized counts”,

ylim,

colNonSig = "gray60",

colSig = "blue”,

colLine = "grey40",

returnData = FALSE,

MLE = FALSE,

)

## S4 method for signature 'DESeqResults’
plotMA(

object,

alpha,

main = "",

xlab = "mean of normalized counts”,

ylim,

colNonSig = "gray60"”,

colSig = "blue”,

colLine = "grey40",

returnData = FALSE,
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MLE = FALSE,

Arguments

object

alpha

main

xlab

ylim
colNonSig
colSig
collLine
returnData
MLE

Details

plotMA

aDESeqResults object produced by results; or a DESeqDataSet processed by
DESeq, or the individual functions nbinomWaldTest or nbinomLRT

the significance level for thresholding adjusted p-values
optional title for the plot

optional defaults to "mean of normalized counts"
optional y limits

color to use for non-significant data points

color to use for significant data points

color to use for the horizontal (y=0) line

logical, whether to return the data.frame used for plotting

if betaPrior=TRUE was used, whether to plot the MLE (unshrunken estimates),
defaults to FALSE. Requires that results was run with addMLE=TRUE. Note that
the MLE will be plotted regardless of this argument, if DESeq() was run with
betaPrior=FALSE. See 1fcShrink for examples on how to plot shrunken log2
fold changes.

further arguments passed to plotMA if object is DESegResults or to results if
object is DESegDataSet

This function is essentially two lines of code: building a data.frame and passing this to the
plotMA method for data.frame, now copied from the geneplotter package. The code was mod-
ified in version 1.28 to change from red to blue points for better visibility for users with color-
blindness. The original plots can still be made via the use of returnData=TRUE and passing the
resulting data.frame directly to geneplotter: :plotMA. The code of this function can be seen with:
getMethod("plotMA”, "DESeqDataSet") If the object contains a column svalue then these will
be used for coloring the points (with a default alpha=0.005).

Author(s)
Michael Love

Examples

dds <- makeExampleDESeqDataSet()

dds <- DESeq(dds)
plotMA(dds)

res <- results(dds)

plotMA(res)
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plotPCA Sample PCA plot for transformed data

Description

This plot helps to check for batch effects and the like.

Usage
## S4 method for signature 'DESeqTransform'
plotPCA(
object,
intgroup = "condition”,
ntop = 500,
returnData = FALSE,
pcsToUse = 1:2
)
Arguments
object a DESeqTransform object, with data in assay(x), produced for example by
either rlog or varianceStabilizingTransformation.
intgroup interesting groups: a character vector of names in colData(x) to use for group-
ing
ntop number of top genes to use for principal components, selected by highest row
variance
returnData should the function only return the data.frame of PC1 and PC2 with intgroup
covariates for custom plotting (default is FALSE)
pcsToUse numeric of length 2, which PCs to plot
Value

An object created by ggplot, which can be assigned and further customized.

Note

See the vignette for an example of variance stabilization and PCA plots. Note that the source code of
plotPCA is very simple. The source can be found by typing DESeq2: : : plotPCA.DESeqTransform
or getMethod("plotPCA", "DESeqTransform”), or browsed on github at https://github.com/
mikelove/DESeq2/blob/master/R/plots.R Users should find it easy to customize this function.

Author(s)
Wolfgang Huber


https://github.com/mikelove/DESeq2/blob/master/R/plots.R
https://github.com/mikelove/DESeq2/blob/master/R/plots.R
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Examples

# using rlog transformed data:

dds <- makeExampleDESeqDataSet(betaSD=1)
vsd <- vst(dds, nsub=500)

plotPCA(vsd)

# also possible to perform custom transformation:

dds <- estimateSizeFactors(dds)

# shifted log of normalized counts

se <- SummarizedExperiment(log2(counts(dds, normalized=TRUE) + 1),
colData=colData(dds))

# the call to DESeqTransform() is needed to

# trigger our plotPCA method.

plotPCA( DESeqTransform( se ) )

plotSparsity Sparsity plot

Description

A simple plot of the concentration of counts in a single sample over the sum of counts per gene.
Not technically the same as "sparsity", but this plot is useful diagnostic for datasets which might
not fit a negative binomial assumption: genes with many zeros and individual very large counts are
difficult to model with the negative binomial distribution.

Usage
plotSparsity(x, normalized = TRUE, ...)
Arguments
X a matrix or DESeqDataSet
normalized whether to normalize the counts from a DESeqDataSEt
passed to plot
Examples

dds <- makeExampleDESegDataSet(n=1000,m=4,dispMeanRel=function(x) .5)
dds <- estimateSizeFactors(dds)
plotSparsity(dds)
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priorInfo Accessors for the ’priorlnfo’ slot of a DESeqResults object.

Description

The priorInfo slot contains details about the prior on log fold changes

Usage
priorInfo(object, ...)
priorInfo(object, ...) <- value

## S4 method for signature 'DESeqResults'
priorInfo(object)

## S4 replacement method for signature 'DESegResults,list'’
priorInfo(object) <- value

Arguments
object a DESeqgResults object
additional arguments
value alist
replaceOutliers Replace outliers with trimmed mean
Description

Note that this function is called within DESeq, so is not necessary to call on top of a DESeq call. See
the minReplicatesForReplace argument documented in 1ink{DESeq}.

Usage

replaceOutliers(
object,
trim = 9.2,
cooksCutoff,
minReplicates = 7,
whichSamples

)

replaceOutliersWithTrimmedMean(
object,
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trim = 0.2,
cooksCutoff,
minReplicates = 7,
whichSamples
)
Arguments
object a DESeqDataSet object, which has already been processed by either DESeq,
nbinomWaldTest or nbinomLRT, and therefore contains a matrix contained in
assays(dds)[["cooks"]]. These are the Cook’s distances which will be used
to define outlier counts.
trim the fraction (0 to 0.5) of observations to be trimmed from each end of the nor-

malized counts for a gene before the mean is computed

cooksCutoff the threshold for defining an outlier to be replaced. Defaults to the .99 quantile
of the F(p, m - p) distribution, where p is the number of parameters and m is the
number of samples.

minReplicates the minimum number of replicate samples necessary to consider a sample eligi-
ble for replacement (including itself). Outlier counts will not be replaced if the
sample is in a cell which has less than minReplicates replicates.

whichSamples  optional, a numeric or logical index to specify which samples should have out-
liers replaced. if missing, this is determined using minReplicates.

Details

This function replaces outlier counts flagged by extreme Cook’s distances, as calculated by DESeq,
nbinomWaldTest or nbinomLRT, with values predicted by the trimmed mean over all samples (and
adjusted by size factor or normalization factor). This function replaces the counts in the matrix
returned by counts(dds) and the Cook’s distances in assays(dds)[["cooks"]]. Original counts
are preserved in assays(dds)[["originalCounts”]].

The DESeq function calculates a diagnostic measure called Cook’s distance for every gene and every
sample. The results function then sets the p-values to NA for genes which contain an outlying
count as defined by a Cook’s distance above a threshold. With many degrees of freedom, i.e. many
more samples than number of parameters to be estimated— it might be undesirable to remove entire
genes from the analysis just because their data include a single count outlier. An alternate strategy
is to replace the outlier counts with the trimmed mean over all samples, adjusted by the size factor
or normalization factor for that sample. The following simple function performs this replacement
for the user, for samples which have at least minReplicates number of replicates (including that
sample). For more information on Cook’s distance, please see the two sections of the vignette:
’Dealing with count outliers’ and ’Count outlier detection’.

Value

a DESeqDataSet with replaced counts in the slot returned by counts and the original counts pre-
served in assays(dds)[["originalCounts"]]
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See Also

DESeq

results Extract results from a DESeq analysis

Description

results extracts a result table from a DESeq analysis giving base means across samples, log2 fold
changes, standard errors, test statistics, p-values and adjusted p-values; resultsNames returns the
names of the estimated effects (coefficents) of the model; removeResults returns a DESegDataSet
object with results columns removed.

Usage

results(
object,
contrast,
name,
1fcThreshold = 9,
altHypothesis = c("greaterAbs"”, "greaterAbsUPSHOT", "lessAbs”, "greater”, "less",
"greaterAbs2014"),
listValues = c(1, -1),
cooksCutoff,
independentFiltering = TRUE,
alpha = 0.1,
filter,
theta,
pAdjustMethod = "BH",
filterFun,
format = c("DataFrame”, "GRanges", "GRangesList"),
saveCols = NULL,
test = c("Wald", "LRT"),
addMLE = FALSE,
tidy = FALSE,
parallel = FALSE,
BPPARAM = bpparam(),
minmu = 0.5

)

resultsNames(object)

removeResults(object)
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Arguments

object a DESeqDataSet, on which one of the following functions has already been
called: DESeq, nbinomWaldTest, or nbinomLRT

contrast this argument specifies what comparison to extract from the object to build a
results table. one of either:

* a character vector with exactly three elements: the name of a factor in the
design formula, the name of the numerator level for the fold change, and
the name of the denominator level for the fold change (simplest case)

* alist of 2 character vectors: the names of the fold changes for the numer-
ator, and the names of the fold changes for the denominator. these names
should be elements of resultsNames (object). if the list is length 1, a sec-
ond element is added which is the empty character vector, character().
(more general case, can be to combine interaction terms and main effects)

¢ anumeric contrast vector with one element for each element in resultsNames (object)
(most general case)

If specified, the name argument is ignored.

name the name of the individual effect (coefficient) for building a results table. Use
this argument rather than contrast for continuous variables, individual effects
or for individual interaction terms. The value provided to name must be an ele-
ment of resultsNames(object).

1fcThreshold  a non-negative value which specifies a log2 fold change threshold. The default
value is 0, corresponding to a test that the log2 fold changes are equal to zero.
The user can specify the alternative hypothesis using the altHypothesis argu-
ment, which defaults to testing for log2 fold changes greater in absolute value
than a given threshold. If 1fcThreshold is specified, the results are for Wald
tests, and LRT p-values will be overwritten.

altHypothesis character which specifies the alternative hypothesis, i.e. those values of log2
fold change which the user is interested in finding. The complement of this set
of values is the null hypothesis which will be tested. If the log2 fold change
specified by name or by contrast is written as 3, then the possible values for
altHypothesis represent the following alternate hypotheses:

* greaterAbs: || > IfcThreshold, and p-values are two-tailed
* greaterAbsUPSHOT: same as greaterAbs. Provides more power than "greaterAbs”
and is valid when the distribution for /3 is unimodal about zero in the inter-
val [—1fcThreshold, lfcThreshold]
* lessAbs: |8| < 1fcThreshold, p-values are the maximum of the upper and
lower tests. The Wald statistic given is positive, an SE-scaled distance from
the closest boundary
o greater: [ > IfcThreshold
e less: 8 < —IfcThreshold

* greaterAbs2014: older implementation of greaterAbs from 2014, less power
listValues only used if a list is provided to contrast: a numeric of length two: the log2

fold changes in the list are multiplied by these values. the first number should
be positive and the second negative. by default this is c(1,-1)
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cooksCutoff theshold on Cook’s distance, such that if one or more samples for a row have a
distance higher, the p-value for the row is set to NA. The default cutoff is the
.99 quantile of the F(p, m-p) distribution, where p is the number of coefficients
being fitted and m is the number of samples. Set to Inf or FALSE to disable
the resetting of p-values to NA. Note: this test excludes the Cook’s distance of
samples belonging to experimental groups with only 2 samples.

independentFiltering
logical, whether independent filtering should be applied automatically

alpha the significance cutoff used for optimizing the independent filtering (by default
0.1). If the adjusted p-value cutoff (FDR) will be a value other than 0.1, alpha
should be set to that value.

filter the vector of filter statistics over which the independent filtering will be opti-
mized. By default the mean of normalized counts is used.

theta the quantiles at which to assess the number of rejections from independent fil-
tering

pAdjustMethod the method to use for adjusting p-values, see ?p.adjust

filterFun an optional custom function for performing independent filtering and p-value
adjustment, with arguments res (a DESeqResults object), filter (the quanti-
tity for filtering tests), alpha (the target FDR), pAdjustMethod. This function
should return a DESeqResults object with a padj column.

format character, either "DataFrame”, "GRanges", or "GRangesList", whether the re-
sults should be printed as a DESeqResults DataFrame, or if the results DataFrame
should be attached as metadata columns to the GRanges or GRangesList rowRanges
of the DESeqDataSet. If the rowRanges is a GRangesList, and GRanges is re-
quested, the range of each gene will be returned

saveCols character or numeric vector, the columns of mcols(object) to pass into the
results output

test this is automatically detected internally if not provided. the one exception is
after nbinomLRT has been run, test="Wald" will generate Wald statistics and
Wald test p-values.

addMLE if betaPrior=TRUE was used (non-default), this logical argument specifies if the
"unshrunken" maximum likelihood estimates (MLE) of log2 fold change should
be added as a column to the results table (default is FALSE). This argument
is preserved for backward compatability, as now betaPrior=FALSE by default
and the recommended pipeline is to generate shrunken MAP estimates using
1fcShrink. This argument functionality is only implemented for contrast
specified as three element character vectors.

tidy whether to output the results table with rownames as a first column 'row’. the
table will also be coerced to data. frame

parallel if FALSE, no parallelization. if TRUE, parallel execution using BiocParallel,
see next argument BPPARAM

BPPARAM an optional parameter object passed internally to bplapply when parallel=TRUE.
If not specified, the parameters last registered with register will be used.

minmu lower bound on the estimated count (used when calculating contrasts)
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Details

The results table when printed will provide the information about the comparison, e.g. "log2 fold
change (MAP): condition treated vs untreated", meaning that the estimates are of log2(treated /
untreated), as would be returned by contrast=c(”condition”,"treated”,"untreated”). Mul-
tiple results can be returned for analyses beyond a simple two group comparison, so results takes
arguments contrast and name to help the user pick out the comparisons of interest for printing
a results table. The use of the contrast argument is recommended for exact specification of the
levels which should be compared and their order.

If results is run without specifying contrast or name, it will return the comparison of the last
level of the last variable in the design formula over the first level of this variable. For example, for
a simple two-group comparison, this would return the log2 fold changes of the second group over
the first group (the reference level). Please see examples below and in the vignette.

The argument contrast can be used to generate results tables for any comparison of interest, for
example, the log2 fold change between two levels of a factor, and its usage is described below. It
can also accomodate more complicated numeric comparisons. Note that contrast will set to O the
estimated LFC in a comparison of two groups, where all of the counts in the two groups are equal
to O (while other groups have positive counts), while name will not automatically set these LFC to
0. The test statistic used for a contrast is:

cB/VctYe

The argument name can be used to generate results tables for individual effects, which must be in-
dividual elements of resultsNames(object). These individual effects could represent continuous
covariates, effects for individual levels, or individual interaction effects.

Information on the comparison which was used to build the results table, and the statistical test
which was used for p-values (Wald test or likelihood ratio test) is stored within the object returned
by results. This information is in the metadata columns of the results table, which is accessible
by calling mcols on the DESeqResults object returned by results.

On p-values:

By default, independent filtering is performed to select a set of genes for multiple test correction
which maximizes the number of adjusted p-values less than a given critical value alpha (by default
0.1). See the reference in this man page for details on independent filtering. The filter used for maxi-
mizing the number of rejections is the mean of normalized counts for all samples in the dataset. Sev-
eral arguments from the filtered_p function of the genefilter package (used within the results
function) are provided here to control the independent filtering behavior. (Note filtered_p R code
is now copied into DESeq2 package to avoid gfortran requirements.) In DESeq2 version >= 1.10,
the threshold that is chosen is the lowest quantile of the filter for which the number of rejections
is close to the peak of a curve fit to the number of rejections over the filter quantiles. *Close to’ is
defined as within 1 residual standard deviation. The adjusted p-values for the genes which do not
pass the filter threshold are set to NA.

By default, results assigns a p-value of NA to genes containing count outliers, as identified using
Cook’s distance. See the cooksCutoff argument for control of this behavior. Cook’s distances for
each sample are accessible as a matrix "cooks" stored in the assays() list. This measure is useful
for identifying rows where the observed counts might not fit to a Negative Binomial distribution.

For analyses using the likelihood ratio test (using nbinomLRT), the p-values are determined solely by
the difference in deviance between the full and reduced model formula. A single log2 fold change is
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printed in the results table for consistency with other results table outputs, however the test statistic
and p-values may nevertheless involve the testing of one or more log2 fold changes. Which log2
fold change is printed in the results table can be controlled using the name argument, or by default
this will be the estimated coefficient for the last element of resultsNames(object).

If useT=TRUE was specified when running DESeq or nbinomWaldTest, then the p-value generated
by results will also make use of the t distribution for the Wald statistic, using the degrees of
freedom in mcols(object)$tDegreesFreedom.

Value

For results: a DESeqResults object, which is a simple subclass of DataFrame. This object con-
tains the results columns: baseMean, log2FoldChange, 1fcSE, stat, pvalue and padj, and also
includes metadata columns of variable information. The 1fcSE gives the standard error of the
log2FoldChange. For the Wald test, stat is the Wald statistic: the log2FoldChange divided by
1fcSE, which is compared to a standard Normal distribution to generate a two-tailed pvalue. For
the likelihood ratio test (LRT), stat is the difference in deviance between the reduced model and
the full model, which is compared to a chi-squared distribution to generate a pvalue.

For resultsNames: the names of the columns available as results, usually a combination of the
variable name and a level

For removeResults: the original DESeqDataSet with results metadata columns removed

References

Richard Bourgon, Robert Gentleman, Wolfgang Huber: Independent filtering increases detection
power for high-throughput experiments. PNAS (2010), http://dx.doi.org/10.1073/pnas.0914005107

See Also
DESeq, 1fcShrink

Examples

## Example 1: two-group comparison
dds <- makeExampleDESeqDataSet(m=4)

dds <- DESeq(dds)
res <- results(dds, contrast=c(”condition”,”B","A"))

# with more than two groups, the call would look similar, e.g.:
# results(dds, contrast=c("condition”,”C","A"))
# etc.

## Example 2: two conditions, two genotypes, with an interaction term

dds <- makeExampleDESeqDataSet(n=100,m=12)
dds$genotype <- factor(rep(rep(c("I","I1"),each=3),2))

design(dds) <- ~ genotype + condition + genotype:condition
dds <- DESeq(dds)


http://dx.doi.org/10.1073/pnas.0914005107
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resultsNames(dds)

# the condition effect for genotype I (the main effect)
results(dds, contrast=c(”condition”,"B","A"))

# the condition effect for genotype II

# this is, by definition, the main effect *plusx the interaction term
# (the extra condition effect in genotype II compared to genotype I).
results(dds, list( c("condition_B_vs_A",6 "genotypell.conditionB") ))

# the interaction term, answering: is the condition effect xdifferent* across genotypes?
results(dds, name="genotypell.conditionB")

## Example 3: two conditions, three genotypes
# ~~~ Using interaction terms ~~~

dds <- makeExampleDESeqDataSet(n=100,m=18)

dds$genotype <- factor(rep(rep(c("I","II","III1"),each=3),2))
design(dds) <- ~ genotype + condition + genotype:condition
dds <- DESeq(dds)

resultsNames(dds)

# the condition effect for genotype I (the main effect)
results(dds, contrast=c(”condition”,"B","A"))

# the condition effect for genotype III.

# this is the main effect *plus* the interaction term

# (the extra condition effect in genotype III compared to genotype I).
results(dds, contrast=list( c(”"condition_B_vs_A",6"genotypelll.conditionB") ))

# the interaction term for condition effect in genotype III vs genotype I.
# this tests if the condition effect is different in III compared to I
results(dds, name="genotypelll.conditionB")

# the interaction term for condition effect in genotype III vs genotype II.
# this tests if the condition effect is different in III compared to II
results(dds, contrast=list("genotypelll.conditionB”, "genotypell.conditionB"))

# Note that a likelihood ratio could be used to test if there are any
# differences in the condition effect between the three genotypes.

# ~~~ Using a grouping variable ~~~

# This is a useful construction when users just want to compare
# specific groups which are combinations of variables.

dds$group <- factor(paste@d(dds$genotype, dds$condition))
design(dds) <- ~ group

dds <- DESeq(dds)

resultsNames(dds)

# the condition effect for genotypelll
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results(dds, contrast=c("group”, "IIIB", "IIIA"))

rlog Apply a ’regularized log’ transformation

Description

This function transforms the count data to the log2 scale in a way which minimizes differences

between samples for rows with small counts, and which normalizes with respect to library size. The

rlog transformation produces a similar variance stabilizing effect as varianceStabilizingTransformation,
though rlog is more robust in the case when the size factors vary widely. The transformation is use-

ful when checking for outliers or as input for machine learning techniques such as clustering or lin-

ear discriminant analysis. rlog takes as input a DESegDataSet and returns a RangedSummarizedExperiment
object.

Usage

rlog(object, blind = TRUE, intercept, betaPriorVar, fitType = "parametric")

rlogTransformation(
object,
blind = TRUE,
intercept,
betaPriorVvar,
fitType = "parametric”

Arguments

object a DESegDataSet, or matrix of counts

blind logical, whether to blind the transformation to the experimental design. blind=TRUE

should be used for comparing samples in an manner unbiased by prior infor-
mation on samples, for example to perform sample QA (quality assurance).
blind=FALSE should be used for transforming data for downstream analysis,
where the full use of the design information should be made. blind=FALSE will
skip re-estimation of the dispersion trend, if this has already been calculated. If
many of genes have large differences in counts due to the experimental design,
it is important to set blind=FALSE for downstream analysis.

intercept by default, this is not provided and calculated automatically. if provided, this
should be a vector as long as the number of rows of object, which is log2 of the
mean normalized counts from a previous dataset. this will enforce the intercept
for the GLM, allowing for a "frozen" rlog transformation based on a previous
dataset. You will also need to provide mcols(object)$dispFit.

betaPriorVar  asingle value, the variance of the prior on the sample betas, which if missing is
estimated from the data

fitType in case dispersions have not yet been estimated for object, this parameter is
passed on to estimateDispersions (options described there).
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Details

Note that neither rlog transformation nor the VST are used by the differential expression estimation
in DESeq, which always occurs on the raw count data, through generalized linear modeling which
incorporates knowledge of the variance-mean dependence. The rlog transformation and VST are
offered as separate functionality which can be used for visualization, clustering or other machine
learning tasks. See the transformation section of the vignette for more details, including a statement
on timing. If rlog is run on data with number of samples in [30-49] it will print a message that it
may take a few minutes, if the number of samples is 50 or larger, it will print a message that it may
take a "long time", and in both cases, it will mention that the vst is a much faster transformation.

The transformation does not require that one has already estimated size factors and dispersions.

The regularization is on the log fold changes of the count for each sample over an intercept, for
each gene. As nearby count values for low counts genes are almost as likely as the observed
count, the rlog shrinkage is greater for low counts. For high counts, the rlog shrinkage has a much
weaker effect. The fitted dispersions are used rather than the MAP dispersions (so similar to the
varianceStabilizingTransformation).

The prior variance for the shrinkag of log fold changes is calculated as follows: a matrix is con-
structed of the logarithm of the counts plus a pseudocount of 0.5, the log of the row means is then
subtracted, leaving an estimate of the log fold changes per sample over the fitted value using only
an intercept. The prior variance is then calculated by matching the upper quantiles of the observed
log fold change estimates with an upper quantile of the normal distribution. A GLM fit is then
calculated using this prior. It is also possible to supply the variance of the prior. See the vignette for
an example of the use and a comparison with varianceStabilizingTransformation.

The transformed values, rlog(K), are equal to rlog(K;;) = logy(qij) = Bio + Bij» with formula
terms defined in DESeq.

The parameters of the rlog transformation from a previous dataset can be frozen and reapplied to
new samples. See the 'Data quality assessment’ section of the vignette for strategies to see if new
samples are sufficiently similar to previous datasets. The frozen rlog is accomplished by saving the
dispersion function, beta prior variance and the intercept from a previous dataset, and running rlog
with ’blind’ set to FALSE (see example below).

Value

a DESeqTransform if a DESeqDataSet was provided, or a matrix if a count matrix was provided
as input. Note that for DESeqTransform output, the matrix of transformed values is stored in
assay(rld). To avoid returning matrices with NA values, in the case of a row of all zeros, the
rlog transformation returns zeros (essentially adding a pseudocount of 1 only to these rows).

References

Reference for regularized logarithm (rlog):
Michael I Love, Wolfgang Huber, Simon Anders: Moderated estimation of fold change and disper-
sion for RNA-seq data with DESeq2. Genome Biology 2014, 15:550. http://dx.doi.org/10.
1186/s13059-014-0550-8

See Also

plotPCA, varianceStabilizingTransformation, normTransform


http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1186/s13059-014-0550-8
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Examples

dds <- makeExampleDESeqDataSet(m=6,betaSD=1)
rld <- rlog(dds)

dists <- dist(t(assay(rld)))

# plot(hclust(dists))

show, DESeqResults-method
Show method for DESeqResults objects

Description

Prints out the information from the metadata columns of the results object regarding the log2 fold
changes and p-values, then shows the DataFrame using the standard method.

Usage
## S4 method for signature 'DESeqResults'
show(object)

Arguments

object a DESeqResults object

Author(s)

Michael Love

sizeFactors,DESegDataSet-method
Accessor functions for the ’sizeFactors’ information in a DESeq-
DataSet object.

Description

The sizeFactors vector assigns to each column of the count matrix a value, the size factor, such
that count values in the columns can be brought to a common scale by dividing by the corre-
sponding size factor (as performed by counts(dds, normalized=TRUE)). See DESeq for a de-
scription of the use of size factors. If gene-specific normalization is desired for each sample, use
normalizationFactors.
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Usage

## S4 method for signature 'DESeqgDataSet'
sizeFactors(object)

## S4 replacement method for signature 'DESegDataSet,numeric'
sizeFactors(object) <- value

Arguments

object a DESegDataSet object.

value a numeric vector, one size factor for each column in the count data.
Author(s)

Simon Anders

See Also

estimateSizeFactors

summary,DESegResults-method
Summarize DESeq results

Description

Print a summary of the results from a DESeq analysis.

Usage
## S4 method for signature 'DESeqResults’
summary(object, alpha, ...)
Arguments
object a DESegResults object
alpha the adjusted p-value cutoff. If not set, this defaults to the alpha argument which

was used in results to set the target FDR for independent filtering, or if inde-
pendent filtering was not performed, to 0.1.

additional arguments

Author(s)
Michael Love
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Examples

dds <- makeExampleDESeqDataSet(m=4)
dds <- DESeq(dds)

res <- results(dds)

summary(res)

unmix Unmix samples using loss in a variance stabilized space

Description

Unmixes samples in x according to pure components, using numerical optimization. The compo-
nents in pure are added on the scale of gene expression (either normalized counts, or TPMs). The
loss function when comparing fitted expression to the samples in x occurs in a variance stabilized
space. This task is sometimes referred to as "deconvolution”, and can be used, for example, to iden-
tify contributions from various tissues. Note: some groups have found that the mixing contributions
may be more accurate if very lowly expressed genes across x and pure are first removed. We have
not explored this fully. Note: if the pbapply package is installed a progress bar will be displayed
while mixing components are fit.

Usage
unmix(x, pure, alpha, shift, power = 1, format = "matrix”, quiet = FALSE)
Arguments
X normalized counts or TPMs of the samples to be unmixed
pure normalized counts or TPMs of the "pure" samples
alpha for normalized counts, the dispersion of the data when a negative binomial
model is fit. this can be found by examining the asymptotic value of dispersionFunction(dds),
when using fitType="parametric” or the mean value when using fitType="mean".
shift for TPMs, the shift which approximately stabilizes the variance of log shifted
TPMs. Can be assessed with vsn: :meanSdPlot.
power either 1 (for L1) or 2 (for squared) loss function. Default is 1.
format "matrix” or "list"”, default is "matrix"”. whether to output just the matrix of
mixture components, or a list (see Value).
quiet suppress progress bar. default is FALSE, show progress bar if pbapply is in-
stalled.
Value

a matrix, the mixture components for each sample in x (rows). The "pure" samples make up the
columns, and so each row sums to 1. If colnames existed on the input matrices they will be prop-
agated to the output matrix. If format="1ist", then a list, containing as elements: (1) the matrix
of mixture components, (2) the correlations in the variance stabilized space of the fitted samples to
the samples in x, and (3) the fitted samples as a matrix with the same dimension as x.
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Examples

# some artificial data
cts <- matrix(c(80,50,1,100,

1,1,60,100,

0,50,60,100), ncol=4, byrow=TRUE)
# make a DESegDataSet
dds <- DESegDataSetFromMatrix(cts,

data.frame(row.names=seq_len(ncol(cts))), ~1)

colnames(dds) <- paste@("sample”,1:4)

# note! here you would instead use
# estimateSizeFactors() to do actual normalization
sizeFactors(dds) <- rep(1, ncol(dds))

norm.cts <- counts(dds, normalized=TRUE)

# 'pure' should also have normalized counts...
pure <- matrix(c(10,0,0,

0,0,10,

0,10,0), ncol=3, byrow=TRUE)
colnames(pure) <- letters[1:3]

# for real data, you need to find alpha after fitting estimateDispersions()
mix <- unmix(norm.cts, pure, alpha=0.01)

varianceStabilizingTransformation
Apply a variance stabilizing transformation (VST) to the count data

Description

This function calculates a variance stabilizing transformation (VST) from the fitted dispersion-
mean relation(s) and then transforms the count data (normalized by division by the size factors or
normalization factors), yielding a matrix of values which are now approximately homoskedastic
(having constant variance along the range of mean values). The transformation also normalizes
with respect to library size. The rlog is less sensitive to size factors, which can be an issue when
size factors vary widely. These transformations are useful when checking for outliers or as input for
machine learning techniques such as clustering or linear discriminant analysis.

Usage

varianceStabilizingTransformation(object, blind = TRUE, fitType = "parametric")

getVarianceStabilizedData(object)
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Arguments
object a DESeqgDataSet or matrix of counts
blind logical, whether to blind the transformation to the experimental design. blind=TRUE
should be used for comparing samples in a manner unbiased by prior infor-
mation on samples, for example to perform sample QA (quality assurance).
blind=FALSE should be used for transforming data for downstream analysis,
where the full use of the design information should be made. blind=FALSE will
skip re-estimation of the dispersion trend, if this has already been calculated. If
many of genes have large differences in counts due to the experimental design,
it is important to set blind=FALSE for downstream analysis.
fitType in case dispersions have not yet been estimated for object, this parameter is
passed on to estimateDispersions (options described there).
Details

For each sample (i.e., column of counts(dds)), the full variance function is calculated from the raw
variance (by scaling according to the size factor and adding the shot noise). We recommend a blind
estimation of the variance function, i.e., one ignoring conditions. This is performed by default, and
can be modified using the ’blind’ argument.

Note that neither rlog transformation nor the VST are used by the differential expression estimation
in DESeq, which always occurs on the raw count data, through generalized linear modeling which
incorporates knowledge of the variance-mean dependence. The rlog transformation and VST are
offered as separate functionality which can be used for visualization, clustering or other machine
learning tasks. See the transformation section of the vignette for more details.

The transformation does not require that one has already estimated size factors and dispersions.
A typical workflow is shown in Section Variance stabilizing transformation in the package vignette.
If estimateDispersions was called with:

fitType="parametric”, a closed-form expression for the variance stabilizing transformation is
used on the normalized count data. The expression can be found in the file ‘vst.pdf’ which is
distributed with the vignette.

fitType="1local", the reciprocal of the square root of the variance of the normalized counts, as
derived from the dispersion fit, is then numerically integrated, and the integral (approximated by a
spline function) is evaluated for each count value in the column, yielding a transformed value.

fitType="mean”, a VST is applied for Negative Binomial distributed counts, ’k’, with a fixed
dispersion, ’a’: ( 2 asinh(sqrt(a k)) - log(a) - log(4) )/log(2).

In all cases, the transformation is scaled such that for large counts, it becomes asymptotically (for
large values) equal to the logarithm to base 2 of normalized counts.

The variance stabilizing transformation from a previous dataset can be "frozen" and reapplied to
new samples. The frozen VST is accomplished by saving the dispersion function accessible with
dispersionFunction, assigning this to the DESeqDataSet with the new samples, and running
varianceStabilizingTransformation with ’blind’ set to FALSE. Then the dispersion function from
the previous dataset will be used to transform the new sample(s).

Limitations: In order to preserve normalization, the same transformation has to be used for all
samples. This results in the variance stabilizition to be only approximate. The more the size factors
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differ, the more residual dependence of the variance on the mean will be found in the transformed
data. rlog is a transformation which can perform better in these cases. As shown in the vignette,
the function meanSdPlot from the package vsn can be used to see whether this is a problem.

Value

varianceStabilizingTransformation returns a DESeqTransform if a DESeqDataSet was pro-
vided, or returns a a matrix if a count matrix was provided. Note that for DESeqTransform output,
the matrix of transformed values is stored in assay(vsd). getVarianceStabilizedData also re-
turns a matrix.

Author(s)

Simon Anders

References

Reference for the variance stabilizing transformation for counts with a dispersion trend:

Simon Anders, Wolfgang Huber: Differential expression analysis for sequence count data. Genome
Biology 2010, 11:106. http://dx.doi.org/10.1186/gb-2010-11-10-r106

See Also

plotPCA, rlog, normTransform

Examples

dds <- makeExampleDESeqDataSet(m=6)

vsd <- varianceStabilizingTransformation(dds)
dists <- dist(t(assay(vsd)))

# plot(hclust(dists))

vst Quickly estimate dispersion trend and apply a variance stabilizing
transformation

Description

This is a wrapper for the varianceStabilizingTransformation (VST) that provides much faster
estimation of the dispersion trend used to determine the formula for the VST. The speed-up is
accomplished by subsetting to a smaller number of genes in order to estimate this dispersion trend.
The subset of genes is chosen deterministically, to span the range of genes’ mean normalized count.

Usage

vst(object, blind = TRUE, nsub = 1000, fitType = "parametric")


http://dx.doi.org/10.1186/gb-2010-11-10-r106
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Arguments
object a DESegDataSet or a matrix of counts
blind logical, whether to blind the transformation to the experimental design (see
varianceStabilizingTransformation)
nsub the number of genes to subset to (default 1000)
fitType for estimation of dispersions: this parameter is passed on to estimateDispersions
(options described there)
Value

a DESeqTranform object or a matrix of transformed, normalized counts

Examples

dds <- makeExampleDESeqDataSet(n=2000, m=20)
vsd <- vst(dds)
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