if (!require("BiocManager"))
  install.packages("BiocManager")
BiocManager::install("glmSparseNet")library(dplyr)
library(ggplot2)
library(survival)
library(loose.rock)
library(futile.logger)
library(curatedTCGAData)
library(TCGAutils)
#
library(glmSparseNet)
#
# Some general options for futile.logger the debugging package
.Last.value <- flog.layout(layout.format('[~l] ~m'))
.Last.value <- loose.rock::show.message(FALSE)
# Setting ggplot2 default theme as minimal
theme_set(ggplot2::theme_minimal())The data is loaded from an online curated dataset downloaded from TCGA using
curatedTCGAData bioconductor package and processed.
To accelerate the process we use a very reduced dataset down to 107 variables only (genes), which is stored as a data object in this package. However, the procedure to obtain the data manually is described in the following chunk.
brca <- curatedTCGAData(diseaseCode = "BRCA", assays = "RNASeq2GeneNorm", FALSE)brca <- TCGAutils::splitAssays(brca, c('01','11'))
xdata.raw <- t(cbind(assay(brca[[1]]), assay(brca[[2]])))
# Get matches between survival and assay data
class.v        <- TCGAbiospec(rownames(xdata.raw))$sample_definition %>% factor
names(class.v) <- rownames(xdata.raw)
# keep features with standard deviation > 0
xdata.raw <- xdata.raw %>% 
  { (apply(., 2, sd) != 0) } %>% 
  { xdata.raw[, .] } %>%
  scale
set.seed(params$seed)
small.subset <- c('CD5', 'CSF2RB', 'HSF1', 'IRGC', 'LRRC37A6P', 'NEUROG2', 
                  'NLRC4', 'PDE11A', 'PIK3CB', 'QARS', 'RPGRIP1L', 'SDC1', 
                  'TMEM31', 'YME1L1', 'ZBTB11', 
                  sample(colnames(xdata.raw), 100))
xdata <- xdata.raw[, small.subset[small.subset %in% colnames(xdata.raw)]]
ydata <- class.vFit model model penalizing by the hubs using the cross-validation function by
cv.glmHub.
fitted <- cv.glmHub(xdata, ydata, 
                    family  = 'binomial',
                    network = 'correlation', 
                    nlambda = 1000,
                    network.options = networkOptions(cutoff = .6, 
                                                     min.degree = .2))Shows the results of 1000 different parameters used to find the optimal value
in 10-fold cross-validation. The two vertical dotted lines represent the best
model and a model with less variables selected (genes), but within a standard
error distance from the best.
plot(fitted)Taking the best model described by lambda.min
coefs.v <- coef(fitted, s = 'lambda.min')[,1] %>% { .[. != 0]}
coefs.v %>% { 
  data.frame(ensembl.id  = names(.), 
             gene.name   = geneNames(names(.))$external_gene_name, 
             coefficient = .,
             stringsAsFactors = FALSE)
  } %>%
  arrange(gene.name) %>%
  knitr::kable()| ensembl.id | gene.name | coefficient | 
|---|---|---|
| (Intercept) | (Intercept) | -6.8189811 | 
| CD5 | AMOTL1 | -1.1200445 | 
| NLRC4 | ATR | -1.4434577 | 
| PIK3CB | B3GALT2 | -0.3880002 | 
| ZBTB11 | BAG2 | -0.3325728 | 
| ATR | C16orf82 | 1.2498303 | 
| IL2 | CD5 | 0.6327083 | 
| GDF11 | CIITA | -0.2676642 | 
| DCP1A | DCP1A | 0.2994599 | 
| AMOTL1 | FAM86B1 | 0.4430643 | 
| BAG2 | FNIP2 | -0.1841676 | 
| C16orf82 | GDF11 | 0.0396368 | 
| FAM86B1 | GNG11 | 0.2025462 | 
| FNIP2 | GREM2 | 0.6101758 | 
| MS4A4A | GZMB | 1.1614778 | 
| B3GALT2 | HAX1 | -0.0867011 | 
| GNG11 | IL2 | 3.0659065 | 
| NDRG2 | MMP28 | 1.1142519 | 
| HAX1 | MS4A4A | -0.1516836 | 
| GREM2 | NDRG2 | -0.2014884 | 
| CIITA | NLRC4 | 0.4256103 | 
| GZMB | PIK3CB | -2.7663573 | 
| MMP28 | ZBTB11 | -0.8438023 | 
geneNames(names(coefs.v)) %>% { hallmarks(.$external_gene_name)$heatmap }## Warning in value[[3L]](cond): Cannot call Hallmark API, please try again
## later.## NULL## [INFO] Misclassified (11)## [INFO]   * False primary solid tumour: 7## [INFO]   * False normal              : 4Histogram of predicted response
ROC curve