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Abstract

The pbcmc package characterizes uncertainty assessment on gene expression classifiers,
a. k. a. molecular signatures, based on a permutation test. In order to achieve this
goal, synthetic simulated subjects are obtained by permutations of gene labels. Then,
each synthetic subject is tested against the corresponding subtype classifier to build the
null distribution. Thus, classification confidence measurement reports can be provided
for each subject, to assist physician therapy choice. At present, it is only available for
PAM50 implementation in genefu package but, it can easily be extend to other molecular
signatures.

Keywords: PAM50, single subject classifier, clinical outcome, breast cancer subtype.

1. Introduction

Gene expression-based classifiers, known as molecular signatures (MS), are gaining increasing
attention in oncology and market. The MS can be defined as a set of coordinately expressed
genes and an algorithm that use these data to predict disease subtypes, response to therapy,
disease risk and clinical outcome (Andre and Pusztai 2006). Particularly in breast cancer
market there exists many MS such as PAM50 (Perou et al. 2000, 2010), Prosigna® (Nielsen
et al. 2014), Oncotype DX® (Paik et al. 2004) and MammaPrint® (van’t Veer et al. 2002).
In essence, most MS try to provide patient subtype classification or risk prediction which has
been associated with distant metastasis free survival (DMFS) or relapse free survival (RFS).
Consequently, they are intended to be used to support therapy choice. However, several
authors have shown that data processing steps, technology, as well as population variability
have an effect on measured gene expression and could bias subtype/risk subject assignment
(Ioannidis 2007; Lusa et al. 2007; Sørlie et al. 2001, 2010; Wu et al. 2012; Ebbert et al. 2011).
These effects suggest that, from a statistical point of view, MS are not robust for subject
classification. In particular, there is no control over type I and II like classification error
and subjects could potentially be assigned to a wrong subtype/risk class. Indeed, the lack of
certainty in class assignation could lead to a misleading therapy affecting subject outcome.
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Hence, the development of methods for significance or certainty on MS class assignation is
crucial in order to assist physicians’ decision making (Wu et al. 2012; Ebbert et al. 2011).

1.1. PAM50 Molecular Signature

The well-known breast cancer (BC) MS, PAM50 (Perou et al. 2000, 2010), is based on the
comparison between the patient gene profiles (PGP) of 50 expressed genes, against five in-
trinsic genes profiles (IGP) representing: Basal, Her2-enriched, Luminal A, Luminal B and
Normal-like subtypes using Spearman’s ρ correlation. Then, the subject will be assigned to
the i− th subtype according to (1):

arg max
i∈IGP

ρ(PGP, IGPi) (1)

Particularly, patients are assigned to the i− th subtype which maximize ρ(PGP, IGPi), even
if correlation is weak or there are similar/tight IGP correlations. The latter case has been
addressed by Cheang et al. (2009), where they have excluded subjects with a correlation
difference between Luminal A and B of less than 0.1, considering them ambiguous pattern,
as a way to control a kind of type II error. However, type I error control is still a debt.

1.2. genefu library

At present, the freely available PAM50 genefu algorithm implementation (Haibe-Kains et al.
2014), offers a kind of subtype probability, P (IGPi), calculated as (2):

P (IGPi) =
ρ(PGP, IGPi)∑
i ρ(PGP, IGPi)

∀ρ(PGP, IGPi) > 0 (2)

However, this probability does not take part in the classification rule. Even worse, a very low
ρ (weak relationship) could reach a high subtype probability, for instance, if all the others ρ’s
are close to zero or are even negative.

1.3. Alternative proposal

In order to overcome these drawbacks, here a simple and reliable single subject classifier
to control type I and II errors is proposed. Moreover, it provides a statistical significance
on subtype assignation based on a gene label permutation test. Briefly, it evaluates if the
observed ρ of each IGP can be achieved by chance, regarding subject observed MS expressed
gene values. In addition, we propose a user-friendly subtype assignation panel to support
physicians’ decision making, enhancing PAM50 or commercial reports currently available in
the market. The method is presented for PAM50 but can easily be extended to other MS
algorithms.

2. Methods

The Permutation Based Confidence for Molecular Classification (pbcmc) package, estimates
the statistical significance of ρ for each IGP. In other words, we want to see whether the
observed ρ can be obtained by chance. In order to perform this task, the ρ null distribution
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for each IGP (ρH0IGP
) is obtained by evaluating β permutations of the SGP gene expression.

Then, the observed (un-permuted) IGP correlations (ρuIGP ) are compared against their own
ρH0IGP

in order to evaluate whether H0 : ρuIGP ∈ ρH0IGP
versus H1 : ρuIGP /∈ ρH0IGP

according to the p-values (pIGP ) calculated as in (3):

pIGP =

∑β
i I(ρi, ρu)

β
; I(a, b) =

{
1 if a > b
0 if a ≤ b (3)

where IGP stands for Basal, Her2-Enriched, Luminal A, Luminal B and Normal-like. The
resulting five pIGP ’s are adjusted to control multiple comparisons using False Discovery Rate,
FDR (Benjamini and Hochberg 1995). Then, assuming an acceptable type I error, α, the
hypothesis test for all IGPs could result in:

i. No significant ρu for any IGP, i. e., all adjusted pIGP > α.

ii. A unique significant ρu.

iii. Multiple significant ρu.

For the first case, the subject cannot reliably be assigned to any IGP (not assigned - NA).
In the second case, it is assigned (A) to the trustworthy current PAM50 subtype. In order
to overcome the ambiguity of case iii., a correlation difference threshold of 0.1 between the
top ones (ρuIGP1

> ρuIGP2
> . . . > 0) was established, similarly as in Cheang et al. (2009) for

Luminal subtypes. Then, if (ρuIGP1
− ρuIGP2

) > 0.1 the subject is assigned as in ii., otherwise
it is considered as an ambiguous (Amb) subject.

3. Implementation

The S4 class hierarchy of the pbcmc package is based on the implementation of an abstract
MolecularPermutationClassifier class, which can potentially be used for any MS as de-
picted in Figure 1. Basically, it has been developed as an organized data processing framework
for its heirs. The latters are supposed to implement the respective responsibilities. Once a
heir object is implemented the user can:

loadBCDataset: Load one of the example breast cancer dataset available at Bioconductor.
At present, it is possible to load breastCancerXXX where XXX can be “upp” (Schroeder
et al. 2011e), “nki” (Schroeder et al. 2011b), “vdx” (Schroeder et al. 2011f), “mainz”
(Schroeder et al. 2011a), “transbig” (Schroeder et al. 2011c) or “unt” (Schroeder et al.
2011d).

filtrate: Remove, from the exprs matrix, subjects not required by the classification algo-
rithm.

classify: Generate subject classification according to the heir’s implementation (PAM50,
etc.).

permute: Obtains subject classification based on the null ρH0 distribution by means of β
permutation simulations.
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Molecular Signature 3

MolecularPermutationClassifier
-  parameters : undef
-  exprs : undef
-  annotation : data.frame
-  targets : data.frame
-  classification : list
-  permutation : list
+ validity()
+ show ()
+ summary()
+ loadBCDataset()
+ filtrate()
+ classify()
+ permutate()
+ subtype()
+ subjectReport()
+ databaseReport()

Molecular Signature n

PAM50

+ filtrate()
+ subtype()
+ permutate()
+ classify()
+ subjectReport()
+ databaseReport()

Molecular Siganture 2

Diagram: class diagram Page 1

Figure 1: Package hierarchy. MolecularPermutationClassifier is the main S4 abstract
class and PAM50 implements it for the Molecular Signature (MS) of Perou et al. (2000, 2010).
The other classes represent user-defined implementations of other MS. Note that complete
operation signature have been omitted for simplicity.
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subtype: Obtain the new classification using the permutation results.

subjectReport: Create a friendly report to assist physician treatment decision making.

databaseReport: Create a pdf with all subjectReports, if a database is available.

At present, the only available heir is PAM50 based on genefu library (Haibe-Kains et al.
2014). But, it can easily be extended to other MS such as Prosigna® (Nielsen et al. 2014)
or others, just implementing filtrate, classify, permutate, subtype, subjectReport and
databaseReport functions.

3.1. Computational Requirements

The pbcmc uses permutation approach as described in section 2. In this context, a paralleliza-
tion approach by sample has been implemented using BiocParallel for the recommended pa-
rameters i.e., “nPerm=10000”, “pCutoff=0.01”, “where="fdr" and “corCutoff=0.1”. Hence,
it can work in any platform providing the appropriate“BPPARAM=bpparam()”option according
to the operating system e.g. SnowParam() for Windows or MulticoreParam() in Linux. It
worth to mention that this feature will not be used when working with a single sample.

Computational requirement for memory (Table 1) and time execution (Table 2 and Fig. 2)
tested in a Kubuntu 16.04.1 LTS xenial machine, with an Intel(R) Core(TM) i7-4790 CPU
3.60GHz (8 cores), 32 GB DDR3 1866 MHz using the complete breastCancerNKI example
for recommended parameters were:

Table 1: Memory requirements for pbcmc package using breastCancerNKI
Process performed Total object memory size

Raw data (24481× 337) 72.9 Mb
Filtered data (57× 337) 263 Kb
Classify with std="median" option 324.3 Kb
Permutate with keep=FALSE option 416.3 Kb
Permutate with keep=TRUE option 129.2 Mb

Temporary MulticoreParam(workers=7) 2GB of free memory

It is worth to mention that extra memory requirements for BiocParallel will only be used
while computing the permutations and released afterwards. For “nki” dataset using Multi-

coreParam(workers=7) (Table 1) it requires of 2GB of RAM memory. If additional workers
are included, if available, it would require additional free memory.

The time execution (Table 2 and Fig. 2) shows that the algorithm takes advantage of the
sample parallel implementation where fore two and three cores almost achieves the theoretical
identity speed up line. Nevertheless, the extra memory requirement provides a time reduction
as depicted in both Table 2 and Fig. 2.
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Table 2: Time execution requirements for pbcmc package using breastCancerNKI

Type
Time(seconds)

Cores Speed up
User System Elapsed

Single sample
2.440 0.072 2.515 1

1.00
2.440 0.072 2.515 7

NKI

0.576 0.132 253.011 7 3.35
0.624 0.152 276.524 6 3.07
0.780 0.388 285.937 5 2.97
0.348 0.276 303.965 4 2.79
0.416 0.204 313.045 3 2.71
0.488 0.144 449.414 2 1.89

830.980 17.924 848.911 1 1.00
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Figure 2: Time execution speed up for breastCancerNKI dataset.
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4. Examples

4.1. Using Bioconductor’s breastCancerXXX dataset

In order to work with PAM50 MS, the user must load a Bioconductor’s breastCancerXXX
dataset where XXX stands for UPP, NKI, VDX, TRANSBIG, MAINZ or UNT. For example
we can load NKI database (Schroeder et al. 2011b), provided that the require library is
installed, using the following code:

R> library("pbcmc")

R> library("BiocParallel")

R> object<-loadBCDataset(Class=PAM50, libname="nki", verbose=TRUE)

R> object

A PAM50 molecular permutation classifier object

Dimensions:

nrow ncol

exprs 24481 337

annotation 24481 10

targets 337 21

The object is a PAM50 instance, which contains the exprs matrix with gene expression
values, associated annotation and clinical data in targets data.frame. On the other hand,
the user can use PAM50’s constructor to create an object with his/her own data or convert
a limma MAList object into PAM50 using as.PAM50(MAList_object) function. In the first
case, the user will only need:

a) The M gene expression object, i. e., genes in rows and samples in columns.

b) The annotation data.frame which must include the compulsory fields: “probe”,
“NCBI.gene.symbol” and “EntrezGene.ID”.

c) The targets data.frame which is an optional slot. If it is provided, it should contain as
many rows as samples present in the M gene expression object. The idea is to include as
many columns as clinical or experimental data these samples have available. For “nki”
example, there are 21 columns.

4.2. Using any microarray R data package

The same example of section 4.1 can be built with pbcmc directly loading the package and
extracting the data into the M, annotation and targets (optional) slots required by PAM50

object. Just for simplicity we will work with the first five samples but, it also works for a
single sample.

R> library("breastCancerNKI")

R> data("nki")
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R> ##The expression

R> M<-exprs(nki)[, 1:5, drop=FALSE]

R> head(M)

NKI_4 NKI_6 NKI_7 NKI_8 NKI_9

Contig45645_RC -0.215 0.071 0.182 -0.343 -0.134

Contig44916_RC -0.207 0.055 0.077 0.302 0.051

D25272 -0.158 -0.010 0.059 0.169 -0.007

J00129 -0.819 -0.391 -0.624 -0.528 -0.811

Contig29982_RC -0.267 -0.310 -0.120 -0.447 -0.536

Contig26811 0.229 0.157 0.120 0.283 -0.112

R> ##The annotation

R> genes<-fData(nki)[, c("probe", "NCBI.gene.symbol", "EntrezGene.ID")]

R> head(genes)

probe NCBI.gene.symbol EntrezGene.ID

Contig45645_RC Contig45645_RC GREM2 64388

Contig44916_RC Contig44916_RC SUHW2 140883

D25272 D25272 <NA> NA

J00129 J00129 FGB 2244

Contig29982_RC Contig29982_RC SCARA5 286133

Contig26811 Contig26811 <NA> NA

R> ##Additional information (optional)

R> targets<-pData(nki)[1:5, ,drop=FALSE]

R> head(targets)

samplename dataset series id filename size age er grade pgr

NKI_4 NKI_4 NKI NKI 4 NA 2.0 41 1 3 NA

NKI_6 NKI_6 NKI NKI 6 NA 1.3 49 1 2 NA

NKI_7 NKI_7 NKI NKI 7 NA 2.0 46 0 1 NA

NKI_8 NKI_8 NKI NKI 8 NA 2.8 48 0 3 NA

NKI_9 NKI_9 NKI NKI 9 NA 1.5 48 1 3 NA

her2 brca.mutation e.dmfs t.dmfs node t.rfs e.rfs treatment

NKI_4 NA 0 0 4747 0 4747 0 0

NKI_6 NA 0 0 4075 0 4075 0 0

NKI_7 NA 0 0 3703 0 3703 0 0

NKI_8 NA 0 0 3215 0 3215 0 0

NKI_9 NA 0 0 3760 0 3760 0 0

tissue t.os e.os

NKI_4 1 4744 0

NKI_6 1 4072 0

NKI_7 1 3700 0

NKI_8 1 3213 0

NKI_9 1 3757 0
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Now we are ready to follow the workflow of section 4.3, i. e.:

1. filtrate the genes to keep only the required 50 genes by PAM50.

2. classify the sample/s using genefu implementation of PAM50 algorithm with the desired
gene normalization: none, scale, robust or median. For single samples use none but, we
recommend “median” for population approaches.

3. permutate the gene labels to build the null distribution and generate the uncertainty
estimation proposed in pbcmc.

and further explore the obtained results with summary, subjectReport and databaseReport.

4.3. Using PAM50 centroids as proof of concept

For example, we could use genefu’s PAM50 centroids to check if our implementation solves
the proof of concept, where we a prior know the true class of each subject:

R> M<-pam50$centroids

R> genes<-pam50$centroids.map

R> names(genes)<-c("probe", "NCBI.gene.symbol", "EntrezGene.ID")

R> object<-PAM50(exprs=M, annotation=genes)

R> object

A PAM50 molecular permutation classifier object

Dimensions:

nrow ncol

exprs 50 5

annotation 50 3

targets 0 0

Note that for the above output, the targets slot is empty, i. e., nrow=0 and ncol=0. In
addition, only the expression of the fifty genes and five IGP is available, with its corresponding
annotation over the three compulsory fields. It is always a good idea to explore the slots
content, to see whether they have been correctly loaded:

R> head(exprs(object)) ##The gene expression values for each subject

Basal Her2 LumA LumB Normal

ACTR3B 0.7183 -0.4817 0.009981 -0.1906 0.4657

ANLN 0.5374 0.2669 -0.579246 0.0988 -0.8369

BAG1 -0.5745 -0.4761 0.758221 -0.4055 0.3166

BCL2 -0.1188 -0.1579 0.287487 -0.4413 0.5340

BIRC5 0.3005 0.4057 -0.881434 0.6039 -0.8766

BLVRA -0.6427 0.3353 0.042042 0.6912 -0.1634
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R> head(annotation(object)) ##The compulsory annotation fields

probe NCBI.gene.symbol EntrezGene.ID

ACTR3B ACTR3B ACTR3B 57180

ANLN ANLN ANLN 54443

BAG1 BAG1 BAG1 573

BCL2 BCL2 BCL2 596

BIRC5 BIRC5 BIRC5 332

BLVRA BLVRA BLVRA 644

R> head(targets(object)) ##The clinical data, if available.

data frame with 0 columns and 0 rows

Just as we expected, the five centroids are loaded in exprs slot, with their corresponding
“probe”, “NCBI.gene.symbol” and “EntrezGene.ID” number in the annotation slot and no
available data for the targets. Now, the user is ready to work with the data following the
workflow suggested in section 3 (filtrate, classify and permutate):

R> object<-filtrate(object, verbose=TRUE)

R> object<-classify(object, std="none", verbose=TRUE)

R> object<-permutate(object, nPerm=10000, pCutoff=0.01, where="fdr",

+ corCutoff=0.1, keep=TRUE, seed=1234567890, verbose=TRUE,

+ BPPARAM=bpparam())

|

| | 0%

|

|=============== | 25%

|

|============================== | 50%

|

|============================================= | 75%

|

|============================================================| 100%

The intention of filtrate function is to keep only the genes that will take place in the
classification. In this example, it will not produce any change on the original exprs slot,
given the fact that only the required fifty genes are present. But, if a complete microarray
would have been present, then, probes that do not code for IGP will be removed. In addition,
probes that code for the same gene (repeated or with similar annotation) will be treated as
described in standardization (std) parameter.

Once genes are filtrated, the user can classify them using the original PAM50 algorithm.
However, here we propose to obtain subtype assignment confidence using at least β = 10.000
permutations over the SGP, using a type I error α = 0.01 on the adjusted p-values (“fdr”)
and a correlation difference threshold of corCutoff=0.1. As a matter of fact, this process is
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computationally intensive, so we can take advantage of all the available computes cores using
BioParallel package (BPPARAM=bpparam()) as we just did (Morgan et al.). In addition, the
user can track the permutation progress bar by including verbose=TRUE option. If we now
take a look at the object:

R> object

A PAM50 molecular permutation classifier object

Dimensions:

nrow ncol

exprs 50 5

annotation 50 3

targets 0 0

Classification:

nrow ncol

probability 5 5

correlation 5 5

$subtype

Basal Her2 LumA LumB Normal

1 1 1 1 1

Permutations test ran with following parameters:

Permutations=10000, fdr<0.01, corCutoff>0.1, keep=TRUE

Permutation:

correlation available: TRUE

nrow ncol

pvalues 5 5

fdr 5 5

subtype 5 5

we can see that it has been updated. First, the classification slot contains two datasets:
one with the subtype probability, P (IGPi), as described in section 1.2 and the correlation of
each subject with the five IGPs. The $subtype item shows a frequency table of the possible
IGPs with the used subjects. In addition, the used permutation parameters are shown with
the dimension of pvalues, fdr and subtypes. Note that in this case keep=TRUE option was used
so, the simulated correlation null distribution data points (ρH0IGPs

) are available.

In this example we have used genefu’s PAM50 centroids, thus, only one subject is present
(1) for each IGP cell in the object output. This result is also confirmed by the ones in the
diagonal of summary(object) matrix between the original Subtype and the Classes found
by the pbcmc package. Moreover, this toy example only shows assigned subjects (A) to the
original PAM50 subtypes, whereas not assigned (NA) marginal row/column contains only
zeros (0). If ambiguous (AMB) subjects would have been found, Classes column will have
included additional rows with the classes in dispute (e. g., “LumA, Normal” or “Her2, LumB”,
etc.).
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R> summary(object)

Subtype

Classes Basal Her2 LumA LumB Normal Not Assigned

Basal 1 0 0 0 0 0

Her2 0 1 0 0 0 0

LumA 0 0 1 0 0 0

LumB 0 0 0 1 0 0

Normal 0 0 0 0 1 0

Not Assigned 0 0 0 0 0 0

Finally, we can inspect the report of a single subject to see how the MS classification went
(Figure 3), in order to suggest an appropriate therapy for the physician:

R> subjectReport(object, subject=1)

The report of Figure 3 is a grid.arrange object which basically consists of three main parts:

tableGrob: A summary table which contains the following fields,

$Summary: Subject name and subtype obtained by PAM50.Subtype or the proposed
methodology (Permuted.Subtype).

$Fields: For the five PAM50 subtypes,

� Correlation: The correlation of the i − th PAM50 centroid with the observed
subject exprs, ρ(PGP, IGPi).

� p-value: Permutation p-value obtained using the simulation data, pIGP .

� FDR: Adjusted p-value using False Discovery Rate (Benjamini and Hochberg
1995).

facet wrap: Two rows to display ggplot2 (Wickham 2009) scatter plots of subject exprs
versus PAM50 centroids (Perou et al. 2000, 2010) and a linear regression fit (in blue).
If the subject has an unique subtype, then the graph is colored in red. In addition,
if simulated permutations were run with keep=TRUE option, then the null distribution
boxplots are plotted with the corresponding observed un-permuted correlations as big
round dots.

textGrob:The permutation parameter slot used in the simulation.

The pbcmc also includes the ability to get a pdf report for the complete database calling
databaseReport function. In this context, the first page is a global summary of the database,
i.e., a summary contingency table of the permuted test classes against the original PAM50
subtypes results. The following pages are the respective subjectReport outputs as the one
shown in Figure 3.
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Summary
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Figure 3: PAM50 permutation subject report for genefu’s“Basal” intrinsic gene profile (IGP).
The top table summarize the results for the i-th subject, i. e., the correlation, p-value and
false discovery rate (fdr) obtained for each IGP. In addition, scatter plots of the observed
subject gene profiles against the IGP with the linear regression line (in blue). Red color
indicates the assigned subtype. Finally, a boxplot for each IGP null permuted correlation
distribution and big dots to represent the un-permuted observed correlations.
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5. Conclusion

The pbcmc package characterizes uncertainty assessment on gene expression classifiers, a.
k. a. molecular signatures, based on a permutation test. In order to achieve this goal,
synthetic simulated subjects are obtained by permutations of gene labels. Then, each synthetic
subject is tested against the corresponding subtype classifier to build the null distribution.
Thus, classification confidence measurement report can be provided for each subject, to assist
physician therapy choice. At present, it is only available for PAM50 implementation in genefu
package but, it can easily be extend to other molecular signatures.
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Session Info

R> sessionInfo()

R version 3.5.0 (2018-04-23)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 16.04.4 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.7-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.7-bioc/R/lib/libRlapack.so

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] parallel stats graphics grDevices utils datasets

[7] methods base

other attached packages:

[1] breastCancerNKI_1.17.0 BiocParallel_1.14.0

[3] pbcmc_1.8.0 genefu_2.12.0

[5] AIMS_1.12.0 Biobase_2.40.0

[7] BiocGenerics_0.26.0 e1071_1.6-8
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[9] iC10_1.1.3 iC10TrainingData_1.0.1

[11] pamr_1.55 cluster_2.0.7-1

[13] biomaRt_2.36.0 limma_3.36.0

[15] mclust_5.4 survcomp_1.30.0

[17] prodlim_2018.04.18 survival_2.42-3

[19] ggplot2_2.2.1

loaded via a namespace (and not attached):

[1] progress_1.1.2 reshape2_1.4.3 splines_3.5.0

[4] lattice_0.20-35 amap_0.8-14 colorspace_1.3-2

[7] stats4_3.5.0 blob_1.1.1 XML_3.98-1.11

[10] rlang_0.2.0 pillar_1.2.2 DBI_0.8

[13] bit64_0.9-7 plyr_1.8.4 lava_1.6.1

[16] stringr_1.3.0 munsell_0.4.3 survivalROC_1.0.3

[19] gtable_0.2.0 memoise_1.1.0 labeling_0.3

[22] IRanges_2.14.0 class_7.3-14 AnnotationDbi_1.42.0

[25] Rcpp_0.12.16 KernSmooth_2.23-15 scales_0.5.0

[28] rmeta_3.0 S4Vectors_0.18.0 bootstrap_2017.2

[31] bit_1.1-12 gridExtra_2.3 digest_0.6.15

[34] stringi_1.1.7 SuppDists_1.1-9.4 cowplot_0.9.2

[37] grid_3.5.0 tools_3.5.0 bitops_1.0-6

[40] magrittr_1.5 lazyeval_0.2.1 RCurl_1.95-4.10

[43] tibble_1.4.2 RSQLite_2.1.0 Matrix_1.2-14

[46] prettyunits_1.0.2 assertthat_0.2.0 httr_1.3.1

[49] R6_2.2.2 compiler_3.5.0
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