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1 Introduction

Discordant is an R package that identifies pairs of features that correlate
differently between phenotypic groups, with application to -omics datasets.
Discordant uses a mixture model that “bins” molecular feature pairs based
on their type of coexpression. More information on the algorithm can be
found in [1;2]. The final output are posterior probabilities of differential
correlation. This package can be used to determine differential correlation
within one —omics dataset or between two —omics datasets (provided that
both —omics datasets were taken from the same samples). Also, the type
of data can be any type of —omics with normal or non-normal distributions.
Some examples are metabolomics, transcriptomic, proteomics, etc.

The functions in the Discordant package provide a simple pipeline for
intermediate R users to determine differentially correlated pairs. The final
output is a table of molecular feature pairs and their respective posterior
probabilities. Functions have been written to allow flexibility for users in
how they interpret results, which will be discussed further. Currently, the
package only supports the comparison between two phenotypic groups (e.g.,
disease vs control, mutant vs wildtype).

The Discordant package is available at bioconductor.org and can be down-
loaded via bioLite:

source("https://bioconductor.org/biocLite.R")
biocLite("Discordant")

To use Discordant, import into R:

library(discordant)

2 Discordant Algorithm

Discordant is originally derived from the Concordant algorithm written by
[3,4]. It was used to determine concordance between microarrays. We have
applied it to determine differential correlation of features between groups
[1,2].

Using a three component mixture model and the EM algorithm, the
model predicts if the correlation coefficients in phenotypic groups 1 and 2
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Table 1: Class Matrix for Three Component Mixture Model

for a molecular feature pair are dissimilar |I]. The correlation coefficients
are generated for all possible molecular feature pairs witin an -omics dataset
or between two -omics datasets. The correlation coefficients are transformed
into z scores using Fisher’s tranformation. The three components are -, +
and 0 which correspond respectively to a negative, positive or no correlation.
Molecular features that have correlation coefficients in different components
are considered differentially correlated, as opposed to when correlation coef-
ficients are in the same component then they are equivalently correlated.

The class matrix (Table 1) contains the classes that represent all possible
paired-correlation scenarios. These scenarios are based off the components in
the mixture models. Molecular features that have correlation coefficients in
different components are considered differentially correlated, as opposed to
when correlation coefficients are in the same component they are equivalently
correlated. This can be visualized in the class matrix, where the rows repre-
sent the components for group 1 and the columns represent the components
for group 2. The classes on the diagonal represent equivalent correlation (1,
5 and 9), and classes in the off-diagonal represent differential correlation (2,
3,4, 6,8).

After running the EM algorithm, we have 9 posterior probabilities for each
molecular feature pair that correspond to the 9 classes in the class matrix.
Since we want to summarize the probability that the molecular feature pair
is differentially correlated, we sum the posterior probabilities representing
the off-diagonal classes in the class matrix.

3 Example Data

All datasets are originally from the Cancer Genome Atlas (TCGA) and can
be found at http://cancergenome.nih.gov/.


http://cancergenome.nih.gov/

TCGA_GBM_ miRNA microarray Data is miRNA expression values from 10 con-
trol and 20 tumor samples for a Glioblastoma multiforme (GBM) Agi-
lent miRNA micorarray. The feature size was originally 470, but after
features with outliers were filtered out feature size reduces to 331. In
this sample dataset, random 10 features are present.

TCGA_GBM_transcript microarray Data is transcript (or mRNA) expres-
sion values from 10 control and 20 tumor samples in a GBM Agilent
244k micorarray. The feature size was originally 90797, but after fea-
tures with outliers were filtered out, feature size reduces to 72656. In
this sample dataset, 20 random features are present.

TCGA Breast miRNASeq Data is miRNA counts from 15 control and 45 tu-
mor samples in a Breast Cancer Illumina HiSeq miRNASeq. The fea-
ture size was originally 212, but after features with outliers were filtered
out feature size reduces to 200. In this sample dataset, 100 random fea-
tures are present.

TCGA Breast _RNASeq Data is transcript (or mRNA) counts from 15 control
and 45 tumor samples in a Breast Cancer Illumina HiSeq RNASeq.
The feature size was originally 19414, but after features with outliers
were filtered out feature size reduces to 16656. In this sample dataset,
100 random features are present.

TCGA Breast miRNASeq voom This dataset is the voom-transformed TCGA Breast miRNASeq.

TCGA_Breast _RNASeq_voom This dataset is the voom-transformed TCGA_Breast _RNASeq.

4 Before Starting

4.1 Required Inputs

”Within” —omics refers to when the Discordant analysis is performed within
one —omics dataset where all molecular features within a -omics dataset are
paired to each other (e.g. transcript-transcript pairs in a microarray tran-
scriptomics experiment).

"Between” -omics refers to analysis of two -omics datasets. Molecular
feature pairs analyzed are between the two -omics, (e.g. transcript-protein,
protein-metabolite) are paired.



x m by n matrix where m are features and n are samples. If only this matrix

y m by n matrix where m are features and n are samples. This is an optional
argument which will induce between -omics analysis. Samples must be
matched with those in x. =======

y m by n matrix where m are features and n are samples. This is an optional
argument which will induce between -omics analysis. Samples must be

group vector containing 1s and 2s that correspond to the location of samples
in the columns of x (and y if provided). For example, the control group
is group 1 and the experimental group 2, and the location of samples
corresponding to the two groups matches the locations of 1s and 2s in
the group vector

4.2 Outliers

In our work, we found that features with outliers would skew correlation and
cause false positives. Our approach was to filter out features that had large
outliers. With normal data, such as in microarrays, Grubbs’ test can be used.
The null hypothesis is that there are no outliers in the data, and so features
with p-value > 0.05 are kept. A simple R function is found in the outliers R
package as grubbs.test.

Determining outliers in non-normal data is more complicated. We used
the median absolute deviation (MAD). Normally, features are filtered if they
are outside 2 or 3 MADs from the median [5]. This is not completely ap-
plicable to sequencing data, because sequencing data has large variance and
a non-symmetrical distribution. We used ’split MAD’, which has been used
before [6]. A left MAD is determined based on data left to the median and a
right MAD is determined based on data to the right of the median. If there
are any feature outside a factor of the left or right MAD from the median,
there are featured out.

A function in Discordant is provided called split.madOutlier. The
number of MAD outside of the median can be changed with option threshold.
Another option is filterO which if TRUE will filter out any feature with
at least one 0. Arguments returned are mat.filtered, which is the fil-



tered matrix and index which is the index of features that are retained in
mat.filtered.

data(TCGA_Breast_miRNASeq)
mat.filtered <- splitMADOutlier(TCGA_Breast_miRNASeq,filterO = TRUE, threshold = ¢

5 Create Correlation Vectors

To run the Discordant algorithm, correlation vectors respective to each group
are necessary for input, which are easy to create using the createVectors.
Each correlation coefficient represents the correlation between two molecular
features. The type of molecular feature pairs depends if a within -omics or be-
tween -omics analysis is performed. Correlation between molecular features
in the same -omics dataset is within -omics, and correlation between molecu-
lar features in two different -omics datasets is between -omics. Whether or not
within -omics or between -omics analysis is performed depends on whether
one or two matrices are parameters for this function. createVectors has
two outputs:

viCorrelation vector of molecular feature pairs corresponding to samples
labeled 1 in group parameter.

v2Correlation vector of molecular feature pairs corresponding to samples
labeled 2 in group parameter.

data(TCGA_GBM_miRNA_microarray)
data(TCGA_GBM_transcript_microarray)
groups <- c(rep(1,10), rep(2,10))

wthn_vectors <- createVectors(TCGA_GBM_transcript_microarray, groups = groups)

## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 20 features, 30 samples

#i# element names: exprs

## protocolData: none



## phenoData

##  sampleNames: 1 2 ... 30 (30 total)

##  varLabels: type

##  varMetadata: labelDescription

## featureData: none

## experimentData: use 'experimentData(object)'
## Annotation:

#Between -Umics
btwn_vectors <- createVectors(TCGA_GBM_miRNA_microarray, TCGA_GBM_transcript_micre

## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 10 features, 30 samples

##  element names: exprs

## protocolData: none

## phenoData

##  sampleNames: 1 2 ... 30 (30 total)

##  varLabels: type

##  varMetadata: labelDescription

## featureData: none

## experimentData: use 'experimentData(object)'
## Annotation:

5.1 Correlation Metric

We also have included different options for correlation metrics. This argu-
ment is called cor.method and its default value is ”spearman.” Other op-
tions are "pearson,” "bwmec” and "sparcc”. For information and comparison
of Spearman, Pearson and biweight midcorrelation (bwmc) please read this
paper by Song et al . We have also investigated correlation metrics in
Discordant in relation to sequencing data, and found Spearman’s correlation
had the best performance [2].

The algorithm for SparCC was introduced by Friedman et al [8]. We use
R code written by Huaying Fang [9] .


http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-13-328

6 Run the Discordant Algorithm

The Discordant Algorithm is implemented in the the function discordantRun
which requires two correlation vectors and the original data. If the user
wishes to generate their own correlation vector before inputting into the
dataset, they can do so. However, the function will return an error message
if the dimensions of the datasets inserted do not match the correlation vector.

The posterior probability output of the Discordant algorithm are the
differential correlation posterior probabilities (the sum of the off-diagonal
of the class matrix described in Table 1). If the user wishes to observe more
detailed information, alternative outputs are available. discordantRun has
five outputs:

discordPPMatrixMatrix of differential correlation posterior probabilities
where rows and columns reflect features. If only x was inputted, then
the number of rows and columns are number of features in x. The rows
and column names are the feature names, and the upper diagonal of the
matrix are NAs to avoid repeating results. If x and y are inputted, the
number of rows is the feature size of x and the number of columns the
feature size of y. The row names are features from x and the column
names are features from y.

discordPPVectorVector of differential correlation posterior probabilities.
The length is the number of feature pairs. The names of the vector are
the feature pairs.

classMatrixMatrix of classes with the highest posterior probability. Row
and column names are the same as in discordPPMatrix depending if
only x is inputted or both x and y.

classVectorVector of class with the highest posterior probability for each
pair. The length is the number of feature pairs. Names of vector
correspond to the feature pairs, similar to discordPPVector.

probMatrixMatrix of all posterior probabilities, where the number of rows is
the number of feature pairs and the columns represent the class within
the class matrix. The number of columns can be 9 or 25, depending on
how many mixture components are chosen (discussed later). The values
across each row add up to 1. Posterior probabilities in discord PPMatrix



and discordPPVector are the summation of columns that correspond
to differential correlation classes (Table 1).

loglikThe log likelihood.

data(TCGA_GBM_miRNA_microarray)
data(TCGA_GBM_transcript_microarray)
groups <- c(rep(1,10), rep(2,10))

#Within —-omics
wthn_vectors <- createVectors(TCGA_GBM_transcript_microarray, groups = groups)

## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 20 features, 30 samples

##  element names: exprs

## protocolData: none

## phenoData

##  sampleNames: 1 2 ... 30 (30 total)

##  varLabels: type

##  varMetadata: labelDescription

## featureData: none

## experimentData: use 'experimentData(object)'
## Annotation:

wthn_result <- discordantRun(wthn_vectors$vl, wthn_vectors$v2, TCGA_GBM_transcripi
wthn_result$discordPPMatrix[1:4,1:4]

#Hi# A_23_P138644 A_23_P24296 A_24_P345312 A_24_P571870
## A_23_P138644 NA NA NA NA
## A_23_P24296 0.33050233 NA NA NA
## A_24_P345312  0.24910061  0.4785858 NA NA
## A_24_P571870 0.07052135 0.2331030 0.07028103 NA

head (wthn_result$discordPPVector)

## A_23_P24296_A_23_P138644 A_24_P345312_A_23_P138644
#i# 0.33050233 0.24910061
## A_24_P345312_A_23_P24296 A_24_P571870_A_23_P138644



## 0.07052135 0.44839316
## A_24_P571870_A_23_P24296 A_24_P571870_A_24_P345312
#Hit 0.56846815 0.91395405

wthn_result$classMatrix([1:4,1:4]

#i#t A_23_P138644 A_23_P24296 A_24_P345312 A_24_P571870

## A_23_P138644 NA NA NA NA
## A_23_P24296 1 NA NA NA
## A_24_P345312 1 3 NA NA
## A_24_P571870 1 1 1 NA
head (wthn_result$classVector)

## A_23_P24296_A_23_P138644 A_24_P345312_A_23_P138644

## 1 1

## A_24_P345312_A_23_P24296 A_24_P571870_A_23_P138644

## 1 1

## A_24_P571870_A_23_P24296 A_24_P571870_A_24_P345312

## 4 2

head (wthn_result$probMatrix)

## [,1] [,2] [,3]
## A_23_P24296_A_23_P138644 0.63574038 5.223996e-07 0.289699897
## A_24_P345312_A_23_P138644 0.74859348 2.151027e-02 0.012949903
## A_24_P345312_A_23_P24296 0.92584634 4.666010e-03 0.022843630
## A_24 _P571870_A_23_P138644 0.55002415 1.359646e-03 0.016168496
## A_24 _P571870_A_23_P24296 0.43013074 5.668452e-04 0.014985341
## A_24 _P571870_A_24_P345312 0.05392322 8.877314e-01 0.001065886
## [,4] [,5] [,6]
## A_23_P24296_A_23_P138644 0.012933667 2.138702e-09 7.373993e-03
## A_24 P345312_A_23_P138644 0.191914963 1.124351e-03 4.157006e-03
## A_24 _P345312_A_23_P24296 0.002604808 2.636222e-06 8.202421e-05
## A_24 _P571870_A_23_P138644 0.403516095 2.017512e-04 1.475385e-02
## A_24_P571870_A_23_P24296 0.520753494 1.377220e-04 2.242601e-02
## A_24_P571870_A_24_P345312 0.009616400 3.201954e-02 2.388724e-04
## [,7] [,8] [,9]

10



## A_23_P24296_A_23_P138644 0.020494245 1.062232e-08 0.0337572874
## A_24 P345312_A_23_P138644 0.018241365 3.271036e-04 0.0011815518
## A_24_P345312_A_23_P24296 0.040196915 1.279636e-04 0.0036296721
## A_24_P571870_A_23_P138644 0.012575630 1.944655e-05 0.0013809348
## A_24_P571870_A_23_P24296 0.009728460 7.995730e-06 0.0012633896
## A_24_P571870_A_24_P345312 0.001383697 1.391785e-02 0.0001031894

wthn_result$loglik
## [1] 1129.558

# Between -omics
btwn_vectors <- createVectors(TCGA_GBM_miRNA_microarray, TCGA_GBM_transcript_micr

## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 10 features, 30 samples

#it element names: exprs

## protocolData: none

## phenoData

##  sampleNames: 1 2 ... 30 (30 total)

##  varLabels: type

##  varMetadata: labelDescription

## featureData: none

## experimentData: use 'experimentData(object)'
## Annotation:

btwn_result <- discordantRun(btwn_vectors$vl, btwn_vectors$v2, TCGA_GBM_miRNA_mica
btwn_result$discordPPMatrix[1:3,1:3]

#it A_23_P138644 A_23_P24296 A_24_P345312
## hsa-miR-19b-5p 0.9734173 0.19568366 0.7042548
## hsa-miR-206-5p 0.8422418 0.03809339 0.9198956
## hsa-miR-369-bp 0.9509883 0.05088263 0.9919486

head (btwn_result$discordPPVector)

## hsa-miR-19b-5p_A_23_P138644 hsa-miR-19b-5p_A_23_P24296
## 0.9734173 0.8422418
## hsa-miR-19b-b5p_A_24_P345312 hsa-miR-19b-5p_A_24_P571870
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## 0.9509883 0.8983236
## hsa-miR-19b-5p_A_32_P71885 hsa-miR-19b-bp_A_32_P82889
## 0.9154871 0.6706972

btwn_result$classMatrix[1:3,1:3]

#i#
#i#t
#i#t
#Hit

A_23_P138644 A_23_P24296 A_24_P345312

hsa-miR-19b-5p 7
hsa-miR-206-5p 2
hsa-miR-369-5p 4

btwn_result$classMatrix[1:3,1:3]

#Hi#
#i#t
#i#t
#it

4
3
2

A_23_P138644 A_23_P24296 A_24_P345312

hsa-miR-19b-5p 7
hsa-miR-206-5p 2
hsa-miR-369-5p 4

head (btwn_result$classVector)

4
3
2

## hsa-miR-19b-bp_A_23_P138644 hsa-miR-19b-5p_A_23_P24296

#i#
#i#t
#it
#Hit
#i#

7
hsa-miR-19b-5p_A_24_P345312
4
hsa-miR-19b-5p_A_32_P71885
4

head (btwn_result$probMatrix)

#i#
#Hit
#it
#Hi#t
#i#
#i#t
#Hit
#it
#i#
#i#

hsa-miR-19b-5p_A_23_P138644
hsa-miR-19b-5p_A_23_P24296
hsa-miR-19b-5p_A_24_P345312
hsa-miR-19b-5p_A_24_P571870
hsa-miR-19b-5p_A_32_P71885
hsa-miR-19b-5p_A_32_P82889

hsa-miR-19b-5p_A_23_P138644
hsa-miR-19b-5p_A_23_P24296

2

hsa-miR-19b-5p_A_24_P571870

7

hsa-miR-19b-5p_A_32_P82889

[,1]
.02658234
.15751419
.04882046
.10167565
.08447751
.23339937

O O O O O O

1
8
2
4
3
1

[,4]

= e

12

.290954e-11
.332704e-04

[,2]
.694872e-02
.336120e-01
.805882e-05
.263109e-02
.448840e-06

NN RN N

[,5]
2.823741e-12
2.440298e-04

4

[,3]

.447775e-09
.285833e-10
.142772e-03
.074742e-08
.753637e-02
.126295e-01 1.

195668e-07
[,6]

2.248646e-19

1.217589e-14



## hsa-miR-19b-5p_A_24_P345312 9.482936e-01 1.904031e-04 1.500107e-03
## hsa-miR-19b-5p_A_24_P571870 7.666472e-10 1.108586e-10 3.348233e-17
## hsa-miR-19b-5p_A_32_P71885 8.680541e-01 1.234395e-05 1.984402e-02
## hsa-miR-19b-5p_A_32_P82889 5.578289e-01 9.590338e-02 1.806280e-08
##t [,7] [,8] [,9]
## hsa-miR-19b-5p_A_23_P138644 8.438991e-01 1.125695e-01 3.335814e-07
## hsa-miR-19b-5p_A_23_P24296 4.123347e-03 4.373117e-03 8.738778e-12
## hsa-miR-19b-5p_A_24_P345312 2.376332e-05 2.678323e-09 8.071407e-07
## hsa-miR-19b-5p_A_24_P571870 7.873809e-01 6.831155e-02 7.765181e-07
## hsa-miR-19b-5p_A_32_P71885 4.915857e-05 3.952519e-10 2.305505e-05
## hsa-miR-19b-5p_A_32_P82889 2.181203e-04 2.065799e-05 1.659874e-10

btwn_result$loglik

## [1] 1169.986

6.1 Subsampling

Subsampling is an option to run the EM algorithm with a random sample
of independent feature pairs. This is repeated for a number of samplings,
and then the average of these parameters are used to maximize posterior
probabilities for all feature pairs. This option was introduced to speed up
Discordant method and to also address the independence assumption. There
are some implementation issues which are explained in Siska et al, submitted
9.

The argument subsampling must be set to TRUE for subsampling to be
used. The number of independent feature pairs to be subsampled is deter-
mined by the argument subSize whose default value is the number of rows
in x. The number of independent feature pairs must be less or equal to the
number of features in x and y. The number of random samplings to be run
is set by the argument iter, whose default value is 100.

For the subsampling example, we will use the sequencing data. The se-
quencing data has a greater feature size than the microarray data. A dataset
with small feature size will cause a segmentation fault with subsampling be-
cause not enough feature pairs are being used to estimate parameters in the
mixture model.

13



o - - + ++
1 2 3 4 5
- 6 7 8 9 10
- |11 12 13 14 15
+ |16 17 18 19 20
++ |21 22 23 24 25

Table 2: Class Matrix for Five Component Mixture Model

6.2 Increase Component Size

We also provide the option to increase component size from three to five in the
mixture model. The number of classes in the class matrix increases, as seen
in Table 2. Incorporating the extra components means that it is possible to
identify elevated differential correlation, which is when there are associations
in both groups in the same direction but one is more extreme. Using this
options introduces more parameters, which does have an effect on run-time.
We also found that using the five mixture component mixture model reduces
performance compared to the three component mixture model . However,
the option is available if users wish to explore more types of differential
correlation.

The default is to run the three component mixture model and can be
changed with option components.

7 Example Run with Microarrays

data(TCGA_GBM_miRNA_microarray)
data(TCGA_GBM_transcript_microarray)
groups <- c(rep(1,10), rep(2,10))

wthn_vectors <- createVectors(TCGA_GBM_transcript_microarray, groups = groups)

## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 20 features, 30 samples

14



#Hit
#it
#i#
#i#
#i#
#i#t
#it
#i#t
#i#

element names: exprs
protocolData: none
phenoData
sampleNames: 1 2 ... 30 (30 total)
varLabels: type
varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
Annotation:

wthn_result <- discordantRun(wthn_vectors$vl, wthn_vectors$v2, TCGA_GBM_transcripi

#Between -0Omics

btwn_vectors <- createVectors(TCGA_GBM_miRNA_microarray, TCGA_GBM_transcript_micre

#i#t
#i#t
#Hit
#it
#i#
#Hi#
#i#t
#i#
#Hit
#it
#i#

ExpressionSet (storageMode: lockedEnvironment)
assayData: 10 features, 30 samples

element names: exprs
protocolData: none
phenoData
sampleNames: 1 2 ... 30 (30 total)
varLabels: type
varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
Annotation:

btwn_result <- discordantRun(btwn_vectors$vl, btwn_vectors$v2, TCGA_GBM_miRNA_mica
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