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as.data.frame,varPartResults-method

as.data.frame,varPartResults-method
Convert to data.frame

Description

Convert varPartResults to data.frame

Usage

[

## S4 method for signature 'varPartResults
as.data.frame(x, row.names = NULL,
optional = FALSE, ...)

Arguments
X varPartResults
row.names pass thru to generic
optional pass thru to generic

other arguments.
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Value

data.frame

Examples

# load library
# library(variancePartition)

# load simulated data:

# geneExpr: matrix of gene expression values
# info: information/metadata about each sample
data(varPartData)

# Specify variables to consider

# Age is continuous so we model it as a fixed effect

# Individual and Tissue are both categorical, so we model them as random effects
form <- ~ Age + (1|Individual) + (1|Tissue)

# Fit model
varPart <- fitExtractVarPartModel( geneExpr[1:5,], form, info )

# convert to matrix
as.data.frame(varPart)

as.matrix,varPartResults-method
Convert to matrix

Description

Convert varPartResults to matrix

Usage
## S4 method for signature 'varPartResults'
as.matrix(x, ...)

Arguments
X varPartResults

other arguments.

Value

matrix
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Examples

# load library
# library(variancePartition)

# load simulated data:

# geneExpr: matrix of gene expression values
# info: information/metadata about each sample
data(varPartData)

# Specify variables to consider

# Age is continuous so we model it as a fixed effect

# Individual and Tissue are both categorical, so we model them as random effects
form <- ~ Age + (1|Individual) + (1|Tissue)

# Fit model
varPart <- fitExtractVarPartModel( geneExpr[1:5,], form, info )

# convert to matrix
as.matrix(varPart)

calcVarPart Compute variance statistics

Description

Compute fraction of variation attributable to each variable in regression model. Also interpretable
as the intra-class correlation after correcting for all other variables in the model.

Usage
calcVarPart(fit, adjust = NULL, adjustAll = FALSE,
showWarnings = TRUE, ...)
## S4 method for signature 'lm'
calcVarPart(fit, adjust = NULL, adjustAll = FALSE,

showWarnings = TRUE, ...)

## S4 method for signature 'lmerMod'
calcVarPart(fit, adjust = NULL, adjustAll = FALSE,

showWarnings = TRUE, ...)
Arguments
fit model fit from Im() or Imer()
adjust remove variation from specified variables from the denominator. This computes
the adjusted ICC with respect to the specified variables
adjustAll adjust for all variables. This computes the adjusted ICC with respect to all vari-
ables

showWarnings show warnings about model fit (default TRUE)

additional arguments (not currently used)
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Value

fraction of variance explained / ICC for each variable in the model

Examples

library(1lme4)
data(varPartData)

# Linear mixed model
fit <- 1lmer( geneExpr[1,] ~ (1|Tissue) + Age, info)
calcVarPart( fit )

# Linear model

# Note that the two models produce slightly different results
# This is expected: they are different statistical estimates
# of the same underlying value

fit <- 1m( geneExpr[1,] ~ Tissue + Age, info)

calcvarPart( fit )

canCorPairs canCorPairs

Description

Assess correlation between all pairs of variables in a formula

Usage

canCorPairs(formula, data, showWarnings = TRUE)

Arguments
formula standard linear model formula (doesn’t support random effects currently, so just
change the syntax)
data data.frame with the data for the variables in the formula

showWarnings default to true

Details

Canonical Correlation Analysis (CCA) is similar to correlation between two vectors, except that
CCA can accommodate matricies as well. For a pair of variables, canCorPairs assesses the degree to
which they co-vary and contain the same information. Variables in the formula can be a continuous
variable or a discrete variable expanded to a matrix (which is done in the backend of a regression
model). For a pair of variables, canCorPairs uses CCA to compute the correlation between these
variables and returns the pairwise correlation matrix.

Statistically, let tho be the array of correlation values returned by the standard R function cancor to
compute CCA. canCorPairs returns rho / sum(rho) which is the fraction of the maximum possible
correlation.

Note that CCA returns correlations values between 0 and 1



6 colinearityScore

Value

Matrix of correlation values between all pairs of variables.

Examples

# load library
# library(variancePartition)

# load simulated data:
data(varPartData)

# specify formula
form <- ~ Individual + Tissue + Batch + Age + Height

# Compute Canonical Correlation Analysis (CCA)
# between all pairs of variables

# returns absolute correlation value

C = canCorPairs( form, info)

# Plot correlation matrix
plotCorrMatrix( C )

colinearityScore Collinearity score

Description

Collinearity score for a regression model indicating if variables are too highly correlated to give
meaningful results

Usage

colinearityScore(fit)

Arguments

fit regression model fit from Im() or Imer()

Value

Returns the collinearity score between 0 and 1, where a score > 0.999 means the degree of collinear-
ity is too high. This function reports the correlation matrix between coefficient estimates for fixed
effects. The collinearity score is the maximum absolute correlation value of this matrix. Note
that the values are the correlation between the parameter estimates, and not between the variables
themselves.
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Examples

# load library
# library(variancePartition)

# load simulated data:
data(varPartData)
form <- ~ Age + (1]|Individual) + (1]|Tissue)

res <- fitVarPartModel( geneExpr[1:10,], form, info )

evaluate the collinearity score on the first model fit

this reports the correlation matrix between coefficients estimates
for fixed effects

the collinearity score is the maximum absolute correlation value
If the collinearity score > .999 then the variance partition
estimates may be problematic

In that case, a least one variable should be omitted
colinearityScore(res[[1]])

% B o H R

dream Differential expression with linear mixed model

Description

Fit linear mixed model for differential expression and preform hypothesis test on fixed effects as
specified in the contrast matrix L

Usage

dream(exprObj, formula, data, L, ddf = c("Satterthwaite”,
"Kenward-Roger"), REML = TRUE, useWeights = TRUE,
weightsMatrix = NULL, control = lme4::1lmerControl(calc.derivs =

FALSE, check.rankX = "stop.deficient”), ...)
Arguments
exprobj matrix of expression data (g genes x n samples), or ExpressionSet, or EList

returned by voom() from the limma package

formula specifies variables for the linear (mixed) model. Must only specify covariates,
since the rows of exprObj are automatically used a a response. e.g.: ~a+b
+ (1lc) Formulas with only fixed effects also work, and ImFit() followed by
contrasts.fit() are run.

data data.frame with columns corresponding to formula
L contrast matrix specifying a linear combination of fixed effects to test
ddf Specifiy "Satterthwaite" or "Kenward-Roger" method to estimate effective degress

of freedom for hypothesis testing in the linear mixed model. Note that Kenward-
Roger is more accurate, but is *much* slower. Satterthwaite is a good enough
exproximation for most datasets.
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REML use restricted maximum likelihood to fit linear mixed model. default is TRUE.
Strongly discourage against changing this option

useWeights if TRUE, analysis uses heteroskedastic error estimates from voom(). Value is
ignored unless exprObj is an EList() from voom() or weightsMatrix is specified

weightsMatrix matrix the same dimension as exprObj with observation-level weights from
voom(). Used only if useWeights is TRUE

control control settings for Imer()

Additional arguments for Imer() or Im()

Details

A linear (mixed) model is fit for each gene in exprObj, using formula to specify variables in the
regression. If categorical variables are modeled as random effects (as is recommended), then a
linear mixed model us used. For example if formula is ~ a + b + (1lc), then to model is

fit <- Imer( exprObj[j,] ~ a + b + (1Ic), data=data)
useWeights=TRUE causes weightsMatrix[j,] to be included as weights in the regression model.

Note: Fitting the model for 20,000 genes can be computationally intensive. To accelerate computa-
tion, models can be fit in parallel using foreach/dopar to run loops in parallel. Parallel processing
must be enabled before calling this function. See below.

The regression model is fit for each gene separately. Samples with missing values in either gene
expression or metadata are omitted by the underlying call to Imer.

Hypothesis tests and degrees of freedom are producted by ImerTest and pbkrtest pacakges

Value

MArrayLM?2 object (just like MArrayLM from limma), and the directly estimated p-value (without
eBayes)

Examples

# load library
# library(variancePartition)

# optional step to run analysis in parallel on multicore machines
# Here, we used 4 threads

library(doParallel)

cl <- makeCluster(4)

registerDoParallel(cl)

# or by using the doSNOW package

# load simulated data:

# geneExpr: matrix of gene expression values
# info: information/metadata about each sample
data(varPartData)

# get contrast matrix testing if the coefficient for Batch2 is zero
# The variable of interest must be a fixed effect

form <- ~ Batch + (1|Individual) + (1|Tissue)

L = getContrast( geneExpr, form, info, "Batch3")

# Fit linear mixed model for each gene



eBayes,MArrayLM2-method

# run on just 10 genes for time
fit = dream( geneExpr[1:10,], form, info, L)

# Run empirical Bayes post processing from limma
fitEB = eBayes( fit )

# view top genes
topTable( fitEB )

# stop cluster
stopCluster(cl)

eBayes,MArrayLM2-method
eBayes for MArrayLM?2

Description

eBayes for MArrayLM?2

Usage

## S4 method for signature 'MArrayLM2'

eBayes(fit, proportion = 0.01,
stdev.coef.lim = c(0.1, 4), trend = FALSE, robust = FALSE,
winsor.tail.p = c(0.05, 0.1))

Arguments
fit fit
proportion proportion

stdev.coef.lim stdev.coef.lim
trend trend
robust robust

winsor.tail.p winsor.tail.p

Value

resold of eBayes
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ESS Effective sample size

Description

Compute effective sample size based on correlation structure in linear mixed model

Usage
ESS(fit, method = "full")

## S4 method for signature 'lmerMod'
ESS(fit, method = "full")

Arguments
fit model fit from Ilmer()
method "full" uses the full correlation structure of the model. The "approximate" method
makes the simplifying assumption that the study has a mean of m samples in
each of k groups, and computes m based on the study design. When the study
design is evenly balanced (i.e. the assumption is met), this gives the same results
as the "full" method.
Details

Effective sample size calculations are based on: Liu, G., and Liang, K. Y. (1997). Sample size
calculations for studies with correlated observations. Biometrics, 53(3), 937-47.

"full" method: if V_x = var(Y;x) is the variance-covariance matrix of Y, the response, based on the
covariate x, then the effective sample size corresponding to this covariate is \Sigma_{i,j} (V_x"{-
1})_{i,j}. In R notation, this is: sum(solve(V_x)). In practice, this can be evaluted as sum(w),
where R

"approximate" method: Letting m be the mean number of samples per group, k be the number of
groups, and rho be the intraclass correlation, the effective sample size is m*k / (1+rho*(m-1))

Note that these values are equal when there are exactly m samples in each group. If m is only an
average then this an approximation.
Value

effective sample size for each random effect in the model

Examples

library(1me4)
data(varPartData)

# Linear mixed model
fit <- 1lmer( geneExpr[1,] ~ (1]Individual) + (1|Tissue) + Age, info)

# Effective sample size
ESS( fit )
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extractVarPart Extract variance statistics

Description

Extract variance statistics from list of models fit with Im() or Imer()

Usage
extractVarPart(modellList, adjust = NULL, adjustAll = FALSE,
showWarnings = TRUE, ...)
Arguments
modellList list of Imer() model fits
adjust remove variation from specified variables from the denominator. This computes
the adjusted ICC with respect to the specified variables
adjustAll adjust for all variables. This computes the adjusted ICC with respect to all vari-
ables. This overrides the previous argument, so all variables are include in ad-
just.

showWarnings show warnings about model fit (default TRUE)

other arguments

Value

data.frame of fraction of variance explained by each variable, after correcting for all others.

Examples

# library(variancePartition)

# optional step to run analysis in parallel on multicore machines
# Here, we used 4 threads

library(doParallel)

cl <- makeCluster(4)

registerDoParallel(cl)

# or by using the doSNOW package

# load simulated data:

# geneExpr: matrix of gene expression values
# info: information/metadata about each sample
data(varPartData)

# Specify variables to consider

# Age is continuous so we model it as a fixed effect

# Individual and Tissue are both categorical, so we model them as random effects
form <- ~ Age + (1]|Individual) + (1]|Tissue)

# Step 1: fit linear mixed model on gene expresson

# If categoritical variables are specified, a linear mixed model is used
# If all variables are modeled as continuous, a linear model is used

# each entry in results is a regression model fit on a single gene
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# Step 2: extract variance fractions from each model fit

# for each gene, returns fraction of variation attributable to each variable
# Interpretation: the variance explained by each variable

# after correction for all other variables

varPart <- fitExtractVarPartModel( geneExpr, form, info )

# violin plot of contribution of each variable to total variance
plotVarPart( sortCols( varPart ) )

# Advanced:

# Fit model and extract variance in two separate steps

# Step 1: fit model for each gene, store model fit for each gene in a list
results <- fitVarPartModel( geneExpr, form, info )

# Step 2: extract variance fractions
varPart <- extractVarPart( results )

# stop cluster
stopCluster(cl)

fitExtractVarPartModel
Fit linear (mixed) model, report variance fractions

Description

Fit linear (mixed) model to estimate contribution of multiple sources of variation while simultane-
ously correcting for all other variables. Report fraction of variance attributable to each variable

Usage

fitExtractVarPartModel (exprObj, formula, data, REML = FALSE,
useWeights = TRUE, weightsMatrix = NULL, adjust = NULL,
adjustAll = FALSE, showWarnings = TRUE,
control = 1lme4::1lmerControl(calc.derivs = FALSE, check.rankX
"stop.deficient”), ...)

## S4 method for signature 'matrix’

fitExtractVarPartModel (exprObj, formula, data,
REML = FALSE, useWeights = TRUE, weightsMatrix = NULL,
adjust = NULL, adjustAll = FALSE, showWarnings = TRUE,
control = lme4::1lmerControl(calc.derivs = FALSE, check.rankX
"stop.deficient”), ...)

## S4 method for signature 'data.frame'

fitExtractVarPartModel (exprObj, formula, data,
REML = FALSE, useWeights = TRUE, weightsMatrix = NULL,
adjust = NULL, adjustAll = FALSE, showWarnings = TRUE,
control = 1me4::1lmerControl(calc.derivs = FALSE, check.rankX
"stop.deficient”), ...)
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## S4 method for signature 'EList'

fitExtractVarPartModel (exprObj, formula, data,
REML = FALSE, useWeights = TRUE, weightsMatrix = NULL,
adjust = NULL, adjustAll = FALSE, showWarnings = TRUE,
control = lme4::1lmerControl(calc.derivs = FALSE, check.rankX
"stop.deficient”), ...)

## S4 method for signature 'ExpressionSet'
fitExtractVarPartModel (exprObj, formula, data,
REML = FALSE, useWeights = TRUE, weightsMatrix = NULL,
adjust = NULL, adjustAll = FALSE, showWarnings = TRUE,
control = 1me4::1merControl(calc.derivs = FALSE, check.rankX

"stop.deficient”), ...)
Arguments

exprobj matrix of expression data (g genes x n samples), or ExpressionSet, or EList
returned by voom() from the limma package

formula specifies variables for the linear (mixed) model. Must only specify covariates,
since the rows of exprObj are automatically used a a response. e.g.: ~a+b +
(Llc)

data data.frame with columns corresponding to formula

REML use restricted maximum likelihood to fit linear mixed model. default is FALSE.

Strongly discourage against changing this option

useWeights if TRUE, analysis uses heteroskedastic error estimates from voom(). Value is
ignored unless exprObj is an EList() from voom() or weightsMatrix is specified

weightsMatrix matrix the same dimension as exprObj with observation-level weights from
voom(). Used only if useWeights is TRUE

adjust remove variation from specified variables from the denominator. This computes
the adjusted ICC with respect to the specified variables

adjustAll adjust for all variables. This computes the adjusted ICC with respect to all vari-
ables. This overrides the previous argument, so all variables are include in ad-
just.

showWarnings show warnings about model fit (default TRUE)
control control settings for Imer()

Additional arguments for lmer() or Im()

Details

A linear (mixed) model is fit for each gene in exprObj, using formula to specify variables in the
regression. If categorical variables are modeled as random effects (as is recommended), then a
linear mixed model us used. For example if formula is ~ a + b + (1lc), then to model is

fit <- Imer( exprObj[j,] ~ a + b + (1llc), data=data)
If there are no random effects, so formula is ~ a + b + ¢, a ’standard’ linear model is used:
fit <- Im( exprObj[j,] ~ a + b + ¢, data=data)

In both cases, useWeights=TRUE causes weightsMatrix[j,] to be included as weights in the regres-
sion model.
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Note: Fitting the model for 20,000 genes can be computationally intensive. To accelerate computa-
tion, models can be fit in parallel using foreach/dopar to run loops in parallel. Parallel processing
must be enabled before calling this function. See below.

The regression model is fit for each gene separately. Samples with missing values in either gene
expression or metadata are omitted by the underlying call to Im/Imer.

Value

list() of where each entry is a model fit produced by Imer() or Im()

Examples

# load library
# library(variancePartition)

# optional step to run analysis in parallel on multicore machines
# Here, we used 4 threads

library(doParallel)

cl <- makeCluster(4)

registerDoParallel(cl)

# or by using the doSNOW package

# load simulated data:

# geneExpr: matrix of gene expression values
# info: information/metadata about each sample
data(varPartData)

# Specify variables to consider

# Age is continuous so we model it as a fixed effect

# Individual and Tissue are both categorical, so we model them as random effects
form <- ~ Age + (1|Individual) + (1|Tissue)

Step 1: fit linear mixed model on gene expression

If categorical variables are specified, a linear mixed model is used

If all variables are modeled as continuous, a linear model is used

each entry in results is a regression model fit on a single gene

Step 2: extract variance fractions from each model fit

for each gene, returns fraction of variation attributable to each variable
Interpretation: the variance explained by each variable

after correction for all other variables

varPart <- fitExtractVarPartModel( geneExpr, form, info )

e E EEE

# violin plot of contribution of each variable to total variance
plotVarPart( sortCols( varPart ) )

# Note: fitExtractVarPartModel also accepts ExpressionSet
data(sample.ExpressionSet, package="Biobase")

# ExpressionSet example

form <- ~ (1|sex) + (1|type) + score

info2 <- pData(sample.ExpressionSet)

varPart2 <- fitExtractVarPartModel( sample.ExpressionSet, form, info2 )

# stop cluster
stopCluster(cl)
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fitVvarPartModel Fit linear (mixed) model

Description

Fit linear (mixed) model to estimate contribution of multiple sources of variation while simultane-
ously correcting for all other variables.

Usage

fitVarPartModel (exprObj, formula, data, REML = FALSE,
useWeights = TRUE, weightsMatrix = NULL, showWarnings = TRUE,
fxn = identity, control = 1meé4::1lmerControl(calc.derivs = FALSE,
check.rankX = "stop.deficient”), ...)

## S4 method for signature 'matrix’

fitVarPartModel (exprObj, formula, data, REML = FALSE,
useWeights = TRUE, weightsMatrix = NULL, showWarnings = TRUE,
fxn = identity, control = 1lme4::1lmerControl(calc.derivs = FALSE,
check.rankX = "stop.deficient”), ...)

## S4 method for signature 'data.frame'

fitVarPartModel (exprObj, formula, data,
REML = FALSE, useWeights = TRUE, weightsMatrix = NULL,
showWarnings = TRUE, fxn = identity,
control = 1me4::1merControl(calc.derivs = FALSE, check.rankX =
"stop.deficient”), ...)

## S4 method for signature 'EList'

fitVarPartModel (exprObj, formula, data, REML = FALSE,
useWeights = TRUE, weightsMatrix = NULL, showWarnings = TRUE,
fxn = identity, control = 1lme4::1merControl(calc.derivs = FALSE,
check.rankX = "stop.deficient”), ...)

## S4 method for signature 'ExpressionSet'

fitVarPartModel (exprObj, formula, data,
REML = FALSE, useWeights = TRUE, weightsMatrix = NULL,
showWarnings = TRUE, fxn = identity,
control = lme4::1lmerControl(calc.derivs = FALSE, check.rankX =

"stop.deficient”), ...)
Arguments
exprobj matrix of expression data (g genes x n samples), or ExpressionSet, or EList
returned by voom() from the limma package
formula specifies variables for the linear (mixed) model. Must only specify covariates,
since the rows of exprObj are automatically used a a response. e.g.: ~a+b +
(Llc)

data data.frame with columns corresponding to formula
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REML use restricted maximum likelihood to fit linear mixed model. default is FALSE.
Strongly discourage against changing this option

useWeights if TRUE, analysis uses heteroskedastic error estimates from voom(). Value is
ignored unless exprObj is an EList() from voom() or weightsMatrix is specified

weightsMatrix matrix the same dimension as exprObj with observation-level weights from
voom(). Used only if useWeights is TRUE

showWarnings show warnings about model fit (default TRUE)

fxn apply function to model fit for each gene. Defaults to identify function so it
returns the model fit itself

control control settings for Imer()

Additional arguments for Imer() or Im()

Details

A linear (mixed) model is fit for each gene in exprObj, using formula to specify variables in the
regression. If categorical variables are modeled as random effects (as is recommended), then a
linear mixed model us used. For example if formula is ~ a + b + (1lc), then to model is

fit <- Imer( exprObj[j,] ~ a + b + (1Ic), data=data)
If there are no random effects, so formula is ~ a + b + ¢, a ’standard’ linear model is used:
fit <- Im( exprObj[j,] ~ a + b + ¢, data=data)

In both cases, useWeights=TRUE causes weightsMatrix[j,] to be included as weights in the regres-
sion model.

Note: Fitting the model for 20,000 genes can be computationally intensive. To accelerate computa-
tion, models can be fit in parallel using foreach/dopar to run loops in parallel. Parallel processing
must be enabled before calling this function. See below.

The regression model is fit for each gene separately. Samples with missing values in either gene
expression or metadata are omitted by the underlying call to Im/Imer.

Since this function returns a list of each model fit, using this function is slower and uses more
memory than fitExtractVarPartModel().

Value

list() of where each entry is a model fit produced by Imer() or Im()

Examples

# load library
# library(variancePartition)

# optional step to run analysis in parallel on multicore machines
# Here, we used 4 threads

library(doParallel)

cl <- makeCluster(4)

registerDoParallel(cl)

# or by using the doSNOW package

# load simulated data:
# geneExpr: matrix of gene expression values
# info: information/metadata about each sample
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data(varPartData)

# Specify variables to consider

# Age is continuous so we model it as a fixed effect

# Individual and Tissue are both categorical, so we model them as random effects
form <- ~ Age + (1]|Individual) + (1]|Tissue)

Step 1: fit linear mixed model on gene expression

If categorical variables are specified, a linear mixed model is used

If all variables are modeled as continuous, a linear model is used

each entry in results is a regression model fit on a single gene

Step 2: extract variance fractions from each model fit

for each gene, returns fraction of variation attributable to each variable
Interpretation: the variance explained by each variable

after correction for all other variables

varPart <- fitExtractVarPartModel( geneExpr, form, info )

R R

# violin plot of contribution of each variable to total variance
# also sort columns
plotVarPart( sortCols( varPart ) )

# Advanced:

# Fit model and extract variance in two separate steps

# Step 1: fit model for each gene, store model fit for each gene in a list
results <- fitVarPartModel( geneExpr, form, info )

# Step 2: extract variance fractions
varPart <- extractVarPart( results )

# Note: fitVarPartModel also accepts ExpressionSet
data(sample.ExpressionSet, package="Biobase")

# ExpressionSet example

form <- ~ (1]sex) + (1|type) + score

info2 <- pData(sample.ExpressionSet)

results2 <- fitVarPartModel( sample.ExpressionSet, form, info2 )

# stop cluster
stopCluster(cl)

getContrast Extract contrast matrix for linear mixed model

Description

Extract contrast matrix, L, testing a single variable. Contrasts involving more than one variable can
be constructed by modifying L directly

Usage

getContrast(exprObj, formula, data, coefficient)
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Arguments
exprobj matrix of expression data (g genes x n samples), or ExpressionSet, or EList
returned by voom() from the limma package
formula specifies variables for the linear (mixed) model. Must only specify covariates,
since the rows of exprObj are automatically used a a response. e.g.: ~a+b +
(1lc) Formulas with only fixed effects also work
data data.frame with columns corresponding to formula
coefficient the coefficient to use in the hypothesis test
Value

Contrast matrix testing one variable

Examples

# load simulated data:

# geneExpr: matrix of gene expression values
# info: information/metadata about each sample
data(varPartData)

# get contrast matrix testing if the coefficient for Batch2 is zero
# The variable of interest must be a fixed effect

form <- ~ Batch + (1|Individual) + (1|Tissue)

L = getContrast( geneExpr, form, info, "Batch3")

# get contrast matrix testing if Batch3 - Batch2 = @
form <- ~ Batch + (1|Individual) + (1|Tissue)
L = getContrast( geneExpr, form, info, c("Batch3”, "Batch2"))

# To test against Batchl use the formula:
# ~ @ + Batch + (1|Individual) + (1|Tissue)
# to estimate Batchl directly instead of using it as the baseline

getVarianceComponents Extract variance terms

Description

Extract variance terms from a model fit with Im() or Imer()

Usage

getVarianceComponents(fit)

Arguments

fit list of Imer() model fits

Value

variance explained by each variable
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Examples

# library(variancePartition)

# optional step to run analysis in parallel on multicore machines
# Here, we used 4 threads

library(doParallel)

cl <- makeCluster(4)

registerDoParallel(cl)

# or by using the doSNOW package

# load simulated data:

# geneExpr: matrix of gene expression values
# info: information/metadata about each sample
data(varPartData)

# Specify variables to consider

# Age is continuous so we model it as a fixed effect

# Individual and Tissue are both categorical, so we model them as random effects
form <- ~ Age + (1|Individual) + (1|Tissue)

# Fit model and extract variance in two separate steps
# Step 1: fit model for each gene, store model fit for each gene in a list
modellist <- fitVarPartModel( geneExpr, form, info )

fit <- modelList[[1]1]
getVarianceComponents( fit )

# stop cluster
stopCluster(cl)
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ggColorHue Default colors for ggplot

Description

Return an array of n colors the same as the default used by ggplot2

Usage
ggColorHue(n)

Arguments

n number of colors

Value

array of colors of length n

Examples

ggColorHue(4)
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MArrayLM2-class Class MArrayLM?2.

Description

Class MArraylLM2

plotCompareP Compare p-values from two analyses

Description
Plot -log10 p-values from two analyses and color based on donor component from variancePartition
analysis

Usage

plotCompareP(p1, p2, vpDonor, dupcorvalue, fraction = 9.2,
xlabel = bquote(duplicateCorrelation ~ (-log[10] ~ p)),
ylabel = bquote(dream ~ (-log[10] ~ p)))

Arguments
pl p-value from first analysis
p2 p-value from second analysis
vpDonor donor component for each gene from variancePartition analysis
dupcorvalue scalar donor component from duplicateCorrelation
fraction fraction of highest/lowest values to use for best fit lines
xlabel for x-axis
ylabel label for y-axis

Value
ggplot2 plot

Examples

# load library
# library(variancePartition)

# optional step to run analysis in parallel on multicore machines
# Here, we used 4 threads

library(doParallel)

cl <- makeCluster(4)

registerDoParallel(cl)

# or by using the doSNOW package

# load simulated data:
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# geneExpr: matrix of gene expression values
# info: information/metadata about each sample
data(varPartData)

# Perform very simple analysis for demonstration

# Analysis 1

form <- ~ Batch

L = getContrast( geneExpr, form, info, "Batch3")
fit = dream( geneExpr, form, info, L)

fitEB = eBayes( fit )

res = topTable( fitEB, number=Inf )

# Analysis 2

form <- ~ Batch + (1|Tissue)

L = getContrast( geneExpr, form, info, "Batch3")
fit = dream( geneExpr, form, info, L)

fitEB = eBayes( fit )

res2 = topTable( fitEB, number=Inf )

# Compare p-values
plotCompareP( res$P.Value, res2$P.Value, runif(nrow(res)), .3 )

# stop cluster
stopCluster(cl)
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plotCorrMatrix plotCorrMatrix

Description

Plot correlation matrix

Usage
plotCorrMatrix(C, dendrogram = "both", sort = TRUE, margins = c(13,
13), key.xlab = "correlation”, ...)
Arguments
C correlation matrix: R or R*2 matrix
dendrogram character string indicating whether to draw ’both’ or none’
sort sort rows and columns based on clustering
margins spacing of plot
key.xlab label of color gradient

additional arguments to heatmap.2

Details

Plots image of correlation matrix using customized call to heatmap.2
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Value

Image of correlation matrix

Examples

# simulate simple matrix of 10 variables
mat = matrix(rnorm(1000), ncol=10)

# compute correlation matrix
C = cor(mat)

# plot correlations
plotCorrMatrix( C )

# plot squared correlations
plotCorrMatrix( C*2, dendrogram="none" )

plotCorrStructure plotCorrStructure

Description

Plot correlation structure of a gene based on random effects

Usage

plotCorrStructure(fit, varNames = names(coef(fit)), reorder = TRUE,
pal = colorRampPalette(c("white”, "red”, "darkred")),
hclust.method = "complete")

Arguments

fit linear mixed model fit of a gene produced by Imer() or fitVarPartModel()

varNames variables in the metadata for which the correlation structure should be shown.
Variables must be random effects

reorder how to reorder the rows/columns of the correlation matrix. reorder=FALSE
gives no reorder. reorder=TRUE reorders based on hclust. reorder can also be
an array of indices to reorder the samples manually

pal color palette

hclust.method clustering methods for hclust

Value

Image of correlation structure between each pair of experiments for a single gene
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Examples

# load library
# library(variancePartition)

# optional step to run analysis in parallel on multicore machines
# Here, we used 4 threads

library(doParallel)

cl <- makeCluster(4)

registerDoParallel(cl)

# or by using the doSNOW package

# load simulated data:
data(varPartData)

# specify formula
form <- ~ Age + (1|Individual) + (1|Tissue)

# fit and return linear mixed models for each gene
fitList <- fitVarPartModel( geneExpr[1:10,], form, info )

# Focus on the first gene
fit = fitList[[1]]

# plot correlation sturcture based on Individual, reordering samples with hclust
plotCorrStructure( fit, "Individual” )

# don't reorder
plotCorrStructure( fit, "Individual”, reorder=FALSE )

# plot correlation sturcture based on Tissue, reordering samples with hclust
plotCorrStructure( fit, "Tissue"” )

# don't reorder
plotCorrStructure( fit, "Tissue”, FALSE )

# plot correlation structure based on all random effects
# reorder manually by Tissue and Individual

idx = order(info$Tissue, info$Individual)
plotCorrStructure( fit, reorder=idx )

# plot correlation structure based on all random effects
# reorder manually by Individual, then Tissue

idx = order(info$Individual, info$Tissue)
plotCorrStructure( fit, reorder=idx )

# stop cluster
stopCluster(cl)

plotPercentBars Bar plot of variance fractions
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Description

Bar plot of variance fractions for a subset of genes

Usage
plotPercentBars(varPart, col = c(ggColorHue(ncol(varPart) - 1),
ngreyssu))
Arguments
varPart object returned by extractVarPart() or fitExtractVarPartModel()
col color of bars for each variable
Value
Returns ggplot2 barplot
Examples

# library(variancePartition)

# optional step to run analysis in parallel on multicore machines
# Here, we used 4 threads

library(doParallel)

cl <- makeCluster(4)

registerDoParallel(cl)

# or by using the doSNOW package

# load simulated data:

# geneExpr: matrix of gene expression values
# info: information/metadata about each sample
data(varPartData)

# Specify variables to consider
form <- ~ Age + (1|Individual) + (1|Tissue)

# Fit model
varPart <- fitExtractVarPartModel( geneExpr, form, info )

# Bar plot for a subset of genes showing variance fractions
plotPercentBars( varPart[1:5,] )

# Move the legend to the top
plotPercentBars( varPart[1:5,] ) + theme(legend.position="top")

# stop cluster
stopCluster(cl)
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plotStratify plotStratify

Description

Plot gene expression stratified by another variable

Usage

plotStratify(formula, data, xlab, ylab, main, sortBy, colorBy,
sort = TRUE, text = NULL, text.y = 1, text.size = 5,
pts.cex = 1, ylim = NULL, legend = TRUE, x.labels = FALSE)

Arguments
formula specify variables shown in the x- and y-axes. Y-axis should be continuous vari-
able, x-axis should be discrete.
data data.frame storing continuous and discrete variables specified in formula
xlab label x-asis. Defaults to value of xval
ylab label y-asis. Defaults to value of yval
main main label
sortBy name of column in geneExpr to sort samples by. Defaults to xval
colorBy name of column in geneExpr to color box plots. Defaults to xval
sort if TRUE, sort boxplots by median value, else use default ordering
text plot text on the top left of the plot
text.y indicate position of the text on the y-axis as a fraction of the y-axis range
text.size size of text
pts.cex size of points
ylim specify range of y-axis
legend show legend
x.labels show x axis labels
Value
ggplot2 object
Examples

# Note: This is a newer, more convient interface to plotStratifyBy()

# load library
# library(variancePartition)

# load simulated data:
data(varPartData)

# Create data.frame with expression and Tissue information for each sample
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GE = data.frame( Expression = geneExpr[1,], Tissue = info$Tissue)

# Plot expression stratified by Tissue
plotStratify( Expression ~ Tissue, GE )

# Omit legend and color boxes grey
plotStratify( Expression ~ Tissue, GE, colorBy = NULL)

# Specify colors
col = c( B="green", A="red", C="yellow")
plotStratify( Expression ~ Tissue, GE, colorBy=col, sort=FALSE)

plotStratifyBy plotStratifyBy

Description

Plot gene expression stratified by another variable

Usage

plotStratifyBy(geneExpr, xval, yval, xlab = xval, ylab = yval,
main = NULL, sortBy = xval, colorBy = xval, sort = TRUE,
text = NULL, text.y = 1, text.size = 5, pts.cex =1,

ylim = NULL, legend = TRUE, x.labels = FALSE)
Arguments

geneExpr data.frame of gene expression values and another variable for each sample. If
there are multiple columns, the user can specify which one to use

xval name of column in geneExpr to be used along x-axis to stratify gene expression

yval name of column in geneExpr indicating gene expression

xlab label x-asis. Defaults to value of xval

ylab label y-asis. Defaults to value of yval

main main label

sortBy name of column in geneExpr to sort samples by. Defaults to xval

colorBy name of column in geneExpr to color box plots. Defaults to xval

sort if TRUE, sort boxplots by median value, else use default ordering

text plot text on the top left of the plot

text.y indicate position of the text on the y-axis as a fraction of the y-axis range

text.size size of text

pts.cex size of points

ylim specify range of y-axis

legend show legend

x.labels show x axis labels
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Value

ggplot2 object

Examples

# load library
# library(variancePartition)

# load simulated data:
data(varPartData)

# Create data.frame with expression and Tissue information for each sample
GE = data.frame( Expression = geneExpr[1,], Tissue = info$Tissue)

# Plot expression stratified by Tissue
plotStratifyBy( GE, "Tissue”, "Expression")

# Omit legend and color boxes grey
plotStratifyBy( GE, "Tissue”, "Expression”, colorBy = NULL)

# Specify colors
col = c( B="green", A="red", C="yellow")
plotStratifyBy( GE, "Tissue", "Expression”, colorBy=col, sort=FALSE)

plotVarPart Violin plot of variance fractions

Description

Violin plot of variance fraction for each gene and each variable

Usage
plotVarPart(obj, col = c(ggColorHue(ncol(obj) - 1), "grey85"),
label.angle = 20, main = "", ylab = "", convertToPercent = TRUE,
.

## S4 method for signature 'matrix’

plotVarPart(obj, col = c(ggColorHue(ncol(obj) - 1),
"grey85"), label.angle = 20, main = "", ylab = "",
convertToPercent = TRUE, ...)

## S4 method for signature 'data.frame'
plotVarPart(obj, col = c(ggColorHue(ncol(obj) -
1), "grey85"), label.angle = 20, main = "", ylab = ""
convertToPercent = TRUE, ...)

’

## S4 method for signature 'varPartResults'
plotVarPart(obj, col = c(ggColorHue(ncol(obj)
- 1), "grey85"), label.angle = 20, main = "", ylab = "",
convertToPercent = TRUE, ...)
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Arguments
obj varParFrac object returned by fitExtractVarPart or extractVarPart
col vector of colors
label.angle angle of labels on x-axis
main title of plot
ylab text on y-axis
convertToPercent
multiply fractions by 100 to convert to percent values
additional arguments
Value

Makes violin plots of variance components model. This function uses the graphics interface from
ggplot2. Warnings produced by this function usually ggplot2 warning that the window is too small.

Examples

# load library
# library(variancePartition)

# optional step to run analysis in parallel on multicore machines
# Here, we used 4 threads

library(doParallel)

cl <- makeCluster(4)

registerDoParallel(cl)

# or by using the doSNOW package

# load simulated data:

# geneExpr: matrix of gene expression values
# info: information/metadata about each sample
data(varPartData)

# Specify variables to consider

# Age is continuous so we model it as a fixed effect

# Individual and Tissue are both categorical, so we model them as random effects
form <- ~ Age + (1]|Individual) + (1]|Tissue)

varPart <- fitExtractVarPartModel( geneExpr, form, info )

# violin plot of contribution of each variable to total variance
plotVarPart( sortCols( varPart ) )

# stop cluster
stopCluster(cl)
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residuals,VarParFitList-method
Residuals from model fit

Description

Extract residuals for each gene from model fit with fitVarPartModel()

Usage
## S4 method for signature 'VarParFitList'
residuals(object, ...)

Arguments
object object produced by fitVarPartModel()

other arguments.

Details

If model is fit with missing data, residuals returns NA for entries that were missing in the original
data

Value

Residuals extracted from model fits stored in object

Examples

# load library
# library(variancePartition)

# optional step to run analysis in parallel on multicore machines
# Here, we used 4 threads

library(doParallel)

cl <- makeCluster(4)

registerDoParallel(cl)

# or by using the doSNOW package

# load simulated data:

# geneExpr: matrix of gene expression values
# info: information/metadata about each sample
data(varPartData)

# Specify variables to consider

# Age is continuous so we model it as a fixed effect

# Individual and Tissue are both categorical, so we model them as random effects
form <- ~ Age + (1]|Individual) + (1]|Tissue)

# Fit model
modelFit <- fitVarPartModel( geneExpr, form, info )

# Extract residuals of model fit
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res <- residuals( modelFit )

# stop cluster
stopCluster(cl)

sortCols Sort variance partition statistics

Description

Sort columns returned by extractVarPart() or fitExtractVarPartModel()

Usage

sortCols(x, FUN = median, decreasing = TRUE, last = c("Residuals”,
"Measurement.error”), ...)

## S4 method for signature 'matrix’
sortCols(x, FUN = median, decreasing = TRUE,
last = c("Residuals”, "Measurement.error"), ...)

## S4 method for signature 'data.frame'
sortCols(x, FUN = median, decreasing = TRUE,
last = c("Residuals”, "Measurement.error”), ...)

## S4 method for signature 'varPartResults'
sortCols(x, FUN = median, decreasing = TRUE,

last = c("Residuals”, "Measurement.error”), ...)
Arguments
X object returned by extractVarPart() or fitExtractVarPartModel()
FUN function giving summary statistic to sort by. Defaults to median
decreasing logical. Should the sorting be increasing or decreasing?
last columns to be placed on the right, regardless of values in these columns

other arguments to sort

Value

data.frame with columns sorted by mean value, with Residuals in last column

Examples

# library(variancePartition)

# optional step to run analysis in parallel on multicore machines
# Here, we used 4 threads

library(doParallel)

cl <- makeCluster(4)

registerDoParallel(cl)
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# or by using the doSNOW package

# load simulated data:

# geneExpr: matrix of gene expression values
# info: information/metadata about each sample
data(varPartData)

# Specify variables to consider

# Age is continuous so we model it as a fixed effect

# Individual and Tissue are both categorical, so we model them as random effects
form <- ~ Age + (1|Individual) + (1|Tissue)

Step 1: fit linear mixed model on gene expression

If categorical variables are specified, a linear mixed model is used

If all variables are modeled as continuous, a linear model is used

each entry in results is a regression model fit on a single gene

Step 2: extract variance fractions from each model fit

for each gene, returns fraction of variation attributable to each variable
Interpretation: the variance explained by each variable

after correction for all other variables

varPart <- fitExtractVarPartModel( geneExpr, form, info )

e R

# violin plot of contribution of each variable to total variance
# sort columns by median value
plotVarPart( sortCols( varPart ) )

# stop cluster
stopCluster(cl)

varPartConfInf Linear mixed model confidence intervals

Description

Fit linear mixed model to estimate contribution of multiple sources of variation while simultane-
ously correcting for all other variables. Then perform parametric bootstrap sampling to get a 95%
confidence intervals for each variable for each gene.

Usage

varPartConfInf(exprObj, formula, data, REML = FALSE, useWeights = TRUE,
weightsMatrix = NULL, adjust = NULL, adjustAll = FALSE,
showWarnings = TRUE, colinearityCutoff = 0.999,
control = lme4::1lmerControl(calc.derivs = FALSE, check.rankX =

"stop.deficient”), nsim = 1000, ...)
Arguments
exprobj matrix of expression data (g genes x n samples), or ExpressionSet, or EList

returned by voom() from the limma package

formula specifies variables for the linear (mixed) model. Must only specify covariates,
since the rows of exprObj are automatically used a a response. e.g.: ~a+b +
(Llc)
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varPartConfInf

data data.frame with columns corresponding to formula

REML use restricted maximum likelihood to fit linear mixed model. default is FALSE.
Strongly discourage against changing this option

useWeights if TRUE, analysis uses heteroskedastic error estimates from voom(). Value is
ignored unless exprObj is an EList() from voom() or weightsMatrix is specified

weightsMatrix matrix the same dimension as exprObj with observation-level weights from
voom(). Used only if useWeights is TRUE

adjust remove variation from specified variables from the denominator. This computes
the adjusted ICC with respect to the specified variables

adjustAll adjust for all variables. This computes the adjusted ICC with respect to all vari-
ables. This overrides the previous argument, so all variables are include in ad-
just.

showWarnings show warnings about model fit (default TRUE)
colinearityCutoff
cutoff used to determine if model is computationally singular

control control settings for Imer()
nsim number of bootstrap datasets

Additional arguments for Imer() or Im()

Details

A linear mixed model is fit for each gene, and bootMer() is used to generate parametric bootstrap
confidence intervals. use.u=TRUE is used so that the \hat(u) values from the random effects are
used as estimated and are not re-sampled. This gives confidence intervals as if additional data
were generated from these same current samples. Conversely, use.u=FALSE assumes that this
dataset is a sample from a larger population. Thus it simulates \hat(u) based on the estimated
variance parameter. This approach gives confidence intervals as if additional data were collected
from the larger population from which this dataset is sampled. Overall, use.u=TRUE gives smaller
confidence intervals that are appropriate in this case.

Value

list() of where each entry is the result for a gene. Each entry is a matrix of the 95% confidence
interval of the variance fraction for each variable

Examples

# load library
# library(variancePartition)

# optional step to run analysis in parallel on multicore machines
# Here, we used 4 threads

library(doParallel)

cl <- makeCluster(4)

registerDoParallel(cl)

# or by using the doSNOW package

# load simulated data:
# geneExpr: matrix of gene expression values
# info: information/metadata about each sample
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data(varPartData)

# Specify variables to consider

# Age is continuous so we model it as a fixed effect

# Individual and Tissue are both categorical, so we model them as random effects
form <- ~ Age + (1]|Individual) + (1]|Tissue)

# Compute bootstrap confidence intervals for each variable for each gene
resCI <- varPartConfInf( geneExpr[1:5,]1, form, info, nsim=100 )

# stop cluster
stopCluster(cl)
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varPartData Simulation dataset for examples

Description

A simulated dataset of gene expression and metadata
A simulated dataset of gene counts
info about study design

Normalized expression data

Usage

data(varPartData)
data(varPartData)
data(varPartData)

data(varPartData)

Format

A dataset of 100 samples and 200 genes

Details

» geneCounts gene expression in the form of RNA-seq counts
» geneExpr gene expression on a continuous scale

* info metadata about the study design

» geneCounts gene expression in the form of RNA-seq counts
» geneExpr gene expression on a continuous scale

* info metadata about the study design

» geneCounts gene expression in the form of RNA-seq counts

» geneExpr gene expression on a continuous scale
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* info metadata about the study design

» geneCounts gene expression in the form of RNA-seq counts
» geneExpr gene expression on a continuous scale

* info metadata about the study design

varPartDEdata Simulation dataset for dream example

Description

Gene counts from RNA-seq
metadata matrix of sample information
Usage

data(varPartDEdata)

data(varPartDEdata)

Format

A dataset of 24 samples and 19,364 genes

Details

* countMatrix gene expression in the form of RNA-seq counts

* metadata metadata about the study design

* countMatrix gene expression in the form of RNA-seq counts

* metadata metadata about the study design

[.MArrayLM2 Subseting for MArrayLM?2

Description

Enable subsetting on MArrayLM2 object. Same as for MArrayLLM, but apply column subsetting to
df.residual and pValue

Arguments
object MArrayLM?2
i row
j col

Value

subset
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