
Package ‘ClassifyR’
October 15, 2018

Type Package

Title A framework for cross-validated classification problems, with
applications to differential variability and differential
distribution testing

Version 2.0.10

Date 2018-09-04

Author Dario Strbenac, John Ormerod, Graham Mann, Jean Yang

Maintainer Dario Strbenac <dario.strbenac@sydney.edu.au>

VignetteBuilder knitr

biocViews Classification, Survival

Depends R (>= 3.5.0), methods, S4Vectors (>= 0.18.0),
MultiAssayExperiment (>= 1.6.0), BiocParallel

Imports locfit, grid, utils, plyr

Suggests limma, edgeR, car, Rmixmod, ggplot2 (>= 2.2.0), gridExtra (>=
2.0.0), BiocStyle, pamr, PoiClaClu, parathyroidSE, knitr,
htmltools, gtable, scales, e1071, rmarkdown, IRanges,
randomForest, robustbase, mlogit, mnlogit, glmnet

Description The software formalises a framework for classification in R.
There are four stages; Data transformation, feature selection, classifier training,
and prediction. The requirements of variable types and names are
fixed, but specialised variables for functions can also be provided.
The classification framework is wrapped in a driver loop, that
reproducibly carries out a number of cross-validation schemes.
Functions for differential expression, differential variability,
and differential distribution are included. Additional functions
may be developed by the user, by creating an interface to the framework.

Collate classes.R utilities.R bartlettSelection.R calcPerformance.R
classifyInterface.R DLDAinterface.R DMDselection.R
distribution.R edgeRselection.R elasticNetGLMinterface.R
fisherDiscriminant.R forestFeatures.R getLocationsAndScales.R
KolmogorovSmirnovSelection.R KullbackLeiblerSelection.R
leveneSelection.R likelihoodRatioSelection.R limmaSelection.R
logisticRegressionInterface.R mixmodels.R naiveBayesKernel.R
NSCselectionInterface.R NSCtrainInterface.R
NSCpredictInterface.R performancePlot.R plotFeatureClasses.R
previousSelection.R randomForestInterface.R rankingPlot.R

1

2 R topics documented:

ROCplot.R runTest.R runTests.R samplesMetricMap.R
selectionPlot.R subtractFromLocation.R SVMinterface.R

License GPL-3

git_url https://git.bioconductor.org/packages/ClassifyR

git_branch RELEASE_3_7

git_last_commit e553f79

git_last_commit_date 2018-09-03

Date/Publication 2018-10-15

R topics documented:
asthma . 3
bartlettSelection . 3
calcPerformance . 5
characterOrDataFrame . 7
classifyInterface . 7
ClassifyResult . 9
distribution . 11
dlda . 12
DLDAinterface . 12
DMDselection . 14
edgeRselection . 15
elasticNetGLMinterface . 17
fisherDiscriminant . 19
forestFeatures . 21
functionOrList . 22
functionOrNULL . 22
getLocationsAndScales . 22
KolmogorovSmirnovSelection . 23
KullbackLeiblerSelection . 25
leveneSelection . 27
likelihoodRatioSelection . 28
limmaSelection . 30
logisticRegressionInterface . 32
mixmodels . 33
mnlogit . 36
multnet . 36
naiveBayesKernel . 36
NSCpredictInterface . 38
NSCselectionInterface . 40
NSCtrainInterface . 41
pamrtrained . 42
performancePlot . 43
plotFeatureClasses . 45
PredictParams . 47
previousSelection . 48
randomForest . 50
randomForestInterface . 50
rankingPlot . 51
ResubstituteParams . 54

asthma 3

ROCplot . 55
runTest . 57
runTests . 58
samplesMetricMap . 60
selectionPlot . 62
SelectParams . 65
SelectResult . 66
subtractFromLocation . 67
svm . 68
SVMinterface . 68
TrainParams . 69
TransformParams . 70

Index 72

asthma Asthma RNA Abundance and Patient Classes

Description

Data set consists of a matrix of abundances of 2000 most variable gene expression measurements
for 190 samples and a factor vector of classes for those samples.

Usage

data(asthma)

Format

measurements has a row for each gene and a column for each sample. classes is a factor vector.

Source

A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal
RNA Sequence Data, Scientific Reports, 2018. Webpage: http://www.nature.com/articles/
s41598-018-27189-4

bartlettSelection Selection of Differential Variability with Bartlett Statistic

Description

Ranks features by largest Bartlett statistic and chooses the features which have best resubstitution
performance.

http://www.nature.com/articles/s41598-018-27189-4
http://www.nature.com/articles/s41598-018-27189-4

4 bartlettSelection

Usage

S4 method for signature 'matrix'
bartlettSelection(measurements, classes, ...)
S4 method for signature 'DataFrame'

bartlettSelection(measurements, classes, datasetName,
trainParams, predictParams, resubstituteParams,
selectionName = "Bartlett Test", verbose = 3)

S4 method for signature 'MultiAssayExperiment'
bartlettSelection(measurements, targets, ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method.

datasetName A name for the data set used. Stored in the result.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.
resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

selectionName A name to identify this selection method by. Stored in the result.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

The calculation of the test statistic is performed by the bartlett.test function from the stats
package.

Data tables which consist entirely of non-numeric data cannot be analysed. If measurements is
an object of class MultiAssayExperiment, the factor of sample classes must be stored in the
DataFrame accessible by the colData function with column name "class".

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining the specified performance metric made a number of prediction varieties.

Author(s)

Dario Strbenac

calcPerformance 5

Examples

Samples in one class with differential variability to other class.
First 20 genes are DV.
genesRNAmatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 1)))
moreVariable <- sapply(1:25, function(sample) rnorm(20, 9, 5))
genesRNAmatrix <- cbind(genesRNAmatrix, rbind(moreVariable,

sapply(1:25, function(sample) rnorm(80, 9, 1))))
colnames(genesRNAmatrix) <- paste("Sample", 1:50)
rownames(genesRNAmatrix) <- paste("Gene", 1:100)
genesSNPmatrix <- matrix(sample(c("None", "Missense"), 250, replace = TRUE),

ncol = 50)
colnames(genesSNPmatrix) <- paste("Sample", 1:50)
rownames(genesSNPmatrix) <- paste("Gene", 1:5)
classes <- factor(rep(c("Poor", "Good"), each = 25))
names(classes) <- paste("Sample", 1:50)
genesDataset <- MultiAssayExperiment(list(RNA = genesRNAmatrix, SNP = genesSNPmatrix),

colData = DataFrame(class = classes))
Wait for update to MultiAssayExperiment wideFormat function.
trainIDs <- paste("Sample", c(1:20, 26:45))
genesDataset <- subtractFromLocation(genesDataset, training = trainIDs,

targets = "RNA") # Exclude SNP data.

resubstituteParams <- ResubstituteParams(nFeatures = seq(10, 100, 10),
performanceType = "balanced error",
better = "lower")

bartlettSelection(genesDataset, datasetName = "Example", targets = "RNA",
trainParams = TrainParams(fisherDiscriminant),
predictParams = PredictParams(NULL,

getClasses = function(result) result),
resubstituteParams = resubstituteParams)

calcPerformance Add Performance Calculations to a ClassifyResult Object or Calculate
for a Pair of Factor Vectors

Description

If calcExternalPerformance is used, such as when having a vector of known classes and a vector
of predicted classes determined outside of the ClassifyR package, a single metric value is calculated.
If calcCVperformance is used, annotates the results of calling runTests with one of the user-
specified performance measures.

Usage

S4 method for signature 'factor,factor'
calcExternalPerformance(actualClasses, predictedClasses,

performanceType = c("error", "accuracy", "balanced error", "balanced accuracy",
"micro precision", "micro recall",
"micro F1", "macro precision",
"macro recall", "macro F1"))

S4 method for signature 'ClassifyResult'
calcCVperformance(result, performanceType = c("error", "accuracy", "balanced error", "balanced accuracy",

"sample error", "sample accuracy",

6 calcPerformance

"micro precision", "micro recall",
"micro F1", "macro precision",
"macro recall", "macro F1"))

Arguments

result An object of class ClassifyResult.
performanceType

A character vector of length 1. Default: "balanced error".
Must be one of the following options:

• "error": Ordinary error rate.
• "accuracy": Ordinary accuracy.
• "balanced error": Balanced error rate.
• "balanced accuracy": Balanced accuracy.
• "sample error": Error rate for each sample in the data set.
• "sample accuracy": Accuracy for each sample in the data set.
• "micro precision": Sum of the number of correct predictions in each

class, divided by the sum of number of samples in each class.
• "micro recall": Sum of the number of correct predictions in each class,

divided by the sum of number of samples predicted as belonging to each
class.

• "micro F1": F1 score obtained by calculating the harmonic mean of micro
precision and micro recall.

• "macro precision": Sum of the ratios of the number of correct predic-
tions in each class to the number of samples in each class, divided by the
number of classes.

• "macro recall": Sum of the ratios of the number of correct predictions in
each class to the number of samples predicted to be in each class, divided
by the number of classes.

• "macro F1": F1 score obtained by calculating the harmonic mean of macro
precision and macro recall.

actualClasses A factor vector specifying each sample’s correct class.
predictedClasses

A factor vector of the same length as actualClasses specifying each sample’s
predicted class.

Details

All metrics are suitable for evaluating classification scenarios with more than two classes and are
reimplementations of those available from Intel DAAL.

If runTests was run in resampling mode, one performance measure is produced for every resam-
pling. If the leave-k-out mode was used, then the predictions are concatenated, and one performance
measure is calculated for all classifications.

"balanced error" calculates the balanced error rate and is better suited to class-imbalanced data
sets than the ordinary error rate specified by "error". "sample error" calculates the error rate
of each sample individually. This may help to identify which samples are contributing the most to
the overall error rate and check them for confounding factors. Precision, recall and F1 score have
micro and macro summary versions. The macro versions are preferable because the metric will not
have a good score if there is substantial class imbalance and the classifier predicts all samples as
belonging to the majority class.

https://software.intel.com/en-us/daal-programming-guide-details-40

characterOrDataFrame 7

Value

If calcCVperformance was run, an updated ClassifyResult object, with new metric values in the
performance slot. If calcExternalPerformance was run, the performance metric value itself.

Author(s)

Dario Strbenac

Examples

predictTable <- data.frame(sample = 1:10,
class = factor(sample(LETTERS[1:2], 50, replace = TRUE)))

actual <- factor(sample(LETTERS[1:2], 10, replace = TRUE))
result <- ClassifyResult("Example", "Differential Expression", "A Selection",

paste("A", 1:10, sep = ''), paste("Gene", 1:50, sep = ''),
list(1:50, 1:50), list(1:5, 6:15),
list(predictTable), actual, list("leave", 2))

result <- calcCVperformance(result, "balanced error")
performance(result)

characterOrDataFrame Union of a Character and a DataFrame

Description

Allows a slot to be either a character or a DataFrame.

Author(s)

Dario Strbenac

Examples

setClass("Selections", representation(features = "characterOrDataFrame"))
selections <- new("Selections", features = c("BRAF", "NRAS"))
featuresTable <- DataFrame(assay = c("RNA-seq", "Mass spectrometry"),

feature = c("PD-1", "MITF"))
omicsSelections <- new("Selections", features = featuresTable)

classifyInterface An Interface for PoiClaClu Package’s Classify Function

Description

More details of Poisson LDA are available in the documentation of Classify.

8 classifyInterface

Usage

S4 method for signature 'matrix'
classifyInterface(measurements, classes, test, ...)
S4 method for signature 'DataFrame'

classifyInterface(measurements, classes, test, ..., verbose = 3)
S4 method for signature 'MultiAssayExperiment'

classifyInterface(measurements, test, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples. If of
type DataFrame, the data set is subset to only those features of type integer.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

test An object of the same class as measurements with no samples in common with
measurements and the same number of features as it.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that integer variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or parameters that Classify
can accept.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

Data tables which consist entirely of non-integer data cannot be analysed. If measurements is an ob-
ject of class MultiAssayExperiment, the factor of sample classes must be stored in the DataFrame
accessible by the colData function with column name "class".

Value

A result list, the same as is returned by Classify.

Author(s)

Dario Strbenac

Examples

if(require(PoiClaClu))
{

readCounts <- CountDataSet(n = 100, p = 1000, 2, 5, 0.1)
Rows are for features, columns are for samples.
trainData <- t(readCounts[['x']])
classes <- readCounts[['y']]
testData <- t(readCounts[['xte']])
storage.mode(trainData) <- storage.mode(testData) <- "integer"

ClassifyResult 9

classified <- classifyInterface(trainData, classes, testData)

setNames(table(readCounts[["yte"]] == classified[["ytehat"]]),
c("Incorrect", "Correct"))

}

ClassifyResult Container for Storing Classification Results

Description

Contains a table of actual sample classes and predicted classes, the identifiers of features selected
for each fold of each permutation or each hold-out classification, and error rates. This class is not
intended to be created by the user, but could be used in another package. It is created by runTests.

Constructor

ClassifyResult(datasetName, classificationName, originalNames, originalFeatures,
rankedFeatures, chosenFeatures, predictions, actualClasses,
validation, tune = list(NULL))

datasetName A name associated with the data set used.

classificationName A name associated with the classification.

originalNames All sample names.

originalFeatures All feature names. Character vector or DataFrame with one row for each
feature if the data set is a MultiAssayExperiment.

rankedFeatures All features, from most to least important. Character vector or DataFrame if data
set is a MultiAssayExperiment.

chosenFeatures Features selected at each fold. Character vector or DataFrame if data set is a
MultiAssayExperiment.

predictions A list of data.frame containing information about samples, their actual class and
predicted class.

actualClasses Factor of class of each sample.

validation List with first element being the name of the validation scheme, and other elements
providing details about the scheme.

tune A description of the tuning parameters, and the value chosen of each parameter.

Summary

A method which summarises the results is available. result is a ClassifyResult object.

show(result)Prints a short summary of what result contains.

totalPredictions(ClassifyResult)Calculates the sum of the number of predictions.

10 ClassifyResult

Accessors

result is a ClassifyResult object.

sampleNames(result) Returns a vector of sample names present in the data set.

featureNames(result) Returns a vector of features present in the data set.

predictions(result) Returns a list of data.frame. Each data.frame contains columns sample,
predicted, and actual. For hold-out validation, only one data.frame is returned of all of the
concatenated predictions.

actualClasses(result) Returns a factor class labels, one for each sample.

features(result) A list of the features selected for each training.

performance(result) Returns a list of performance measures. This is empty until calcCVperformance
has been used.

tunedParameters(result) Returns a list of tuned parameter values. If cross-validation is used,
this list will be large, as it stores chosen values for every iteration.

sampleNames(result) Returns a character vector of sample names.

Author(s)

Dario Strbenac

Examples

#if(require(sparsediscrim))
#{

data(asthma)

resubstituteParams <- ResubstituteParams(nFeatures = seq(5, 25, 5),
performanceType = "balanced error",
better = "lower")

classified <-
runTests(measurements, classes, "Asthma", "Different Means",

permutations = 5,
params = list(SelectParams(limmaSelection, "Moderated t Statistic",

resubstituteParams = resubstituteParams),
TrainParams(DLDAtrainInterface),
PredictParams(DLDApredictInterface,

getClasses = function(result) result[["class"]])))
class(classified)

#}

distribution 11

distribution Get Frequencies of Feature Selection and Sample Errors

Description

There are two modes. For aggregating feature selection results, the function counts the number of
times each feature was selected in all cross-validations. For aggregating classification results, the
error rate for each sample is calculated. This is useful in identifying outlier samples that are difficult
to classify.

Usage

S4 method for signature 'ClassifyResult'
distribution(result, dataType = c("features", "samples"),

plotType = c("density", "histogram"), summaryType = c("percentage", "count"),
plot = TRUE, xMax = NULL, xLabel = "Percentage of Cross-validations",
yLabel = "Density", title = "Distribution of Feature Selections",

fontSizes = c(24, 16, 12), ...)

Arguments

result An object of class ClassifyResult.

dataType Whether to calculate sample-wise error rate or the number of times a feature
was selected.

plotType Whether to draw a probability density curve or a histogram.

summaryType Whether to summarise the feature selections as a percentage or count.

plot Whether to draw a plot of the frequency of selection or error rate.

xMax Maximum data value to show in plot.

xLabel The label for the x-axis of the plot.

yLabel The label for the y-axis of the plot.

title An overall title for the plot.

fontSizes A vector of length 3. The first number is the size of the title. The second number
is the size of the axes titles. The third number is the size of the axes values.

... Further parameters, such as colour and fill, passed to geom_histogram or
stat_density, depending on the value of plotType.

Value

If type is "features", a vector as long as the number of features that were chosen at least once
containing the number of times the feature was chosen in cross validations or the percentage of
times chosen. If type is "samples", a vector as long as the number of samples, containing the cross-
validation error rate of the sample. If plot is TRUE, then a plot is also made on the current graphics
device.

Author(s)

Dario Strbenac

12 DLDAinterface

Examples

#if(require(sparsediscrim))
#{

data(asthma)
resubstituteParams <- ResubstituteParams(nFeatures = seq(5, 25, 5),

performanceType = "balanced error",
better = "lower")

result <- runTests(measurements, classes, "Asthma", "Different Means",
permutations = 5,

params = list(SelectParams(limmaSelection, "Moderated t Statistic",
resubstituteParams = resubstituteParams),

TrainParams(DLDAtrainInterface),
PredictParams(DLDApredictInterface,

getClasses = function(result)
result[["class"]]))

)
featureDistribution <- distribution(result, "features", summaryType = "count",

plotType = "histogram",
xLabel = "Number of Cross-validations", yLabel = "Count",

binwidth = 1)
print(head(featureDistribution))

#}

dlda Trained dlda Object

Description

Enables S4 method dispatching on it.

Author(s)

Dario Strbenac

DLDAinterface An Interface for sparsediscrim Package’s dlda Function

Description

DLDAtrainInterface generates a trained diagonal LDA classifier and DLDApredictInterface
uses it to make predictions on a test data set.

Usage

S4 method for signature 'matrix'
DLDAtrainInterface(measurements, classes, ...)
S4 method for signature 'DataFrame'

DLDAtrainInterface(measurements, classes, verbose = 3)
S4 method for signature 'MultiAssayExperiment'

DLDAtrainInterface(measurements, targets = names(measurements), ...)

DLDAinterface 13

S4 method for signature 'dlda,matrix'
DLDApredictInterface(model, test, ...)
S4 method for signature 'dlda,DataFrame'

DLDApredictInterface(model, test, verbose = 3)
S4 method for signature 'dlda,MultiAssayExperiment'

DLDApredictInterface(model, test, targets = names(test), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples. If of
type DataFrame, the data set is subset to only those features of type integer.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

model A fitted model as returned by DLDAtrainInterface.

test An object of the same class as measurements with no samples in common with
measurements and the same number of features as it. Also, if a DataFrame, the
class column must be absent.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that integer variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method (e.g. verbose).

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

If measurements is an object of class MultiAssayExperiment, the factor of sample classes must
be stored in the DataFrame accessible by the colData function with column name "class".

Value

For DLDAtrainInterface, a trained DLDA classifier. For DLDApredictInterface, a result of
type list with elements class, scores and posterior, as created by sparsediscrim’s predict
method.

Author(s)

Dario Strbenac

Examples

if(require(sparsediscrim)) Package currently removed from CRAN.
#{

Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)

c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
classes <- factor(rep(c("Poor", "Good"), each = 25))

14 DMDselection

colnames(genesMatrix) <- paste("Sample", 1:ncol(genesMatrix))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))
selected <- rownames(genesMatrix)[91:100]
trainingSamples <- c(1:20, 26:45)
testingSamples <- c(21:25, 46:50)

classifier <- DLDAtrainInterface(genesMatrix[selected, trainingSamples],
classes[trainingSamples])

DLDApredictInterface(classifier, genesMatrix[selected, testingSamples])[["class"]]
#}

DMDselection Selection of Differential Distributions with Differences in Means or
Medians and a Deviation Measure

Description

Ranks features by largest Differences in Means/Medians and Deviations and chooses the features
which have best resubstitution performance.

Usage

S4 method for signature 'matrix'
DMDselection(measurements, classes, ...)
S4 method for signature 'DataFrame'

DMDselection(measurements, classes, datasetName, differences = c("both", "location", "scale"),
trainParams, predictParams, resubstituteParams, ...,
selectionName = "Differences of Medians and Deviations",
verbose = 3)

S4 method for signature 'MultiAssayExperiment'
DMDselection(measurements, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes A vector of class labels.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or parameters for getLocationsAndScales,
such as location, scale.

datasetName Default: "Differences of Medians and Deviations". A name for the data
set used. Stored in the result.

differences Default: "both". Either "both", "location", or "scale". The type of differ-
ences to consider. If both are considered then the absolute difference in location
and the absolute difference in scale are summed.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.

edgeRselection 15

resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

selectionName A name to identify this selection method by. Stored in the result.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

DMD is defined as |location1 − location2| + |scale1 − scale2|. The subscripts denote the group
which the parameter is calculated for.

Data tables which consist entirely of non-numeric data cannot be analysed. If measurements is
an object of class MultiAssayExperiment, the factor of sample classes must be stored in the
DataFrame accessible by the colData function with column name "class".

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining the specified performance metric made a number of prediction varieties.

Author(s)

Dario Strbenac

Examples

First 20 features have bimodal distribution for Poor class.
Other 80 features have normal distribution for both classes.
genesMatrix <- sapply(1:25, function(sample)

{
randomMeans <- sample(c(8, 12), 20, replace = TRUE)
c(rnorm(20, randomMeans, 1), rnorm(80, 10, 1))

}
)

genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample) rnorm(100, 10, 1)))
classes <- factor(rep(c("Poor", "Good"), each = 25))

resubstituteParams <- ResubstituteParams(nFeatures = seq(10, 100, 10),
performanceType = "balanced error",
better = "lower")

DMDselection(genesMatrix, classes, datasetName = "Example",
trainParams = TrainParams(naiveBayesKernel),
predictParams = PredictParams(NULL, getClasses = function(result) result),
resubstituteParams = resubstituteParams)

edgeRselection Feature Selection Based on Differential Expression for Count Data

Description

Performs a differential expression analysis between classes and chooses the features which have
best resubstitution performance. The data may have overdispersion and this is modelled.

16 edgeRselection

Usage

S4 method for signature 'matrix'
edgeRselection(counts, classes, ...)
S4 method for signature 'DataFrame'

edgeRselection(counts, classes, datasetName,
normFactorsOptions = NULL, dispOptions = NULL, fitOptions = NULL,
trainParams, predictParams, resubstituteParams,
selectionName = "edgeR LRT", verbose = 3)

S4 method for signature 'MultiAssayExperiment'
edgeRselection(counts, targets = NULL, ...)

Arguments

counts Either a matrix or MultiAssayExperiment containing the unnormalised counts.

classes A vector of class labels of class factor of the same length as the number of sam-
ples in measurements. Not used if measurements is a MultiAssayExperiment
object.

targets If measurements is a MultiAssayExperiment, the names of the data tables of
counts to be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method.

datasetName A name for the data set used. Stored in the result.
normFactorsOptions

A named list of any options to be passed to calcNormFactors.

dispOptions A named list of any options to be passed to estimateDisp.

fitOptions A named list of any options to be passed to glmFit.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.
resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

selectionName A name to identify this selection method by. Stored in the result.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

The differential expression analysis follows the standard edgeR steps of estimating library size
normalisation factors, calculating dispersion, in this case robustly, and then fitting a generalised
linear model followed by a likelihood ratio test.

Data tables which consist entirely of non-numeric data cannot be analysed. If measurements is
an object of class MultiAssayExperiment, the factor of sample classes must be stored in the
DataFrame accessible by the colData function with column name "class".

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining the specified performance metric made a number of prediction varieties.

elasticNetGLMinterface 17

Author(s)

Dario Strbenac

References

edgeR: a Bioconductor package for differential expression analysis of digital gene expression data,
Mark D. Robinson, Davis McCarthy, and Gordon Smyth, 2010, Bioinformatics, Volume 26 Issue 1,
https://academic.oup.com/bioinformatics/article/26/1/139/182458.

Examples

if(require(parathyroidSE) && require(PoiClaClu))
{

data(parathyroidGenesSE)
expression <- assays(parathyroidGenesSE)[[1]]
sampleNames <- paste("Sample", 1:ncol(parathyroidGenesSE))
colnames(expression) <- sampleNames
DPN <- which(colData(parathyroidGenesSE)[, "treatment"] == "DPN")
control <- which(colData(parathyroidGenesSE)[, "treatment"] == "Control")
expression <- expression[, c(control, DPN)]
classes <- factor(rep(c("Contol", "DPN"), c(length(control), length(DPN))))
expression <- expression[rowSums(expression > 1000) > 8,] # Make small data set.

getClasses <- function(result) result[["ytehat"]]
selected <- edgeRselection(expression, classes, "DPN Treatment",

trainParams = TrainParams(classifyInterface),
predictParams = PredictParams(NULL, getClasses = getClasses),
resubstituteParams = ResubstituteParams(nFeatures = seq(10, 100, 10),

performanceType = "balanced error", better = "lower"))

head(selected@rankedFeatures[[1]])
plotFeatureClasses(expression, classes, "ENSG00000044574",

dotBinWidth = 500, xAxisLabel = "Unnormalised Counts")
}

elasticNetGLMinterface

An Interface for glmnet Package’s glmnet Function

Description

An elastic net GLM classifier uses a penalty which is a combination of a lasso penalty and a ridge
penalty, scaled by a lambda value, to fit a sparse linear model to the data.

Usage

S4 method for signature 'matrix'
elasticNetGLMtrainInterface(measurements, classes, ...)
S4 method for signature 'DataFrame'

elasticNetGLMtrainInterface(measurements, classes, lambda = NULL,
..., verbose = 3)

S4 method for signature 'MultiAssayExperiment'
elasticNetGLMtrainInterface(measurements, targets = names(measurements), ...)

https://academic.oup.com/bioinformatics/article/26/1/139/182458

18 elasticNetGLMinterface

S4 method for signature 'multnet,matrix'
elasticNetGLMpredictInterface(model, test, ...)
S4 method for signature 'multnet,DataFrame'

elasticNetGLMpredictInterface(model, test, classes = NULL, lambda, ..., verbose = 3)
S4 method for signature 'multnet,MultiAssayExperiment'

elasticNetGLMpredictInterface(model, test, targets = names(test), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples. If of
type DataFrame, the data set is subset to only those features of type integer.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

lambda The lambda value passed directly to glmnet if the training function is used or
passed as s to predict.glmnet if the prediction function is used.

test An object of the same class as measurements with no samples in common with
measurements and the same number of features as it.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that integer variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method (e.g. verbose) or, for the
training function, options that are used by the glmnet function. For the testing
function, this variable simply contains any parameters passed from the classifi-
cation framework to it which aren’t used by glmnet’s predict fuction.

model A trained elastic net GLM, as created by the glmnet function.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

If measurements is an object of class MultiAssayExperiment, the factor of sample classes must
be stored in the DataFrame accessible by the colData function with column name "class".

The value of the "family" parameter is fixed to "multinomial" so that classification with more
than 2 classes is possible. During classifier training, if more than one lambda value is considered by
specifying a vector of them as input, then the chosen value is determined based on classifier resub-
stitution performance. Leaving the default value of NULL, however, causes the glmnet function to
determine a set of values to evaluate and then a single lambda value is chosen based on the fraction
of (null) deviance explained by the fitted model.

Value

For elasticNetGLMtrainInterface, an object of type glmnet. For elasticNetGLMpredictInterface,
a factor vector of class predictions.

Author(s)

Dario Strbenac

fisherDiscriminant 19

Examples

if(require(glmnet))
{

Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)

c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
classes <- factor(rep(c("Poor", "Good"), each = 25))
colnames(genesMatrix) <- paste("Sample", 1:ncol(genesMatrix))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))

resubstituteParams <- ResubstituteParams(nFeatures = seq(10, 100, 10),
performanceType = "balanced error",
better = "lower")

alpha is a user-specified tuning parameter.
lambda is automatically tuned, based on glmnet defaults, if not user-specified.
trainParams <- TrainParams(elasticNetGLMtrainInterface,

tuneParams = list(alpha = c(0, 0.5, 1)),
resubstituteParams = resubstituteParams)

predictParams <- PredictParams(elasticNetGLMpredictInterface,
getClasses = function(result) result)

classified <- runTests(genesMatrix, classes, "Example", "Differential Expression",
permutations = 5,
params = list(trainParams, predictParams))

classified <- calcCVperformance(classified, "balanced error")
head(tunedParameters(classified))
performance(classified)

}

fisherDiscriminant Classification Using Fisher’s LDA

Description

Finds the decision boundary using the training set, and gives predictions for the test set.

Usage

S4 method for signature 'matrix'
fisherDiscriminant(measurements, classes, test, ...)
S4 method for signature 'DataFrame'

fisherDiscriminant(measurements, classes, test, returnType = c("class", "score", "both"),
verbose = 3)

S4 method for signature 'MultiAssayExperiment'
fisherDiscriminant(measurements, test, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

20 fisherDiscriminant

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

test An object of the same class as measurements with no samples in common with
measurements and the same number of features as it.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that integer variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method.

returnType Default: "class". Either "class", "score", or "both". Sets the return value
from the prediction to either a vector of class labels, score for a sample belonging
to the second class, as determined by the factor levels, or both labels and scores
in a data.frame.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

Unlike ordinary LDA, Fisher’s version does not have assumptions about the normality of the fea-
tures.

Data tables which consist entirely of non-numeric data cannot be analysed. If measurements is
an object of class MultiAssayExperiment, the factor of sample classes must be stored in the
DataFrame accessible by the colData function with column name "class".

Value

A vector or data.frame of class prediction information, as long as the number of samples in the
test data.

Author(s)

Dario Strbenac

Examples

trainMatrix <- matrix(rnorm(1000, 8, 2), ncol = 10)
classes <- factor(rep(c("Poor", "Good"), each = 5))

Make first 30 genes increased in value for poor samples.
trainMatrix[1:30, 1:5] <- trainMatrix[1:30, 1:5] + 5

testMatrix <- matrix(rnorm(1000, 8, 2), ncol = 10)

Make first 30 genes increased in value for sixth to tenth samples.
testMatrix[1:30, 6:10] <- testMatrix[1:30, 6:10] + 5

fisherDiscriminant(trainMatrix, classes, testMatrix)

forestFeatures 21

forestFeatures Extract Vectors of Ranked and Selected Features From a Random For-
est Object

Description

Provides a ranking of features based on the total decrease in node impurities from splitting on the
variable, averaged over all trees. Also provides the selected feautres which are those that were used
in at least one tree of the forest.

Usage

S4 method for signature 'randomForest'
forestFeatures(forest)

Arguments

forest A trained random forest which was created by randomForest.

Value

An list object. The first element is a vector of features, ranked from best to worst using the Gini
index. The second element is a vector of features used in at least one tree.

Author(s)

Dario Strbenac

Examples

genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)

c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
classes <- factor(rep(c("Poor", "Good"), each = 25))
colnames(genesMatrix) <- paste("Sample", 1:ncol(genesMatrix))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))
selected <- rownames(genesMatrix)[91:100]
trainingSamples <- c(1:20, 26:45)
testingSamples <- c(21:25, 46:50)

classified <- randomForestInterface(genesMatrix[, trainingSamples],
classes[trainingSamples],
genesMatrix[, testingSamples], ntree = 10)

forestFeatures(classified)

22 getLocationsAndScales

functionOrList Union of Functions and List of Functions

Description

Allows a slot to be either a function or a list of functions.

Author(s)

Dario Strbenac

Examples

SelectParams(limmaSelection)
SelectParams(list(limmaSelection, leveneSelection), "Ensemble Selection")

functionOrNULL Union of A Function and NULL

Description

Allows a slot to be either a function or empty.

Author(s)

Dario Strbenac

Examples

PredictParams(NULL, getClasses = function(result) result)
PredictParams(predict, getClasses = function(result) result[["classes"]])

getLocationsAndScales Calculate Location and Scale

Description

Calculates the location and scale for each feature.

Usage

S4 method for signature 'matrix'
getLocationsAndScales(measurements, ...)
S4 method for signature 'DataFrame'

getLocationsAndScales(measurements, location = c("mean", "median"),
scale = c("SD", "MAD", "Qn"))

S4 method for signature 'MultiAssayExperiment'
getLocationsAndScales(measurements, targets = names(measurements), ...)

KolmogorovSmirnovSelection 23

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the data.
For a matrix, the rows are features, and the columns are samples.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method.

location The type of location to be calculated.

scale The type of scale to be calculated.

Details

"SD" is used to represent standard deviation and "MAD" is used to represent median absolute devia-
tion.

Value

A list of length 2. The first element contains the location for every feature. The second element
contains the scale for every feature.

Author(s)

Dario Strbenac

References

Qn: http://www.tandfonline.com/doi/pdf/10.1080/01621459.1993.10476408

Examples

genesMatrix <- matrix(rnorm(1000, 8, 4), ncol = 10)
distributionInfo <- getLocationsAndScales(genesMatrix, "median", "MAD")

mean(distributionInfo[["median"]]) # Typical median.
mean(distributionInfo[["MAD"]]) # Typical MAD.

KolmogorovSmirnovSelection

Selection of Differential Distributions with Kolmogorov-Smirnov Dis-
tance

Description

Ranks features by largest Kolmogorov-Smirnov distance and chooses the features which have best
resubstitution performance.

http://www.tandfonline.com/doi/pdf/10.1080/01621459.1993.10476408

24 KolmogorovSmirnovSelection

Usage

S4 method for signature 'matrix'
KolmogorovSmirnovSelection(measurements, classes, ...)
S4 method for signature 'DataFrame'

KolmogorovSmirnovSelection(measurements, classes, datasetName,
trainParams, predictParams, resubstituteParams, ...,
selectionName = "Kolmogorov-Smirnov Test", verbose = 3)

S4 method for signature 'MultiAssayExperiment'
KolmogorovSmirnovSelection(measurements, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or options which are ac-
cepted by the function ks.test.

datasetName A name for the data set used. Stored in the result.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.
resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

selectionName A name to identify this selection method by. Stored in the result.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

Features are sorted in order of biggest distance to smallest. The top number of features is used in a
classifier, to determine which number of features has the best resubstitution performance.

Data tables which consist entirely of non-numeric data cannot be analysed. If measurements is
an object of class MultiAssayExperiment, the factor of sample classes must be stored in the
DataFrame accessible by the colData function with column name "class".

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining the specified performance metric made a number of prediction varieties.

Author(s)

Dario Strbenac

KullbackLeiblerSelection 25

Examples

First 20 features have bimodal distribution for Poor class.
Other 80 features have normal distribution for both classes.
set.seed(1984)
genesMatrix <- sapply(1:25, function(sample)

{
randomMeans <- sample(c(8, 12), 20, replace = TRUE)
c(rnorm(20, randomMeans, 1), rnorm(80, 10, 1))

}
)

genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample) rnorm(100, 10, 1)))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))
classes <- factor(rep(c("Poor", "Good"), each = 25))

resubstituteParams <- ResubstituteParams(nFeatures = seq(5, 25, 5),
performanceType = "balanced error",
better = "lower")

selected <- KolmogorovSmirnovSelection(genesMatrix, classes, "Example",
trainParams = TrainParams(naiveBayesKernel),
predictParams = PredictParams(NULL,

getClasses = function(result) result),
resubstituteParams = resubstituteParams)

head(selected[["weighted=unweighted"]]@chosenFeatures)
plotFeatureClasses(genesMatrix, classes, "Gene 13", dotBinWidth = 0.25,

xAxisLabel = expression(log[2](expression)))

KullbackLeiblerSelection

Selection of Differential Distributions with Kullback-Leibler Distance

Description

Ranks features by largest Kullback-Leibler distance and chooses the features which have best re-
substitution performance.

Usage

S4 method for signature 'matrix'
KullbackLeiblerSelection(measurements, classes, ...)
S4 method for signature 'DataFrame'

KullbackLeiblerSelection(measurements, classes, datasetName,
trainParams, predictParams, resubstituteParams, ...,
selectionName = "Kullback-Leibler Divergence", verbose = 3)

S4 method for signature 'MultiAssayExperiment'
KullbackLeiblerSelection(measurements, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

26 KullbackLeiblerSelection

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or options which are ac-
cepted by the function getLocationsAndScales.

datasetName A name for the data set used. Stored in the result.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.
resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

selectionName A name to identify this selection method by. Stored in the result.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

The distance is defined as 1
2 ×

((location1−location2)
2

scale21
+ (location1−location2)

2

scale22
+

scale22
scale21

+
scale21
scale22

)
The subscripts denote the group which the parameter is calculated for.

Data tables which consist entirely of non-numeric data cannot be analysed. If measurements is
an object of class MultiAssayExperiment, the factor of sample classes must be stored in the
DataFrame accessible by the colData function with column name "class".

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining the specified performance metric made a number of prediction varieties.

Author(s)

Dario Strbenac

Examples

First 20 features have bimodal distribution for Poor class.
Other 80 features have normal distribution for both classes.
genesMatrix <- sapply(1:25, function(sample)

{
randomMeans <- sample(c(8, 12), 20, replace = TRUE)
c(rnorm(20, randomMeans, 1), rnorm(80, 10, 1))

}
)

genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample) rnorm(100, 10, 1)))
classes <- factor(rep(c("Poor", "Good"), each = 25))

resubstituteParams <- ResubstituteParams(nFeatures = seq(5, 25, 5),

leveneSelection 27

performanceType = "balanced error",
better = "lower")

KullbackLeiblerSelection(genesMatrix, classes, "Example",
trainParams = TrainParams(naiveBayesKernel),
predictParams = PredictParams(NULL,

getClasses = function(result) result),
resubstituteParams = resubstituteParams
)

leveneSelection Selection of Differential Variability with Levene Statistic

Description

Ranks features by largest Levene statistic and chooses the features which have best resubstitution
performance.

Usage

S4 method for signature 'matrix'
leveneSelection(measurements, classes, ...)
S4 method for signature 'DataFrame'

leveneSelection(measurements, classes, datasetName,
trainParams, predictParams, resubstituteParams,
selectionName = "Levene Test", verbose = 3)

S4 method for signature 'MultiAssayExperiment'
leveneSelection(measurements, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method.

datasetName A name for the data set used. Stored in the result.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.
resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

selectionName A name to identify this selection method by. Stored in the result.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

28 likelihoodRatioSelection

Details

Levene’s statistic for unequal variance between groups is a robust version of Bartlett’s statistic.

Data tables which consist entirely of non-numeric data cannot be analysed. If measurements is
an object of class MultiAssayExperiment, the factor of sample classes must be stored in the
DataFrame accessible by the colData function with column name "class".

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining the specified performance metric made a number of prediction varieties.

Author(s)

Dario Strbenac

Examples

First 20 features have bimodal distribution for Poor class.
Other 80 features have normal distribution for both classes.
set.seed(1984)
genesMatrix <- sapply(1:25, function(sample)

{
randomMeans <- sample(c(8, 12), 20, replace = TRUE)
c(rnorm(20, randomMeans, 1), rnorm(80, 10, 1))

}
)

genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample) rnorm(100, 10, 1)))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))
classes <- factor(rep(c("Poor", "Good"), each = 25))
genesMatrix <- subtractFromLocation(genesMatrix, 1:ncol(genesMatrix))

resubstituteParams <- ResubstituteParams(nFeatures = seq(10, 100, 10),
performanceType = "balanced error",
better = "lower")

selected <- leveneSelection(genesMatrix, classes, "Example",
trainParams = TrainParams(fisherDiscriminant),
predictParams = PredictParams(NULL,

getClasses = function(result) result),
resubstituteParams = resubstituteParams)

selected@chosenFeatures

likelihoodRatioSelection

Selection of Differential Distributions with Likelihood Ratio Statistic

Description

Ranks features by largest ratio and chooses the features which have the best resubstitution perfor-
mance.

likelihoodRatioSelection 29

Usage

S4 method for signature 'matrix'
likelihoodRatioSelection(measurements, classes, ...)
S4 method for signature 'DataFrame'

likelihoodRatioSelection(measurements, classes, datasetName,
trainParams, predictParams, resubstituteParams,
alternative = c(location = "different", scale = "different"),
..., selectionName = "Likelihood Ratio Test (Normal)", verbose = 3)

S4 method for signature 'MultiAssayExperiment'
likelihoodRatioSelection(measurements, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or options which are ac-
cepted by the function getLocationsAndScales.

datasetName A name for the data set used. Stored in the result.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.

resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

alternative Default: c("different", "different"). A vector of length 2. The first
element specifies the location of the alternate hypothesis. The second element
specifies the scale of the alternate hypothesis. Valid values in each element are
"same" or "different".

selectionName A name to identify this selection method by. Stored in the result.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

Likelihood ratio test of null hypothesis that the location and scale are the same for both groups, and
an alternate hypothesis that is specified by parameters. The location and scale of features is calcu-
lated by getLocationsAndScales. The distribution fitted to the data is the normal distribution.

Data tables which consist entirely of non-numeric data cannot be analysed. If measurements is
an object of class MultiAssayExperiment, the factor of sample classes must be stored in the
DataFrame accessible by the colData function with column name "class".

30 limmaSelection

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining the specified performance metric made a number of prediction varieties.

Author(s)

Dario Strbenac

Examples

First 20 features have bimodal distribution for Poor class.
Other 80 features have normal distribution for both classes.
set.seed(1984)
genesMatrix <- sapply(1:25, function(sample)

{
randomMeans <- sample(c(8, 12), 20, replace = TRUE)
c(rnorm(20, randomMeans, 1), rnorm(80, 10, 1))

}
)

genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample) rnorm(100, 10, 1)))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))
classes <- factor(rep(c("Poor", "Good"), each = 25))

resubstituteParams <- ResubstituteParams(nFeatures = seq(10, 100, 10),
performanceType = "balanced error",
better = "lower")

selected <- likelihoodRatioSelection(genesMatrix, classes, "Example",
trainParams = TrainParams(naiveBayesKernel),

predictParams = PredictParams(NULL,
getClasses = function(result) result),

resubstituteParams = resubstituteParams)

classifierVariety <- "weighted=weighted,weight=crossover distance"
head(selected[[classifierVariety]]@chosenFeatures[[1]])

limmaSelection Selection of Differentially Abundant Features

Description

Uses a moderated t-test with empirical Bayes shrinkage to select differentially expressed features.

Usage

S4 method for signature 'matrix'
limmaSelection(measurements, classes, ...)
S4 method for signature 'DataFrame'

limmaSelection(measurements, classes, datasetName,
trainParams, predictParams, resubstituteParams, ...,
selectionName = "Moderated t-test", verbose = 3)

S4 method for signature 'MultiAssayExperiment'
limmaSelection(measurements, targets = NULL, ...)

limmaSelection 31

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes A vector of class labels of class factor of the same length as the number of sam-
ples in measurements. Not used if measurements is a MultiAssayExperiment
object.

targets Names of data tables to be combined into a single table and used in the analysis.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or optional settings that are
passed to lmFit.

datasetName A name for the data set used. Stored in the result.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.
resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

selectionName A name to identify this selection method by. Stored in the result.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

This selection method looks for changes in means and uses a moderated t-test.

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining the specified performance metric made a number of prediction varieties.

Author(s)

Dario Strbenac

References

Limma: linear models for microarray data, Gordon Smyth, 2005, In: Bioinformatics and Computa-
tional Biology Solutions using R and Bioconductor, Springer, New York, pages 397-420.

Examples

#if(require(sparsediscrim))
#{

Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)

c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
classes <- factor(rep(c("Poor", "Good"), each = 25))
colnames(genesMatrix) <- paste("Sample", 1:ncol(genesMatrix))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))

resubstituteParams <- ResubstituteParams(nFeatures = seq(10, 100, 10),

32 logisticRegressionInterface

performanceType = "balanced error", better = "lower")
selected <- limmaSelection(genesMatrix, classes, "Example",

trainParams = TrainParams(), predictParams = PredictParams(),
resubstituteParams = resubstituteParams)

selected@chosenFeatures
#}

logisticRegressionInterface

An Interface for mnlogit Package’s mnlogit Function

Description

logisticRegressionTrainInterface generates a multinomial logistic regression model trained
on some training data and logisticRegressionPredictInterface makes class predictions for
samples in the test data set.

Usage

S4 method for signature 'matrix'
logisticRegressionTrainInterface(measurements, classes, ...)
S4 method for signature 'DataFrame'

logisticRegressionTrainInterface(measurements, classes, ..., verbose = 3)
S4 method for signature 'MultiAssayExperiment'

logisticRegressionTrainInterface(measurements, targets = names(measurements), ...)
S4 method for signature 'mnlogit,matrix'

logisticRegressionPredictInterface(model, test, ...)
S4 method for signature 'mnlogit,DataFrame'

logisticRegressionPredictInterface(model, test, classes = NULL, verbose = 3)
S4 method for signature 'mnlogit,MultiAssayExperiment'

logisticRegressionPredictInterface(model, test, targets = names(test), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

test An object of the same class as measurements with no samples in common with
measurements and the same number of features as it. Also, if a DataFrame, the
class column must be absent.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that integer variables
from the clinical data table will be used.

model A fitted model as returned by logisticRegressionTrainInterface.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or optional settings that are
passed to mnlogit.

mixmodels 33

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

If measurements is an object of class MultiAssayExperiment, the factor of sample classes must
be stored in the DataFrame accessible by the colData function with column name "class".

This wrapper works with individual-specific variables. If more a complex experimental design is
utilised, such as a market research data set with both individual-specific and alternative-specific
variables, then this wrapper is not suitable to classify it.

Value

For logisticRegressionTrainInterface, a fitted multinomial logistic regression model. For
logisticRegressionPredictInterface, a factor vector with class predictions for the samples
in the test set.

Author(s)

Dario Strbenac

Examples

if(require(mnlogit))
{

variables <- c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")
trainSamples <- c(1:45, 51:95, 101:145)
testSamples <- c(46:50, 96:100, 146:150)

trained <- logisticRegressionTrainInterface(DataFrame(iris[trainSamples, variables]),
iris[trainSamples, "Species"])

predicted <- logisticRegressionPredictInterface(trained,
DataFrame(iris[testSamples, variables]))

}

mixmodels Classification based on Differential Distribution utilising Mixtures of
Normals

Description

Fits mixtures of normals for every feature, separately for each class.

Usage

S4 method for signature 'matrix'
mixModelsTrain(measurements, ...)
S4 method for signature 'DataFrame'

mixModelsTrain(measurements, classes, ..., verbose = 3)
S4 method for signature 'MultiAssayExperiment'

mixModelsTrain(measurements, targets = names(measurements), ...)
S4 method for signature 'list,matrix'

mixModelsPredict(models, test, ...)

34 mixmodels

S4 method for signature 'list,DataFrame'
mixModelsPredict(models, test, weighted = c("both", "unweighted", "weighted"),

weight = c("all", "height difference", "crossover distance", "sum differences"),
densityXvalues = 1024, minDifference = 0,
returnType = c("class", "score", "both"), verbose = 3)

S4 method for signature 'list,MultiAssayExperiment'
mixModelsPredict(models, test, targets = names(test), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

test An object of the same class as measurements with no samples in common with
measurements and the same number of features as it. Also, if a DataFrame, the
class column must be absent.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or extra arguments for train-
ing passed to mixmodCluster. The argument nbCluster is mandatory.

models A list of length 3 of models generated by the training function and training
class information. The first element has mixture models the same length as the
number of features in the expression data for one class. The second element has
the same information for the other class. The third element has the class sizes
of the classes in the training data.

weighted Default: "both". Either "both", "unweighted" or "weighted". In weighted
mode, the difference in densities is summed over all features. If unweighted
mode, each feature’s vote is worth the same. Both can be calculated simultane-
ously.

weight Default: "all". Either "all", "height difference", "crossover distance"
or "sum differences". The type of weight to calculate. For "height difference",
the weight of each prediction is equal to the sum of the vertical distances for all
of the mixture components within one class subtracted from the sum of the com-
ponents of the other class, summed for each value of x. For "crossover distance",
the x positions where two mixture densities cross is firstly calculated. The pre-
dicted class is the class with the highest mixture sum at the particular value of x
and the weight is the distance of x from the nearest density crossover point. For
"sum differences", the weight is the sum of the weights calculated by both
types of distances.

densityXvalues Default: 1024. Only relevant when weight is "crossover distance". The
number of equally-spaced locations at which to calculate y values for each mix-
ture density.

minDifference Default: 0. The minimum difference in sums of mixture densities within each
class for a feature to be allowed to vote. Can be a vector of cutoffs. If no features
for a particular sample have a difference large enough, the class predicted is
simply the largest class.

mixmodels 35

returnType Default: "class". Either "class", "score" or "both". Sets the return value
from the prediction to either a vector of class labels, score for a sample belonging
to the second class, as determined by the factor levels, or both labels and scores
in a data.frame.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

If weighted is TRUE, then a sample’s predicted class is the class with the largest sum of weights,
each scaled for the number of samples in the training data of each class. Otherwise, when weighted
is FALSE, each feature has an equal vote, and votes for the class with the largest weight, scaled for
class sizes in the training set.

If weight is "crossover distance", the crossover points are computed by considering the dis-
tance between y values of the two densities at every x value. x values for which the sign of the dif-
ference changes compared to the difference of the closest lower value of x are used as the crossover
points. Setting weight to "sum differences" is intended to find a mix of features which are
strongly differentially expressed and differentially variable.

Value

For mixModelsTrain, a list of trained models of class MixmodCluster. For mixModelsPredict,
a vector or list of class prediction information, as long as the number of samples in the test data,
or lists of such information, if both weighted and unweighted voting or a range of minDifference
values was provided.

Author(s)

Dario Strbenac

Examples

First 25 samples and first 5 genes are mixtures of two normals. Last 25 samples are
one normal.

genesMatrix <- sapply(1:25, function(geneColumn) c(rnorm(5, sample(c(5, 15), replace = TRUE, 5))))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(geneColumn) c(rnorm(5, 9, 1))))
genesMatrix <- rbind(genesMatrix, sapply(1:50, function(geneColumn) rnorm(5, 9, 1)))
rownames(genesMatrix) <- paste("Gene", 1:10)
colnames(genesMatrix) <- paste("Sample", 1:50)
classes <- factor(rep(c("Poor", "Good"), each = 25), levels = c("Good", "Poor"))

trainSamples <- c(1:15, 26:40)
testSamples <- c(16:25, 41:50)

trained <- mixModelsTrain(genesMatrix[, trainSamples], classes[trainSamples],
nbCluster = 1:3)

mixModelsPredict(trained, genesMatrix[, testSamples], minDifference = 0:3)

36 naiveBayesKernel

mnlogit Trained mnlogit Object

Description

Enables S4 method dispatching on it.

Author(s)

Dario Strbenac

multnet Trained multnet Object

Description

Enables S4 method dispatching on it.

Author(s)

Dario Strbenac

naiveBayesKernel Classification Using A Bayes Classifier with Kernel Density Estimates

Description

Kernel density estimates are fitted to the training data and a naive Bayes classifier is used to classify
samples in the test data.

Usage

S4 method for signature 'matrix'
naiveBayesKernel(measurements, classes, test, ...)
S4 method for signature 'DataFrame'

naiveBayesKernel(measurements, classes, test,
densityFunction = density,
densityParameters = list(bw = "nrd0", n = 1024,

from = expression(min(featureValues)),
to = expression(max(featureValues))),

weighted = c("both", "unweighted", "weighted"),
weight = c("all", "height difference", "crossover distance", "sum differences"),
minDifference = 0, returnType = c("class", "score", "both"), verbose = 3)

S4 method for signature 'MultiAssayExperiment'
naiveBayesKernel(measurements, test, targets = names(measurements), ...)

naiveBayesKernel 37

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

test An object of the same class as measurements with no samples in common with
measurements and the same number of features as it.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that integer variables
from the clinical data table will be used.

... Unused variables by the three top-level methods passed to the internal method
which does the classification.

densityFunction

Default: density. A function which will return a probability density, which is
essentially a list with x and y coordinates.

densityParameters

A list of options for densityFunction. Default: list(bw = "nrd0", n = 1024, from = expression(min(featureValues)), to = expression(max(featureValues)).

weighted Default: "both". Either "both", "unweighted" or "weighted". In weighted
mode, the difference in densities is summed over all features. If unweighted
mode, each feature’s vote is worth the same. Both can be calculated simultane-
ously.

weight Default: "all". Either "all", "height difference", "crossover distance"
or "sum differences". The type of weight to calculate. For "height difference",
the weight of each prediction is equal to the vertical distance between two den-
sities, for a particular value of x. For "crossover distance", the x positions
where two densities cross is firstly calculated. The predicted class is the class
with the highest density at the particular value of x and the weight is the dis-
tance of x from the nearest density crossover point. For "sum differences",
the weight is the sum of the weights calculated by both types of distances.

minDifference Default: 0. The minimum difference in densities for a feature to be allowed to
vote. Can be a vector of cutoffs. If no features for a particular sample have a
difference large enough, the class predicted is simply the largest class.

returnType Default: "class". Either "class", "score" or "both". Sets the return value
from the prediction to either a vector of class labels, score for a sample belonging
to the second class, as determined by the factor levels, or both labels and scores
in a data.frame.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

If weighted is TRUE, then a sample’s predicted class is the class with the largest sum of weights,
each scaled for the number of samples in the training data of each class. Otherwise, when weighted
is FALSE, each feature has an equal vote, and votes for the class with the largest weight, scaled for
class sizes in the training set.

The variable name of each feature’s measurements in the iteration over all features is featureValues.
This is important to know if each feature’s measurements need to be referred to in the specification

38 NSCpredictInterface

of densityParameters, such as for specifying the range of x values of the density function to be
computed. For example, see the default value of densityParameters above.

If weight is "crossover distance", the crossover points are computed by considering the dis-
tance between y values of the two densities at every x value. x values for which the sign of the dif-
ference changes compared to the difference of the closest lower value of x are used as the crossover
points.

Setting weight to "sum differences" is intended to find a mix of features which are strongly
differentially expressed and differentially variable.

Value

A vector or list of class prediction information, as long as the number of samples in the test data, or
lists of such information, if a variety of predictions is generated.

Author(s)

Dario Strbenac, John Ormerod

Examples

trainMatrix <- matrix(rnorm(1000, 8, 2), ncol = 10)
classes <- factor(rep(c("Poor", "Good"), each = 5))

Make first 30 genes increased in value for poor samples.
trainMatrix[1:30, 1:5] <- trainMatrix[1:30, 1:5] + 5

testMatrix <- matrix(rnorm(1000, 8, 2), ncol = 10)

Make first 30 genes increased in value for sixth to tenth samples.
testMatrix[1:30, 6:10] <- testMatrix[1:30, 6:10] + 5

naiveBayesKernel(trainMatrix, classes, testMatrix)

NSCpredictInterface Interface for pamr.predict Function from pamr CRAN Package

Description

Restructures variables from ClassifyR framework to be compatible with pamr.predict definition.

Usage

S4 method for signature 'pamrtrained,matrix'
NSCpredictInterface(trained, test, ...)
S4 method for signature 'pamrtrained,DataFrame'

NSCpredictInterface(trained, test, classes = NULL, ..., verbose = 3)
S4 method for signature 'pamrtrained,MultiAssayExperiment'

NSCpredictInterface(trained, test, targets = names(test), ...)

NSCpredictInterface 39

Arguments

trained An object of class pamrtrained.

test An object of the same class as measurements with no samples in common with
measurements used in the training stage and the same number of features as it.
Also, if a DataFrame, the class column must be absent.

classes Either NULL or a character vector of length 1, specifying the column name to
remove.

targets If test is a MultiAssayExperiment, the names of the data tables to be used.
"clinical" is also a valid value and specifies that numeric variables from the
clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or optional settings that are
passed to pamr.predict.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

This function is an interface between the ClassifyR framework and pamr.predict. It selects the
highest threshold that gives the minimum error rate in the training data.

Value

A factor of predicted classes for the test data.

Author(s)

Dario Strbenac

See Also

pamr.predict for the function that was interfaced to.

Examples

if(require(pamr))
{

Samples in one class with differential expression to other class.
genesMatrix <- sapply(1:25, function(geneColumn) c(rnorm(100, 9, 1)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(geneColumn)

c(rnorm(75, 9, 1), rnorm(25, 14, 1))))
classes <- factor(rep(c("Poor", "Good"), each = 25))

fit <- NSCtrainInterface(genesMatrix[, c(1:20, 26:45)], classes[c(1:20, 26:45)])
NSCpredictInterface(fit, genesMatrix[, c(21:25, 46:50)])

}

40 NSCselectionInterface

NSCselectionInterface Interface for pamr.listgenes Function from pamr CRAN Package

Description

Restructures variables from ClassifyR framework to be compatible with pamr.listgenes defini-
tion.

Usage

S4 method for signature 'matrix'
NSCselectionInterface(measurements, classes, ...)
S4 method for signature 'DataFrame'

NSCselectionInterface(measurements, classes, datasetName,
trained, ..., selectionName = "Shrunken Centroids", verbose = 3)

S4 method for signature 'MultiAssayExperiment'
NSCselectionInterface(measurements, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

datasetName A name for the data set used. Stored in the result.

trained The output of NSCtrainInterface, which is identical to the output of pamr.listgenes.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or extra arguments passed to
pamr.listgenes.

selectionName A name to identify this selection method by. Stored in the result.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

This function is an interface between the ClassifyR framework and pamr.listgenes.

The set of features chosen is the obtained by considering the range of thresholds provided to
NSCtrainInterface and using the threshold that obtains the lowest cross-validation error rate on
the training set.

Value

An object of class SelectResult. The rankedFeatures slot will be empty.

NSCtrainInterface 41

Author(s)

Dario Strbenac

See Also

pamr.listgenes for the function that was interfaced to.

Examples

if(require(pamr))
{

Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(geneColumn) c(rnorm(100, 9, 1)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(geneColumn)

c(rnorm(75, 9, 1), rnorm(25, 14, 1))))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))
classes <- factor(rep(c("Poor", "Good"), each = 25))

trained <- NSCtrainInterface(genesMatrix, classes)
selected <- NSCselectionInterface(genesMatrix, classes, "Example", trained)

selected@chosenFeatures
}

NSCtrainInterface Interface for pamr.train Function from pamr CRAN Package

Description

Restructures variables from ClassifyR framework to be compatible with pamr.train definition.

Usage

S4 method for signature 'matrix'
NSCtrainInterface(measurements, classes, ...)
S4 method for signature 'DataFrame'

NSCtrainInterface(measurements, classes, ..., verbose = 3)
S4 method for signature 'MultiAssayExperiment'

NSCtrainInterface(measurements, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

42 pamrtrained

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or extra arguments passed to
pamr.train.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

This function is an interface between the ClassifyR framework and pamr.train.

Value

A list with elements as described in pamr.train.

Author(s)

Dario Strbenac

See Also

pamr.train for the function that was interfaced to.

Examples

if(require(pamr))
{

Samples in one class with differential expression to other class.
genesMatrix <- sapply(1:25, function(geneColumn) c(rnorm(100, 9, 1)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(geneColumn)

c(rnorm(75, 9, 1), rnorm(25, 14, 1))))
classes <- factor(rep(c("Poor", "Good"), each = 25))

NSCtrainInterface(genesMatrix, classes)
}

pamrtrained Trained pamr Object

Description

Enables S4 method dispatching on it.

Author(s)

Dario Strbenac

performancePlot 43

performancePlot Plot Performance Measures for Various Classifications

Description

Draws a graphical summary of a particular performance measure for a list of classifications

Usage

S4 method for signature 'list'
performancePlot(results, aggregate = character(),

xVariable = c("classificationName", "datasetName", "selectionName",
"validation"),

performanceName = NULL,
boxFillColouring = c("classificationName", "datasetName", "selectionName",

"validation", "None"),
boxFillColours = NULL,
boxLineColouring = c("classificationName", "datasetName", "selectionName",

"validation", "None"),
boxLineColours = NULL,
rowVariable = c("None", "validation", "datasetName", "classificationName",

"selectionName"),
columnVariable = c("datasetName", "classificationName", "validation",

"selectionName", "None"),
yLimits = c(0, 1), fontSizes = c(24, 16, 12, 12), title = NULL,
xLabel = "Analysis", yLabel = performanceName,
margin = grid::unit(c(0, 0, 0, 0), "lines"), rotate90 = FALSE,
showLegend = TRUE, plot = TRUE)

Arguments

results A list of ClassifyResult objects.

aggregate A character vector of the levels of xVariable to aggregate to a single number
by taking the mean. This is particularly meaningful when the cross-validation is
leave-k-out, when k is small.

xVariable The factor to make separate boxes for.
performanceName

The name of the performance measure to make comparisons of. This is one of
the names printed in the Performance Measures field when a ClassifyResult
object is printed.

boxFillColouring

A factor to colour the boxes by.

boxFillColours A vector of colours, one for each level of boxFillColouring.
boxLineColouring

A factor to colour the box lines by.

boxLineColours A vector of colours, one for each level of boxLineColouring.

rowVariable The slot name that different levels of are plotted as separate rows of boxplots.

columnVariable The slot name that different levels of are plotted as separate columns of boxplots.

44 performancePlot

yLimits The minimum and maximum value of the performance metric to plot.

fontSizes A vector of length 4. The first number is the size of the title. The second number
is the size of the axes titles. The third number is the size of the axes values. The
fourth number is the font size of the titles of grouped plots, if any are produced.
In other words, when rowVariable or columnVariable are not NULL.

title An overall title for the plot.

xLabel Label to be used for the x-axis.

yLabel Label to be used for the y-axis of overlap percentages.

margin The margin to have around the plot.

rotate90 Logical. IF TRUE, the plot is horizontal.

showLegend If TRUE, a legend is plotted next to the plot. If FALSE, it is hidden.

plot Logical. IF TRUE, a plot is produced on the current graphics device.

Details

Possible values for slot names are "datasetName", "classificationName", and "validation".
If "None", then that graphic element is not used.

If there are multiple values for a performance measure in a single result object, it is plotted as a
boxplot, unless aggregate is TRUE, in which case the all predictions in a single result object are
considered simultaneously, so that only one performance number is calculated, and a barchart is
plotted.

Value

An object of class ggplot and a plot on the current graphics device, if plot is TRUE.

Author(s)

Dario Strbenac

Examples

predicted <- list(data.frame(sample = sample(10, 20, replace = TRUE),
class = rep(c("Healthy", "Cancer"), each = 10)),

data.frame(sample = sample(10, 20, replace = TRUE),
class = rep(c("Healthy", "Cancer"), each = 10)),

data.frame(sample = sample(10, 20, replace = TRUE),
class = rep(c("Healthy", "Cancer"), each = 10)),

data.frame(sample = sample(10, 20, replace = TRUE),
class = rep(c("Healthy", "Cancer"), each = 10)))

actual <- factor(rep(c("Healthy", "Cancer"), each = 5))
result1 <- ClassifyResult("Example", "Differential Expression", "t-test",

LETTERS[1:10], LETTERS[10:1], list(1:100, c(1:9, 11:101)),
list(c(1:3), c(2, 5, 6), c(1:4), c(5:8), 1:5),
predicted, actual, validation = list("resampleFold", 2, 2))

result1 <- calcCVperformance(result1, "macro F1")

predicted <- list(data.frame(sample = sample(10, 20, replace = TRUE),
class = rep(c("Healthy", "Cancer"), each = 10)),

data.frame(sample = sample(10, 20, replace = TRUE),
class = rep(c("Healthy", "Cancer"), each = 10)),

data.frame(sample = sample(10, 20, replace = TRUE),

plotFeatureClasses 45

class = rep(c("Healthy", "Cancer"), each = 10)),
data.frame(sample = sample(10, 20, replace = TRUE),

class = rep(c("Healthy", "Cancer"), each = 10)))
result2 <- ClassifyResult("Example", "Differential Variability", "Bartlett Test",

LETTERS[1:10], LETTERS[10:1], list(1:100, c(1:5, 11:105)),
list(c(1:3), c(4:6), c(1, 6, 7, 9), c(5:8), c(1, 5, 10)),
predicted, actual, validation = list("resampleFold", 2, 2))

result2 <- calcCVperformance(result2, "macro F1")

performancePlot(list(result1, result2), performanceName = "Macro F1 Score",
title = "Comparison", boxLineColouring = "None", columnVariable = "None")

plotFeatureClasses Plot Density, Scatterplot or Bar Chart for Features By Class

Description

Allows the visualisation of measurements in the data set.

Usage

S4 method for signature 'matrix'
plotFeatureClasses(measurements, classes, targets, ...)
S4 method for signature 'DataFrame'

plotFeatureClasses(measurements, classes, targets, groupBy = NULL,
groupingName = NULL, whichNumericPlots = c("both", "density", "stripchart"),
measurementLimits = NULL, lineWidth = 1, dotBinWidth = 1,
xAxisLabel = NULL, yAxisLabels = c("Density", "Classes"),

showXtickLabels = TRUE, showYtickLabels = TRUE,
xLabelPositions = "auto", yLabelPositions = "auto",
fontSizes = c(24, 16, 12, 12, 12),

colours = c("#3F48CC", "#880015"), showDatasetName = TRUE, plot = TRUE)
S4 method for signature 'MultiAssayExperiment'

plotFeatureClasses(measurements, targets, groupBy = NULL, groupingName = NULL,
showDatasetName = TRUE, ...)

Arguments

measurements A matrix, DataFrame or a MultiAssayExperiment object containing the data.
For a matrix, the rows are for features and the columns are for samples. A
column with name "class" must be present in the DataFrame stored in the
colData slot.

classes Either a vector of class labels of class factor or if the measurements are of
class DataFrame a character vector of length 1 containing the column name in
measurement is also permitted. Not used if measurements is a MultiAssayExperiment
object.

targets If measurements is a matrix or DataFrame, then a vector of numeric or charac-
ter indicies corresponding to the row number or the row name of the feature(s) to
be plotted. If measurements is a MultiAssayExperiment, then a DataFrame of
2 columns must be specified. The first column contains the names of the tables
and the second contains the names of the variables, thus each row unambigu-
ously specifies a variable to be plotted.

46 plotFeatureClasses

groupBy If measurements is a DataFrame, then a character vector of length 1, which
contains the name of a categorical feature, may be specified. If measurements
is a MultiAssayExperiment, then a character vector of length 2, which contains
the name of a data table as the first element and the name of a categorical feature
as the second element, may be specified. Additionally, the value "clinical"
may be used to refer to the column annotation stored in the colData slot of the
of the MultiAssayExperiment object. A density plot will have additional lines
of different line types for each category. A strip chart plot will have a separate
strip chart created for each category and the charts will be drawn in a single
column on the graphics device. A bar chart plot will similarly be laid out.

groupingName A label for the grouping variable to be used in plots.
... Unused variables by the three top-level methods passed to the internal method

which generates the plot(s).
whichNumericPlots

If the feature has numeric measurements, this option specifies which types of
plot(s) to draw. The default value is "both", which draws a density plot and
also a stip chart below the density plot. Other options are "density" for drawing
only a density plot and "stripchart" for drawing only a strip chart.

measurementLimits

The minimum and maximum expression values to plot. Default: NULL. By de-
fault, the limits are automatically computed from the data values.

lineWidth Numeric value that alters the line thickness for density plots. Default: 1.
dotBinWidth Numeric value that alters the diameter of dots in the strip chart. Default: 1.
xAxisLabel The axis label for the plot’s horizontal axis. Default: NULL.
yAxisLabels A character vector of length 1 or 2. If the feature’s measurements are numeric

an whichNumericPlots has the value "both", the first value is the y-axis label
for the density plot and the second value is the y-axis label for the strip chart.
Otherwise, if the feature’s measurements are numeric and only one plot is drawn,
then a character vector of length 1 specifies the y-axis label for that particular
plot. Ignored if the feature’s measurements are categorical.

showXtickLabels

Logical. Default: TRUE. If set to FALSE, the x-axis labels are hidden.
showYtickLabels

Logical. Default: TRUE. If set to FALSE, the y-axis labels are hidden.
xLabelPositions

Either "auto" or a vector of values. The positions of labels on the x-axis. If
"auto", the placement of labels is automatically calculated.

yLabelPositions

Either "auto" or a vector of values. The positions of labels on the y-axis. If
"auto", the placement of labels is automatically calculated.

fontSizes A vector of length 5. The first number is the size of the title. The second number
is the size of the axes titles. The third number is the size of the axes values. The
fourth number is the size of the legends’ titles. The fifth number is the font size
of the legend labels.

colours The colours to plot data of each class in. The length of this vector must be as
long as the distinct number of classes in the data set.

showDatasetName

Logical. Default: TRUE. If TRUE and the data is in a MultiAssayExperiment
object, the the name of the table in which the feature is stored in is added to the
plot title.

PredictParams 47

plot Logical. Default: TRUE. If TRUE, a plot is produced on the current graphics
device.

Value

Plots are created on the current graphics device and a list of plot objects is invisibly returned. The
classes of the plot object are determined based on the type of data plotted and the number of plots
per feature generated. If the plotted variable is discrete or if the variable is numeric and one plot
type was specified, the list element is an object of class ggplot. Otherwise, if the variable is
numeric and both the density and stripchart plot types were made, the list element is an object of
class TableGrob.

Settling lineWidth and dotBinWidth to the same value doesn’t result in the density plot and the
strip chart having elements of the same size. Some manual experimentation is required to get
similarly sized plot elements.

Author(s)

Dario Strbenac

Examples

First 25 samples and first 5 genes are mixtures of two normals. Last 25 samples are
one normal.
genesMatrix <- sapply(1:15, function(geneColumn) c(rnorm(5, 5, 1)))
genesMatrix <- cbind(genesMatrix, sapply(1:10, function(geneColumn) c(rnorm(5, 15, 1))))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(geneColumn) c(rnorm(5, 9, 2))))
genesMatrix <- rbind(genesMatrix, sapply(1:50, function(geneColumn) rnorm(95, 9, 3)))
rownames(genesMatrix) <- paste("Gene", 1:100)
colnames(genesMatrix) <- paste("Sample", 1:50)
classes <- factor(rep(c("Poor", "Good"), each = 25), levels = c("Good", "Poor"))
plotFeatureClasses(genesMatrix, classes, targets = "Gene 4",

xAxisLabel = expression(log[2](expression)), dotBinWidth = 0.5)

infectionResults <- c(rep(c("No", "Yes"), c(20, 5)), rep(c("No", "Yes"), c(5, 20)))
genders <- factor(rep(c("Male", "Female"), each = 10, length.out = 50))
clinicalData <- DataFrame(Gender = genders, Sugar = runif(50, 4, 10),

Infection = factor(infectionResults, levels = c("No", "Yes")),
row.names = colnames(genesMatrix))

plotFeatureClasses(clinicalData, classes, targets = "Infection")
plotFeatureClasses(clinicalData, classes, targets = "Infection", groupBy = "Gender")

dataContainer <- MultiAssayExperiment(list(RNA = genesMatrix),
colData = cbind(clinicalData, class = classes))

targetFeatures <- DataFrame(table = "RNA", feature = "Gene 50")
plotFeatureClasses(dataContainer, targets = targetFeatures,

groupBy = c("clinical", "Gender"),
xAxisLabel = expression(log[2](expression)))

PredictParams Parameters for Classifier Prediction

Description

Collects the function to be used for making predictions and any associated parameters.

48 previousSelection

Constructor

PredictParams() Creates a default PredictParams object. This assumes that the object returned
by the classifier has a list element named "class".

PredictParams(predictor, intermediate = character(0), getClasses, ...) Creates a
PredictParams object which stores the function which will do the class prediction, if required,
and parameters that the function will use. If the training function also makes predictions, this
must be set to NULL.

predictor Either NULL or a function to make predictions with. If it is a function, then the
first argument must accept the classifier made in the training step. The second argument
must accept a DataFrame of new data.

intermediate Character vector. Names of any variables created in prior stages in runTest
that need to be passed to the prediction function.

getClasses A function to extract the vector of class predictions from the result object cre-
ated by predictor.

... Other arguments that predictor may use.

Author(s)

Dario Strbenac

Examples

predictParams <- PredictParams(predictor = DLDApredictInterface, getClasses = function(result) result)
For prediction by trained object created by DLDA function.
PredictParams(predictor = NULL, getClasses = function(result) result)
For when the training function also does prediction and directly returns the
predictions.

previousSelection Automated Selection of Previously Selected Features

Description

Uses the feature selection of the same cross-validation iteration of a previous classification for the
current classification task.

Usage

S4 method for signature 'matrix'
previousSelection(measurements, ...)
S4 method for signature 'DataFrame'

previousSelection(measurements, classes, datasetName,
classifyResult, minimumOverlapPercent = 80,
selectionName = "Previous Selection", .iteration, verbose = 3)

S4 method for signature 'MultiAssayExperiment'
previousSelection(measurements, ...)

previousSelection 49

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Do not specify this variable. It is ignored and only used to create consistency of
formal parameters with other feature selection methods.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method.

datasetName A name for the data set used. Stored in the result.

classifyResult An existing classification result from which to take the feature selections from.
minimumOverlapPercent

If at least this many selected features can’t be identified in the current data set,
then the selection stops with an error.

selectionName A name to identify this selection method by. Stored in the result.

.iteration Do not specify this variable. It is set by runTests if this function is being
repeatedly called by runTests.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Value

An object of class SelectResult.

Author(s)

Dario Strbenac

Examples

#if(require(sparsediscrim))
#{

Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)

c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
colnames(genesMatrix) <- paste("Sample", 1:50)
rownames(genesMatrix) <- paste("Gene", 1:100)
classes <- factor(rep(c("Poor", "Good"), each = 25))
resubstitute <- ResubstituteParams(nFeatures = seq(10, 100, 10),

performanceType = "error", better = "lower")
result <- runTests(genesMatrix, classes, "Example", "Differential Expression",

permutations = 2, fold = 2,
params = list(SelectParams(), TrainParams(), PredictParams()))

Genes 50 to 74 have differential expression in new data set.
newDataset <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
newDataset <- cbind(newDataset, rbind(sapply(1:25, function(sample) rnorm(49, 9, 2)),

sapply(1:25, function(sample) rnorm(25, 14, 2)),
sapply(1:25, function(sample) rnorm(26, 9, 2))))

rownames(newDataset) <- rownames(genesMatrix)
colnames(newDataset) <- colnames(genesMatrix)

50 randomForestInterface

newerResult <- runTests(newDataset, classes, "Latest Data Set",
"Differential Expression", permutations = 2, fold = 2,

params = list(SelectParams(previousSelection,
intermediate = ".iteration",
classifyResult = result),

TrainParams(), PredictParams()))

However, only genes 76 to 100 are chosen, because the feature selections are
carried over from the first cross-validated classification.
features(newerResult)

#}

randomForest Trained randomForest Object

Description

Enables S4 method dispatching on it.

Author(s)

Dario Strbenac

randomForestInterface An Interface for randomForest Package’s randomForest Function

Description

A random forest classifier builds multiple decision trees and uses the predictions of the trees to
determine a single prediction for each test sample.

Usage

S4 method for signature 'matrix'
randomForestInterface(measurements, classes, test, ...)
S4 method for signature 'DataFrame'

randomForestInterface(measurements, classes, test, ..., verbose = 3)
S4 method for signature 'MultiAssayExperiment'

randomForestInterface(measurements, targets = names(measurements), test, ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

test An object of the same class as measurements with no samples in common with
measurements and the same number of features as it.

rankingPlot 51

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that integer variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method (e.g. verbose) or options
which are accepted by the randomForest function.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

If measurements is an object of class MultiAssayExperiment, the factor of sample classes must
be stored in the DataFrame accessible by the colData function with column name "class".

Value

An object of type randomForest. The predictions of the test set samples are stored in the list
element named "predicted" of the "test" element.

Author(s)

Dario Strbenac

Examples

if(require(randomForest))
{

Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)

c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
classes <- factor(rep(c("Poor", "Good"), each = 25))
colnames(genesMatrix) <- paste("Sample", 1:ncol(genesMatrix))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))
selected <- rownames(genesMatrix)[91:100]
trainingSamples <- c(1:20, 26:45)
testingSamples <- c(21:25, 46:50)

classified <- randomForestInterface(genesMatrix[, trainingSamples],
classes[trainingSamples],
genesMatrix[, testingSamples], ntree = 10)

classified[["test"]][["predicted"]]
}

rankingPlot Plot Pair-wise Overlap of Ranked Features

52 rankingPlot

Description

Pair-wise overlaps can be done for two types of analyses. Firstly, each cross-validation iteration can
be considered within a single classification. This explores the feature ranking stability. Secondly,
the overlap may be considered between different classification results. This approach compares the
feature ranking commonality between different methods. Two types of commonality are possible
to analyse. One summary is the average pair-wise overlap between a level of the comparison factor
and the other summary is the pair-wise overlap of each level of the comparison factor that is not the
reference level against the reference level. The overlaps are converted to percentages and plotted as
lineplots.

Usage

S4 method for signature 'list'
rankingPlot(results, topRanked = seq(10, 100, 10),

comparison = c("within", "classificationName", "validation",
"datasetName", "selectionName"),

referenceLevel = NULL,
lineColourVariable = c("validation", "datasetName", "classificationName",

"selectionName", "None"),
lineColours = NULL, lineWidth = 1,

pointTypeVariable = c("datasetName", "classificationName", "validation",
"selectionName", "None"),

pointSize = 2, legendLinesPointsSize = 1,
rowVariable = c("None", "datasetName", "classificationName", "validation",

"selectionName"),
columnVariable = c("classificationName", "datasetName", "validation",

"selectionName", "None"),
yMax = 100, fontSizes = c(24, 16, 12, 12, 12, 16),

title = if(comparison[1] == "within") "Feature Ranking Stability" else
"Feature Ranking Commonality",

xLabelPositions = seq(10, 100, 10),
yLabel = if(is.null(referenceLevel)) "Average Common Features (%)" else

paste("Average Common Features with", referenceLevel, "(%)"),
margin = grid::unit(c(1, 1, 1, 1), "lines"),
showLegend = TRUE, plot = TRUE, parallelParams = bpparam())

Arguments

results A list of ClassifyResult or SelectResult objects.

topRanked A sequence of thresholds of number of the best features to use for overlapping.

comparison The aspect of the experimental design to compare. See Details section for a
detailed description.

referenceLevel The level of the comparison factor to use as the reference to compare each non-
reference level to. If NULL, then each level has the average pairwise overlap
calculated to all other levels.

lineColourVariable

The slot name that different levels of are plotted as different line colours.

lineColours A vector of colours for different levels of the line colouring parameter. If NULL,
a default palette is used.

lineWidth A single number controlling the thickness of lines drawn.

rankingPlot 53

pointTypeVariable

The slot name that different levels of are plotted as different point shapes on the
lines.

pointSize A single number specifying the diameter of points drawn.
legendLinesPointsSize

A single number specifying the size of the lines and points in the legend, if a
legend is drawn.

rowVariable The slot name that different levels of are plotted as separate rows of lineplots.
columnVariable The slot name that different levels of are plotted as separate columns of lineplots.
yMax The maximum value of the percentage to plot.
fontSizes A vector of length 6. The first number is the size of the title. The second

number is the size of the axes titles. The third number is the size of the axes
values. The fourth number is the size of the legends’ titles. The fifth number is
the font size of the legend labels. The sixth number is the font size of the titles
of grouped plots, if any are produced. In other words, when rowVariable or
columnVariable are not NULL.

title An overall title for the plot.
xLabelPositions

Locations where to put labels on the x-axis.
yLabel Label to be used for the y-axis of overlap percentages.
margin The margin to have around the plot.
showLegend If TRUE, a legend is plotted next to the plot. If FALSE, it is hidden.
plot Logical. If TRUE, a plot is produced on the current graphics device.
parallelParams An object of class MulticoreParam or SnowParam.

Details

Possible values for characteristics are "datasetName", "classificationName", "selectionName",
and "validation". If "None", then that graphical element is not used.

If comparison is "within", then the feature rankings are compared within a particular analy-
sis. The result will inform how stable the feature rankings are between different iterations of
cross-validation for a particular analysis. If comparison is "classificationName", then the
feature rankings are compared across different classification algorithm types, for each level of
"datasetName", "selectionName" and "validation". The result will inform how stable the
feature rankings are between different classification algorithms, for every cross-validation scheme,
selection algorithm and data set. If comparison is "selectionName", then the feature rank-
ings are compared across different feature selection algorithms, for each level of "datasetName",
"classificationName" and "validation". The result will inform how stable the feature rank-
ings are between feature selection classification algorithms, for every data set, classification algo-
rithm, and cross-validation scheme. If comparison is "validation", then the feature rankings
are compared across different cross-validation schemes, for each level of "classificationName",
"selectionName" and "datasetName". The result will inform how stable the feature rankings
are between different cross-validation schemes, for every selection algorithm, classification algo-
rithm and every data set. If comparison is "datasetName", then the feature rankings are com-
pared across different data sets, for each level of "classificationName", "selectionName" and
"validation". The result will inform how stable the feature rankings are between different data
sets, for every classification algorithm and every data set. This could be used to consider if different
experimental studies have a highly overlapping feature ranking pattern.

Calculating all pair-wise set overlaps for a large cross-validation result can be time-consuming. This
stage can be done on multiple CPUs by providing the relevant options to parallelParams.

54 ResubstituteParams

Value

An object of class ggplot and a plot on the current graphics device, if plot is TRUE.

Author(s)

Dario Strbenac

Examples

predicted <- data.frame(sample = sample(10, 100, replace = TRUE),
class = rep(c("Healthy", "Cancer"), each = 50))

actual <- factor(rep(c("Healthy", "Cancer"), each = 5))
rankList <- list(list(1:100, c(5:1, 6:100)), list(c(1:9, 11:101), c(1:50, 60:51, 61:100)))
result1 <- ClassifyResult("Example", "Differential Expression", "Example Selection",

LETTERS[1:10], LETTERS[10:1], rankList,
list(list(rankList[[1]][[1]][1:15], rankList[[1]][[2]][1:15]),

list(rankList[[2]][[1]][1:10], rankList[[2]][[2]][1:10])),
list(predicted), actual, list("resampleFold", 2, 2))

predicted[, "class"] <- sample(predicted[, "class"])
rankList <- list(list(1:100, c(sample(20), 21:100)), list(c(1:9, 11:101), c(1:50, 60:51, 61:100)))
result2 <- ClassifyResult("Example", "Differential Variability", "Example Selection",

LETTERS[1:10], LETTERS[10:1], rankList,
list(list(rankList[[1]][[1]][1:15], rankList[[1]][[2]][1:15]),

list(rankList[[2]][[1]][1:10], rankList[[2]][[2]][1:10])),
list(predicted), actual, validation = list("resampleFold", 2, 2))

rankingPlot(list(result1, result2), pointTypeVariable = "classificationName")

oneRanking <- c(10, 8, 1, 2, 3, 4, 7, 9, 5, 6)
otherRanking <- c(8, 2, 3, 4, 1, 10, 6, 9, 7, 5)
oneResult <- SelectResult("Example", "One Method", list(oneRanking), list(oneRanking[1:5]))
otherResult <- SelectResult("Example", "Another Method", list(otherRanking), list(otherRanking[1:2]))

rankingPlot(list(oneResult, otherResult), comparison = "selectionName",
referenceLevel = "One Method", topRanked = seq(2, 8, 2),
lineColourVariable = "selectionName", columnVariable = "None",
pointTypeVariable = "None", xLabelPositions = 1:10)

ResubstituteParams Parameters for Resubstitution Error Calculation

Description

Some feature selection functions provided in the framework use resubstitution error rate to choose
the best number of features for classification. This class stores parameters related to that process.

Constructor

ResubstituteParams() Creates a default ResubstituteParams object. The number of features
tried is 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. The performance measure used is the balanced
error rate.

ROCplot 55

ResubstituteParams(nFeatures, performanceType, better = c("lower", "higher"))
Creates a ResubstituteParams object, storing information about the number of top features to
calculate the performance measure for, the performance measure to use, and if higher or lower
values of the measure are better.

nFeatures A vector for the top number of features to test the resubstitution error rate for.
performanceType One of the eleven types of performance metrics which can be calculated

by calcCVperformance.
better Either "lower" or "higher". Determines whether higher or lower values of the

performance measure are desirable.
intermediate Character vector. Names of any variables created in prior stages by runTest

that need to be passed to the classifier.
... Other named parameters which will be used by the classifier.

Author(s)

Dario Strbenac

Examples

ResubstituteParams(nFeatures = seq(25, 1000, 25), performanceType = "error", better = "lower")

ROCplot Plot Receiver Operating Curve Graphs for Classification Results

Description

The average pair-wise overlap is computed for every pair of cross-validations. The overlap is con-
verted to a percentage and plotted as lineplots.

Usage

S4 method for signature 'list'
ROCplot(results, nBins = sapply(results, totalPredictions),

lineColourVariable = c("classificationName", "datasetName", "selectionName",
"validation", "None"), lineColours = NULL,
lineWidth = 1, fontSizes = c(24, 16, 12, 12, 12), labelPositions = seq(0.0, 1.0, 0.2),
plotTitle = "ROC", legendTitle = NULL, xLabel = "False Positive Rate",
yLabel = "True Positive Rate", plot = TRUE, showAUC = TRUE)

Arguments

results A list of ClassifyResult objects.

nBins The number of intervals to group the samples’ scores into. By default, there are
as many bins as there were predictions made, for each result object.

lineColourVariable

The slot name that different levels of are plotted as different line colours.

lineColours A vector of colours for different levels of the line colouring parameter. If NULL,
a default palette is used.

lineWidth A single number controlling the thickness of lines drawn.

56 ROCplot

fontSizes A vector of length 5. The first number is the size of the title. The second number
is the size of the axes titles and AUC text, if it is not part of the legend. The third
number is the size of the axes values. The fourth number is the size of the
legends’ titles. The fifth number is the font size of the legend labels.

labelPositions Locations where to put labels on the x and y axes.
plotTitle An overall title for the plot.
legendTitle A default name is used if the value is NULL. Otherwise a character name can be

provided.
xLabel Label to be used for the x-axis of false positive rate.
yLabel Label to be used for the y-axis of true positive rate.
plot Logical. If TRUE, a plot is produced on the current graphics device.
showAUC Logical. If TRUE, the AUC value of each result is added to its legend text.

Details

Possible values for slot names are "datasetName", "classificationName", and "validation".
If "None", then any lines drawn will be black.

The scores stored in the results should be higher if the sample is more likely to be from the second
class, based on the levels of the actual classes. The scores must be in a column named "score".

For cross-validated classification, all predictions from all iterations are considered simultaneously,
to calculate one curve per classification.

The number of bins determines how many pairs of TPR and FPR points will be used to draw the
plot. A higher number will result in a smoother ROC curve.

The AUC is calculated using the trapezoidal rule.

Value

An object of class ggplot and a plot on the current graphics device, if plot is TRUE.

Author(s)

Dario Strbenac

Examples

predicted <- list(data.frame(sample = LETTERS[c(1, 8, 15, 3, 11, 20, 19, 18)],
score = c(0.11, 0.32, 0.47, 0.24, 0.87, 0.80, 0.40, 0.75)),

data.frame(sample = LETTERS[c(11, 18, 15, 4, 6, 10, 11, 12)],
score = c(0.55, 0.44, 0.67, 0.44, 0.67, 0.80, 0.40, 0.60)))

actual <- factor(c(rep("Healthy", 10), rep("Cancer", 10)), levels = c("Healthy", "Cancer"))
result1 <- ClassifyResult("Example", "Differential Expression", "t-test",

LETTERS[1:20], LETTERS[10:1],
list(1:100, c(1:9, 11:101)), list(sample(10, 10), sample(10, 10)),

predicted, actual, list("resampleFold", 2, 1))
predicted[[1]][, "score"][c(2, 6)] <- c(0.60, 0.40)

result2 <- ClassifyResult("Example", "Differential Variability", "Bartlett Test",
LETTERS[1:20], LETTERS[10:1], list(1:100, c(1:5, 11:105)),
list(sample(10, 10), sample(10, 10)),
predicted, actual, validation = list("resampleFold", 2, 1))

ROCplot(list(result1, result2), lineColourVariable = "classificationName",
plotTitle = "Cancer ROC")

runTest 57

runTest Perform a Single Classification

Description

For a data set of features and samples, the classification process is run. It consists of data transfor-
mation, feature selection, classifier training and testing (prediction of samples not used in training).

Usage

S4 method for signature 'matrix'
runTest(measurements, classes, ...)
S4 method for signature 'DataFrame'

runTest(measurements, classes, datasetName, classificationName,
training, testing, params = list(SelectParams(), TrainParams(), PredictParams()),

verbose = 1, .iteration = NULL)
S4 method for signature 'MultiAssayExperiment'

runTest(measurements, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples. The
sample identifiers must be present as column names of the matrix or the row
names of the DataFrame.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method.

datasetName A name associated with the data set used.
classificationName

A name associated with the classification.

training A vector which specifies the training samples.

testing A vector which specifies the test samples.

params A list of objects of class of TransformParams, SelectParams, TrainParams,
or PredictParams. The order they are in the list determines the order in which
the stages of classification are done in.

verbose Default: 1. A number between 0 and 3 for the amount of progress messages to
give. A higher number will produce more messages as more lower-level func-
tions print messages.

.iteration Not to be set by a user. This value is used to keep track of the cross-validation
iteration, if called by runTests.

58 runTests

Details

This function only performs one classification and prediction. See runTests for a driver function
that enables a number of different cross-validation schemes to be applied and uses this function to
perform each iteration. datasetName and classificationName need to be provided.

Value

If called directly by the user rather than being used internally by runTests, a SelectResult object.

Author(s)

Dario Strbenac

Examples

#if(require(sparsediscrim))
#{

data(asthma)
resubstituteParams <- ResubstituteParams(nFeatures = seq(5, 25, 5),

performanceType = "balanced error",
better = "lower")

runTest(measurements, classes, "Asthma", "Different Means",
params = list(SelectParams(limmaSelection, "Moderated t Statistic",

resubstituteParams = resubstituteParams),
TrainParams(DLDAtrainInterface),
PredictParams(DLDApredictInterface,

getClasses = function(result) result[["class"]])),
training = (1:ncol(measurements)) %% 2 == 0,
testing = (1:ncol(measurements)) %% 2 != 0)

#}

runTests Reproducibly Run Various Kinds of Cross-Validation

Description

Enables doing classification schemes such as ordinary 10-fold, 100 permutations 5-fold, and leave
one out cross-validation. Processing in parallel is possible by leveraging the package BiocParallel.

Usage

S4 method for signature 'matrix'
runTests(measurements, classes, ...)
S4 method for signature 'DataFrame'

runTests(measurements, classes, datasetName, classificationName,
validation = c("permute", "leaveOut", "fold"),
permutePartition = c("fold", "split"),
permutations = 100, percent = 25, folds = 5, leave = 2,
seed, parallelParams = bpparam(),
params = list(SelectParams(), TrainParams(), PredictParams()), verbose = 1)

S4 method for signature 'MultiAssayExperiment'
runTests(measurements, targets = names(measurements), ...)

runTests 59

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples. The
sample identifiers must be present as column names of the matrix or the row
names of the DataFrame.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method.

datasetName A name associated with the data set used.
classificationName

A name associated with the classification.

validation Default: "permute". "permute" for repeated permuting. "leaveOut" for leav-
ing all possible combinations of k samples as test samples. "fold" for folding
of the data set (no resampling).

permutePartition

Default: "fold". Either "fold" or "split". Only applicable if validation is
"permute". If "fold", then the samples are split into folds and in each iteration
one is used as the test set. If "split", the samples are split into two groups, the
sizes being based on the percent value. One group is used as the training set,
the other is the test set.

permutations Default: 100. Relevant when permuting is used. The number of times to do
reordering of the samples before splitting or folding them.

percent Default: 25. Used when permutation with the split method is chosen. The
percentage of samples to be in the test set.

folds Default: 5. Relevant when repeated permutations are done and permutePartition
is set to "fold" or when validation is set to "fold". The number of folds to
break the data set into. Each fold is used once as the test set.

leave Default: 2. Relevant when leave-k-out cross-validation is used. The number of
samples to leave for testing.

seed The random number generator used for repeated resampling will use this seed, if
it is provided. Allows reproducibility of repeated usage on the same input data.

parallelParams An object of class MulticoreParam or SnowParam.

params A list of objects of class of TransformParams, SelectParams, TrainParams
or PredictParams. The order they are in the list determines the order in which
the stages of classification are done in.

verbose Default: 1. A number between 0 and 3 for the amount of progress messages to
give. A higher number will produce more messages as more lower-level func-
tions print messages.

Value

If the predictor function made a single prediction, then an object of class ClassifyResult. If the
predictor function made a set of predictions, then a list of such objects.

60 samplesMetricMap

Author(s)

Dario Strbenac

Examples

#if(require(sparsediscrim))
#{

data(asthma)

resubstituteParams <- ResubstituteParams(nFeatures = seq(5, 25, 5),
performanceType = "balanced error",
better = "lower")

runTests(measurements, classes, "Asthma", "Different Means",
permutations = 5,
params = list(SelectParams(limmaSelection, "Moderated t Statistic",

resubstituteParams = resubstituteParams),
TrainParams(DLDAtrainInterface),
PredictParams(DLDApredictInterface,

getClasses = function(result) result[["class"]])))
#}

samplesMetricMap Plot a Grid of Sample Error Rates or Accuracies

Description

A grid of coloured tiles is drawn. There is one column for each sample and one row for each
classification result.

Usage

S4 method for signature 'list'
samplesMetricMap(results,

comparison = c("classificationName", "datasetName", "selectionName",
"validation"),

metric = c("error", "accuracy"),
metricColours = list(c("#3F48CC", "#6F75D8", "#9FA3E5", "#CFD1F2", "#FFFFFF"),

c("#880015", "#A53F4F", "#C37F8A", "#E1BFC4", "#FFFFFF")),
classColours = c("#3F48CC", "#880015"), fontSizes = c(24, 16, 12, 12, 12),
mapHeight = 4, title = "Error Comparison", showLegends = TRUE,
xAxisLabel = "Sample Name", showXtickLabels = TRUE,
yAxisLabel = "Analysis", showYtickLabels = TRUE,
legendSize = grid::unit(1, "lines"), plot = TRUE)

Arguments

results A list of ClassifyResult objects.

comparison The aspect of the experimental design to compare.

metric The sample-wise metric to calculate and plot.

metricColours A vector of colours for metric levels.

samplesMetricMap 61

classColours Either a vector of colours for class levels if both classes should have same colour,
or a list of length 2, with each component being a vector of the same length. The
vector has the colour gradient for each class.

fontSizes A vector of length 5. The first number is the size of the title. The second number
is the size of the axes titles. The third number is the size of the axes values. The
fourth number is the size of the legends’ titles. The fifth number is the font size
of the legend labels.

mapHeight Height of the map, relative to the height of the class colour bar.

title The title to place above the plot.

showLegends Logical. IF FALSE, the legend is not drawn.

xAxisLabel The name plotted for the x-axis. NULL suppresses label.
showXtickLabels

Logical. IF FALSE, the x-axis labels are hidden.
showYtickLabels

Logical. IF FALSE, the y-axis labels are hidden.

yAxisLabel The name plotted for the y-axis. NULL suppresses label.

legendSize The size of the boxes in the legends.

plot Logical. IF TRUE, a plot is produced on the current graphics device.

Details

The names of results determine the row names that will be in the plot. The length of metricColours
determines how many bins the metric values will be discretised to.

Value

A plot is produced and a grob is returned that can be saved to a graphics device.

Author(s)

Dario Strbenac

Examples

predicted <- data.frame(sample = LETTERS[sample(10, 100, replace = TRUE)],
class = rep(c("Healthy", "Cancer"), each = 50))

actual <- factor(rep(c("Healthy", "Cancer"), each = 5), levels = c("Healthy", "Cancer"))
result1 <- ClassifyResult("Example", "Differential Expression", "t-test",

LETTERS[1:10], LETTERS[10:1], list(1:100), list(sample(10, 10)),
list(predicted), actual, list("resampleFold", 100, 5))

predicted[, "class"] <- sample(predicted[, "class"])
result2 <- ClassifyResult("Example", "Differential Variability", "Bartlett Test",

LETTERS[1:10], LETTERS[10:1], list(1:100), list(sample(10, 10)),
list(predicted), actual, validation = list("leave", 2))

result1 <- calcCVperformance(result1, "sample error")
result2 <- calcCVperformance(result2, "sample error")
wholePlot <- samplesMetricMap(list(Gene = result1, Protein = result2))

62 selectionPlot

selectionPlot Plot Pair-wise Overlap or Selection Size Distribution of Selected Fea-
tures

Description

Pair-wise overlaps can be done for two types of analyses. Firstly, each cross-validation iteration can
be considered within a single classification. This explores the feature selection stability. Secondly,
the overlap may be considered between different classification results. This approach compares
the feature selection commonality between different selection methods. Two types of commonality
are possible to analyse. One summary is the average pair-wise overlap between a level of the
comparison factor and the other summary is the pair-wise overlap of each level of the comparison
factor that is not the reference level against the reference level. The overlaps are converted to
percentages and plotted as lineplots.

Additionally, a heatmap of selection size frequencies can be made.

Usage

S4 method for signature 'list'
selectionPlot(results,

comparison = c("within", "size", "classificationName",
"validation", "datasetName", "selectionName"),

referenceLevel = NULL,
xVariable = c("classificationName", "datasetName", "validation", "selectionName"),

boxFillColouring = c("classificationName", "size", "datasetName",
"validation", "selectionName", "None"),

boxFillColours = NULL,
boxFillBinBoundaries = NULL, setSizeBinBoundaries = NULL,
boxLineColouring = c("validation", "classificationName",

"datasetName", "selectionName", "None"),
boxLineColours = NULL,
rowVariable = c("None", "validation", "datasetName",

"classificationName", "selectionName"),
columnVariable = c("datasetName", "classificationName",

"validation", "selectionName", "None"),
yMax = 100, fontSizes = c(24, 16, 12, 16),

title = if(comparison[1] == "within") "Feature Selection Stability"
else if(comparison == "size") "Feature Selection Size" else
"Feature Selection Commonality",

xLabel = "Analysis",
yLabel = if(is.null(referenceLevel) && comparison != "size") "Common Features (%)"

else if(comparison == "size") "Set Size" else
paste("Common Features with", referenceLevel, "(%)"),

margin = grid::unit(c(1, 1, 1, 1), "lines"), rotate90 = FALSE,
showLegend = TRUE, plot = TRUE, parallelParams = bpparam())

Arguments

results A list of ClassifyResult or SelectResult objects.

comparison The aspect of the experimental design to compare. See Details section for a
detailed description.

selectionPlot 63

referenceLevel The level of the comparison factor to use as the reference to compare each non-
reference level to. If NULL, then each level has the average pairwise overlap
calculated to all other levels.

xVariable The factor to make separate boxes in the boxplot for.
boxFillColouring

A factor to colour the boxes by.

boxFillColours A vector of colours, one for each level of boxFillColouring. If NULL, a default
palette is used.

boxFillBinBoundaries

Used only if comparison is "size". A vector of integers, specifying the bin
boundaries of percentages of size bins observed. e.g. 0, 10, 20, 30, 40, 50.

setSizeBinBoundaries

Used only if comparison is "size". A vector of integers, specifying the bin
boundaries of set size bins. e.g. 50, 100, 150, 200, 250.

boxLineColouring

A factor to colour the box lines by.

boxLineColours A vector of colours, one for each level of boxLineColouring. If NULL, a default
palette is used.

rowVariable The slot name that different levels of are plotted as separate rows of boxplots.

columnVariable The slot name that different levels of are plotted as separate columns of boxplots.

yMax The maximum value of the percentage to plot.

fontSizes A vector of length 4. The first number is the size of the title. The second number
is the size of the axes titles. The third number is the size of the axes values. The
fourth number is the font size of the titles of grouped plots, if any are produced.
In other words, when rowVariable or columnVariable are not NULL.

title An overall title for the plot.

xLabel Label to be used for the x-axis.

yLabel Label to be used for the y-axis of overlap percentages.

margin The margin to have around the plot.

rotate90 Logical. If TRUE, the boxplot is horizontal.

showLegend If TRUE, a legend is plotted next to the plot. If FALSE, it is hidden.

plot Logical. If TRUE, a plot is produced on the current graphics device.

parallelParams An object of class MulticoreParam or SnowParam.

Details

Possible values for characteristics are "datasetName", "classificationName", "size", "selectionName",
and "validation". If "None", then that graphical element is not used.

If comparison is "within", then the feature selection overlaps are compared within a particu-
lar analysis. The result will inform how stable the selections are between different iterations of
cross-validation for a particular analysis. If comparison is "classificationName", then the
feature selections are compared across different classification algorithm types, for each level of
"datasetName", "selectionName" and "validation". The result will inform how stable the fea-
ture selections are between different classification algorithms, for every cross-validation scheme,
selection algorithm and data set. If comparison is "selectionName", then the feature selec-
tions are compared across different feature selection algorithms, for each level of "datasetName",

64 selectionPlot

"classificationName" and "validation". The result will inform how stable the feature se-
lections are between feature selection algorithms, for every data set, classification algorithm, and
cross-validation scheme. If comparison is "validation", then the feature selections are compared
across different cross-validation schemes, for each level of "classificationName", "selectionName"
and "datasetName". The result will inform how stable the feature selections are between different
cross-validation schemes, for every selection algorithm, classification algorithm and every data set.
If comparison is "datasetName", then the feature selections are compared across different data
sets, for each level of "classificationName", "selectionName", and "validation". The result
will inform how stable the feature selections are between different data sets, for every classification
algorithm and every data set. This could be used to consider if different experimental studies have
a highly overlapping feature selection pattern.

Calculating all pair-wise set overlaps can be time-consuming. This stage can be done on multiple
CPUs by providing the relevant options to parallelParams. The percentage is calculated as the
intersection of two sets of features divided by the union of the sets, multiplied by 100.

For the selection size mode, boxFillBins is used to create bins which include the lowest value for
the first bin, and the highest value for the last bin using cut.

Value

An object of class ggplot and a plot on the current graphics device, if plot is TRUE.

Author(s)

Dario Strbenac

Examples

predicted <- data.frame(sample = sample(10, 100, replace = TRUE),
class = rep(c("Healthy", "Cancer"), each = 50))

actual <- factor(rep(c("Healthy", "Cancer"), each = 5))
rankList <- list(list(1:100, c(5:1, 6:100)),

list(c(1:9, 11:101), c(1:50, 60:51, 61:100)))
result1 <- ClassifyResult("Example", "Differential Expression",

"Example Selection", LETTERS[1:10], LETTERS[10:1],
rankList,

list(list(rankList[[1]][[1]][1:15], rankList[[1]][[2]][1:15]),
list(rankList[[2]][[1]][1:10], rankList[[2]][[2]][1:10])),

list(predicted), actual, list("resampleFold", 2, 2))

predicted[, "class"] <- sample(predicted[, "class"])
rankList <- list(list(1:100, c(sample(20), 21:100)),

list(c(1:9, 11:101), c(1:50, 60:51, 61:100)))
result2 <- ClassifyResult("Example", "Differential Variability",

"Example Selection",
LETTERS[1:10], LETTERS[10:1], rankList,

list(list(rankList[[1]][[1]][1:15], rankList[[1]][[2]][1:15]),
list(rankList[[2]][[1]][1:10], rankList[[2]][[2]][1:10])),

list(predicted), actual, validation = list("resampleFold", 2, 2))

selectionPlot(list(result1, result2), xVariable = "classificationName",
xLabel = "Analysis", columnVariable = "None", rowVariable = "None",
boxFillColouring = "classificationName")

selectionPlot(list(result1, result2), comparison = "size",
xVariable = "classificationName", xLabel = "Analysis",

SelectParams 65

columnVariable = "None", rowVariable = "None",
boxFillColouring = "size", boxFillBinBoundaries = seq(0, 100, 10),
setSizeBinBoundaries = seq(0, 25, 5), boxLineColouring = "None")

oneRanking <- c(10, 8, 1, 2, 3, 4, 7, 9, 5, 6)
otherRanking <- c(8, 2, 3, 4, 1, 10, 6, 9, 7, 5)
oneResult <- SelectResult("Example", "One Method", list(oneRanking), list(oneRanking[1:5]))
otherResult <- SelectResult("Example", "Another Method", list(otherRanking), list(otherRanking[1:2]))

selectionPlot(list(oneResult, otherResult), comparison = "selectionName",
xVariable = "selectionName", xLabel = "Selection Method",
columnVariable = "None", rowVariable = "None",
boxFillColouring = "selectionName", boxLineColouring = "None")

SelectParams Parameters for Feature Selection

Description

Collects and checks necessary parameters required for feature selection. The empty constructor is
provided for convenience.

Constructor

SelectParams() Creates a default SelectParams object. This uses a limma t-test and tries the top
10 to top 100 features in increments of 10, and picks the number of features with the best
resubstitution balanced error rate. Users should create an appropriate SelectParams object
for the characteristics of their data, once they are familiar with this software.

SelectParams(featureSelection, selectionName, minPresence = 1, intermediate = character(0),
subsetToSelections = TRUE, ...)

Creates a SelectParams object which stores the function which will do the selection and pa-
rameters that the function will use.

featureSelection Either a function which will do the selection or a list of such functions.
For a particular function, the first argument must be an DataFrame object. The function’s
return value must be a SelectResult object.

selectionName A name to identify this selection method by.
minPresence If a list of functions was provided, how many of those must a feature have been

selected by to be used in classification. 1 is equivalent to a set union and a number the
same length as featureSelection is equivalent to set intersection.

intermediate Character vector. Names of any variables created in prior stages by runTest
that need to be passed to a feature selection function.

subsetToSelections Whether to subset the data table(s), after feature selection has been
done.

... Other named parameters which will be used by the selection function. If featureSelection
was a list of functions, this must be a list of lists, as long as featureSelection.

Author(s)

Dario Strbenac

66 SelectResult

Examples

#if(require(sparsediscrim))
#{

SelectParams(limmaSelection, "t-test",
trainParams = TrainParams(), predictParams = PredictParams(),
resubstituteParams = ResubstituteParams())

For pamr shrinkage selection.
SelectParams(NSCselectionInterface, datasetName = "Cancer",

intermediate = "trained", subsetToSelections = FALSE)
#}

SelectResult Container for Storing Feature Selection Results

Description

Contains a list of ranked feature identifiers, from most discriminative to least discriminative, and a
list of feature identifiers selected for use in classification. The names or indices will be in a data
frame if the input data set is a MultiAssayExperiment, with the first column containing the name
of the data table the feature is from and the second column the index or name of the feature. Each
vector or data frame element in the list corresponds to a particular iteration of classifier training.
Nested lists will be present if the permutation and folding cross-validation scheme was used. This
class is not intended to be created by the user, but could be used in another software package.

Constructor

SelectResult(datasetName, selectionName, rankedFeatures, chosenFeatures)

datasetName A name associated with the data set used.

selectionName A name associated with the classification.

rankedFeatures Identifiers of all features, from most to least discriminative.

chosenFeatures Identifiers of features selected at each fold.

Summary

A method which summarises the results is available. result is a SelectResult object.

show(result) Prints a short summary of what result contains.

Author(s)

Dario Strbenac

Examples

SelectResult("Asthma", "Moderated t-test", list(1:50), list(1:10))

subtractFromLocation 67

subtractFromLocation Subtract Numeric Feature Measurements from a Location

Description

For each numeric feature, calculates the location, and subtracts all measurements from that location.

Usage

S4 method for signature 'matrix'
subtractFromLocation(measurements, training, location = c("mean", "median"),

absolute = TRUE, verbose = 3)
S4 method for signature 'DataFrame'

subtractFromLocation(measurements, training, location = c("mean", "median"),
absolute = TRUE, verbose = 3)

S4 method for signature 'MultiAssayExperiment'
subtractFromLocation(measurements, training, targets = names(measurements),

location = c("mean", "median"), absolute = TRUE, verbose = 3)

Arguments

measurements A matrix, DataFrame or a MultiAssayExperiment object containing the data.
For a matrix, the rows are for features and the columns are for samples.

training A vector specifying which samples are in the training set.

location Character. Either "mean" or "median".

absolute Logical. Default: TRUE. If TRUE, then absolute values of the differences are
returned. Otherwise, they are signed.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

verbose Default: 3. A progress message is shown if this value is 3.

Details

Only the samples specified by training are used in the calculation of the location. To use all
samples for calculation of the location, simply provide indices of all the samples.

Value

The same class of variable as the input variable measurements is, with the numeric features sub-
tracted from the calculated location.

Author(s)

Dario Strbenac

Examples

aMatrix <- matrix(1:100, ncol = 10)
subtractFromLocation(aMatrix, training = 1:5, "median")

68 SVMinterface

svm Trained svm Object

Description

Enables S4 method dispatching on it.

Author(s)

Dario Strbenac

SVMinterface An Interface for e1071 Package’s Support Vector Machine Classifier.

Description

SVMtrainInterface generates a trained SVM classifier and SVMpredictInterface uses it to make
predictions on a test data set.

Usage

S4 method for signature 'matrix'
SVMtrainInterface(measurements, classes, ...)
S4 method for signature 'DataFrame'

SVMtrainInterface(measurements, classes, ..., verbose = 3)
S4 method for signature 'MultiAssayExperiment'

SVMtrainInterface(measurements, targets = names(measurements), ...)
S4 method for signature 'svm,matrix'

SVMpredictInterface(model, test, ...)
S4 method for signature 'svm,DataFrame'

SVMpredictInterface(model, test, classes = NULL, verbose = 3)
S4 method for signature 'svm,MultiAssayExperiment'

SVMpredictInterface(model, test, targets = names(test), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples. If of
type DataFrame, the data set is subset to only those features of type integer.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

test An object of the same class as measurements with no samples in common with
measurements and the same number of features as it. Also, if a DataFrame, the
class column must be absent.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

TrainParams 69

model A fitted model as returned by SVMtrainInterface.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method (e.g. verbose) or options
that are used by the svm function.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

If measurements is an object of class MultiAssayExperiment, the factor of sample classes must
be stored in the DataFrame accessible by the colData function with column name "class".

Value

For SVMtrainInterface, a trained SVM classifier of type svm. For SVMpredictInterface, a
result of type factor, as created by e1071’s predict method for trained SVM models.

Author(s)

Dario Strbenac

Examples

if(require(e1071))
{

Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)

c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
classes <- factor(rep(c("Poor", "Good"), each = 25))
colnames(genesMatrix) <- paste("Sample", 1:ncol(genesMatrix))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))
trainingSamples <- c(1:20, 26:45)
testingSamples <- c(21:25, 46:50)

classifier <- SVMtrainInterface(genesMatrix[, trainingSamples],
classes[trainingSamples], kernel = "linear")

SVMpredictInterface(classifier, genesMatrix[, testingSamples])
}

TrainParams Parameters for Classifier Training

Description

Collects and checks necessary parameters required for classifier training. The empty constructor is
provided for convenience.

70 TransformParams

Constructor

TrainParams() Creates a default TrainParams object. The classifier function is DLDA. Users
should create an appropriate TrainParams object for the characteristics of their data, once
they are familiar with this software.

TrainParams(classifier, intermediate = character(0), getFeatures = NULL, ...)
Creates a TrainParams object which stores the function which will do the classifier building
and parameters that the function will use.
classifier A function which will construct a classifier, and also possibly make the predic-

tions. The first argument must be a DataFrame object. The second argument must be a
vector of classes. If the function also makes predictions and the value of the predictor
setting of PredictParams is therefore NULL, the third argument must be a DataFrame of
test data. The function must also accept a parameter named verbose. The function’s
return value can be either a trained classifier if the function only does training or a vector
or data frame of class predictions if it also does prediction with the test set samples.

intermediate Character vector. Names of any variables created in prior stages by runTest
that need to be passed to classifier.

getFeatures A function may be specified that extracts the selected features from the trained
model. This is relevant if using a classifier that does feature selection within training (e.g.
random forest). The function must return a list of two vectors. The first vector contains
the ranked features (or empty if the training algorithm doesn’t produce rankings) and the
second vector contains the selected features.

... Other named parameters which will be used by the classifier.

Author(s)

Dario Strbenac

Examples

#if(require(sparsediscrim))
trainParams <- TrainParams(DLDAtrainInterface)

TransformParams Parameters for Data Transformation

Description

Collects and checks necessary parameters required for transformation. The empty constructor is
for when no data transformation is desired. One data transformation function is distributed. See
subtractFromLocation.

Constructor

TransformParams(transform, intermediate = character(0), ...) Creates a Transform-
Params object which stores the function which will do the transformation and parameters that
the function will use.
transform A function which will do the transformation. The first argument must be a

DataFrame object.
intermediate Character vector. Names of any variables created in prior stages by runTest

that need to be passed to a feature selection function.
... Other named parameters which will be used by the transformation function.

TransformParams 71

Author(s)

Dario Strbenac

Examples

transforParams <- TransformParams(subtractFromLocation, location = "median")
Subtract all values from training set median, to obtain absolute deviations.

Index

∗Topic datasets
asthma, 3

actualClasses (ClassifyResult), 9
actualClasses,ClassifyResult-method

(ClassifyResult), 9
asthma, 3

bartlett.test, 4
bartlettSelection, 3
bartlettSelection,DataFrame-method

(bartlettSelection), 3
bartlettSelection,matrix-method

(bartlettSelection), 3
bartlettSelection,MultiAssayExperiment-method

(bartlettSelection), 3
BiocParallel, 58

calcCVperformance, 55
calcCVperformance (calcPerformance), 5
calcCVperformance,ClassifyResult-method

(calcPerformance), 5
calcExternalPerformance

(calcPerformance), 5
calcExternalPerformance,factor,factor-method

(calcPerformance), 5
calcNormFactors, 16
calcPerformance, 5
character, 10
characterOrDataFrame, 7
characterOrDataFrame-class

(characterOrDataFrame), 7
classes (asthma), 3
Classify, 7, 8
classifyInterface, 7
classifyInterface,DataFrame-method

(classifyInterface), 7
classifyInterface,matrix-method

(classifyInterface), 7
classifyInterface,MultiAssayExperiment-method

(classifyInterface), 7
ClassifyResult, 6, 7, 9, 11, 43, 52, 55, 59,

60, 62

ClassifyResult,character,character,character,character,character-method
(ClassifyResult), 9

ClassifyResult-class (ClassifyResult), 9
cut, 64

data.frame, 9
DataFrame, 4, 8, 13, 14, 18, 19, 23–25, 27, 29,

31, 32, 34, 37, 40, 41, 45, 48–50, 57,
59, 65, 67, 68, 70

density, 37
distribution, 11
distribution,ClassifyResult-method

(distribution), 11
dlda, 12
dlda-class (dlda), 12
DLDAinterface, 12
DLDApredictInterface (DLDAinterface), 12
DLDApredictInterface,dlda,DataFrame-method

(DLDAinterface), 12
DLDApredictInterface,dlda,matrix-method

(DLDAinterface), 12
DLDApredictInterface,dlda,MultiAssayExperiment-method

(DLDAinterface), 12
DLDAtrainInterface (DLDAinterface), 12
DLDAtrainInterface,DataFrame-method

(DLDAinterface), 12
DLDAtrainInterface,matrix-method

(DLDAinterface), 12
DLDAtrainInterface,MultiAssayExperiment-method

(DLDAinterface), 12
DMDselection, 14
DMDselection,DataFrame-method

(DMDselection), 14
DMDselection,matrix-method

(DMDselection), 14
DMDselection,MultiAssayExperiment-method

(DMDselection), 14

edgeR, 16
edgeRselection, 15
edgeRselection,DataFrame-method

(edgeRselection), 15
edgeRselection,matrix-method

(edgeRselection), 15

72

INDEX 73

edgeRselection,MultiAssayExperiment-method
(edgeRselection), 15

elasticNetGLMinterface, 17
elasticNetGLMpredictInterface

(elasticNetGLMinterface), 17
elasticNetGLMpredictInterface,multnet,DataFrame-method

(elasticNetGLMinterface), 17
elasticNetGLMpredictInterface,multnet,matrix-method

(elasticNetGLMinterface), 17
elasticNetGLMpredictInterface,multnet,MultiAssayExperiment-method

(elasticNetGLMinterface), 17
elasticNetGLMtrainInterface

(elasticNetGLMinterface), 17
elasticNetGLMtrainInterface,DataFrame-method

(elasticNetGLMinterface), 17
elasticNetGLMtrainInterface,matrix-method

(elasticNetGLMinterface), 17
elasticNetGLMtrainInterface,MultiAssayExperiment-method

(elasticNetGLMinterface), 17
estimateDisp, 16

factor, 4, 8, 13, 16, 18, 20, 24, 26, 27, 29, 31,
32, 34, 37, 40, 41, 45, 50, 57, 59, 68

featureNames (ClassifyResult), 9
featureNames,ClassifyResult-method

(ClassifyResult), 9
features (ClassifyResult), 9
features,ClassifyResult-method

(ClassifyResult), 9
fisherDiscriminant, 19
fisherDiscriminant,DataFrame-method

(fisherDiscriminant), 19
fisherDiscriminant,matrix-method

(fisherDiscriminant), 19
fisherDiscriminant,MultiAssayExperiment-method

(fisherDiscriminant), 19
forestFeatures, 21
forestFeatures,randomForest-method

(forestFeatures), 21
function, 48
functionOrList, 22
functionOrList-class (functionOrList),

22
functionOrNULL, 22
functionOrNULL-class (functionOrNULL),

22

geom_histogram, 11
getLocationsAndScales, 14, 22, 26, 29
getLocationsAndScales,DataFrame-method

(getLocationsAndScales), 22
getLocationsAndScales,matrix-method

(getLocationsAndScales), 22

getLocationsAndScales,MultiAssayExperiment-method
(getLocationsAndScales), 22

glmFit, 16
glmnet, 18

KolmogorovSmirnovSelection, 23
KolmogorovSmirnovSelection,DataFrame-method

(KolmogorovSmirnovSelection),
23

KolmogorovSmirnovSelection,matrix-method
(KolmogorovSmirnovSelection),
23

KolmogorovSmirnovSelection,MultiAssayExperiment-method
(KolmogorovSmirnovSelection),
23

ks.test, 24
KullbackLeiblerSelection, 25
KullbackLeiblerSelection,DataFrame-method

(KullbackLeiblerSelection), 25
KullbackLeiblerSelection,matrix-method

(KullbackLeiblerSelection), 25
KullbackLeiblerSelection,MultiAssayExperiment-method

(KullbackLeiblerSelection), 25

leveneSelection, 27
leveneSelection,DataFrame-method

(leveneSelection), 27
leveneSelection,matrix-method

(leveneSelection), 27
leveneSelection,MultiAssayExperiment-method

(leveneSelection), 27
likelihoodRatioSelection, 28
likelihoodRatioSelection,DataFrame-method

(likelihoodRatioSelection), 28
likelihoodRatioSelection,matrix-method

(likelihoodRatioSelection), 28
likelihoodRatioSelection,MultiAssayExperiment-method

(likelihoodRatioSelection), 28
limmaSelection, 30
limmaSelection,DataFrame-method

(limmaSelection), 30
limmaSelection,matrix-method

(limmaSelection), 30
limmaSelection,MultiAssayExperiment-method

(limmaSelection), 30
list, 9, 23, 57
lmFit, 31
logisticRegressionInterface, 32
logisticRegressionPredictInterface

(logisticRegressionInterface),
32

logisticRegressionPredictInterface,mnlogit,DataFrame-method
(logisticRegressionInterface),

74 INDEX

32
logisticRegressionPredictInterface,mnlogit,matrix-method

(logisticRegressionInterface),
32

logisticRegressionPredictInterface,mnlogit,MultiAssayExperiment-method
(logisticRegressionInterface),
32

logisticRegressionTrainInterface
(logisticRegressionInterface),
32

logisticRegressionTrainInterface,DataFrame-method
(logisticRegressionInterface),
32

logisticRegressionTrainInterface,matrix-method
(logisticRegressionInterface),
32

logisticRegressionTrainInterface,MultiAssayExperiment-method
(logisticRegressionInterface),
32

matrix, 4, 8, 13, 14, 16, 18, 19, 23–25, 27, 29,
31, 32, 34, 37, 40, 41, 45, 49, 50, 57,
59, 67, 68

measurements (asthma), 3
MixmodCluster, 35
mixmodCluster, 34
mixmodels, 33
mixModelsPredict (mixmodels), 33
mixModelsPredict,list,DataFrame-method

(mixmodels), 33
mixModelsPredict,list,matrix-method

(mixmodels), 33
mixModelsPredict,list,MultiAssayExperiment-method

(mixmodels), 33
mixModelsTrain (mixmodels), 33
mixModelsTrain,DataFrame-method

(mixmodels), 33
mixModelsTrain,matrix-method

(mixmodels), 33
mixModelsTrain,MultiAssayExperiment-method

(mixmodels), 33
mnlogit, 32, 36
mnlogit-class (mnlogit), 36
MultiAssayExperiment, 4, 8, 9, 13, 14, 16,

18, 19, 23–25, 27, 29, 31, 32, 34, 37,
40, 41, 45, 49, 50, 57, 59, 66–68

MulticoreParam, 53, 59, 63
multnet, 36
multnet-class (multnet), 36

naiveBayesKernel, 36
naiveBayesKernel,DataFrame-method

(naiveBayesKernel), 36

naiveBayesKernel,matrix-method
(naiveBayesKernel), 36

naiveBayesKernel,MultiAssayExperiment-method
(naiveBayesKernel), 36

NSCpredictInterface, 38
NSCpredictInterface,pamrtrained,DataFrame-method

(NSCpredictInterface), 38
NSCpredictInterface,pamrtrained,matrix-method

(NSCpredictInterface), 38
NSCpredictInterface,pamrtrained,MultiAssayExperiment-method

(NSCpredictInterface), 38
NSCselectionInterface, 40
NSCselectionInterface,DataFrame-method

(NSCselectionInterface), 40
NSCselectionInterface,matrix-method

(NSCselectionInterface), 40
NSCselectionInterface,MultiAssayExperiment-method

(NSCselectionInterface), 40
NSCtrainInterface, 40, 41
NSCtrainInterface,DataFrame-method

(NSCtrainInterface), 41
NSCtrainInterface,matrix-method

(NSCtrainInterface), 41
NSCtrainInterface,MultiAssayExperiment-method

(NSCtrainInterface), 41

pamr.listgenes, 40, 41
pamr.predict, 38, 39
pamr.train, 41, 42
pamrtrained, 42
pamrtrained-class (pamrtrained), 42
performance (ClassifyResult), 9
performance,ClassifyResult-method

(ClassifyResult), 9
performancePlot, 43
performancePlot,list-method

(performancePlot), 43
plotFeatureClasses, 45
plotFeatureClasses,DataFrame-method

(plotFeatureClasses), 45
plotFeatureClasses,matrix-method

(plotFeatureClasses), 45
plotFeatureClasses,MultiAssayExperiment-method

(plotFeatureClasses), 45
predict.glmnet, 18
predictions (ClassifyResult), 9
predictions,ClassifyResult-method

(ClassifyResult), 9
PredictParams, 4, 14, 16, 24, 26, 27, 29, 31,

47, 57, 59
PredictParams,ANY-method

(PredictParams), 47

INDEX 75

PredictParams,functionOrNULL-method
(PredictParams), 47

PredictParams-class (PredictParams), 47
previousSelection, 48
previousSelection,DataFrame-method

(previousSelection), 48
previousSelection,matrix-method

(previousSelection), 48
previousSelection,MultiAssayExperiment-method

(previousSelection), 48

randomForest, 21, 50, 51
randomForest-class (randomForest), 50
randomForestInterface, 50
randomForestInterface,DataFrame-method

(randomForestInterface), 50
randomForestInterface,matrix-method

(randomForestInterface), 50
randomForestInterface,MultiAssayExperiment-method

(randomForestInterface), 50
rankingPlot, 51
rankingPlot,list-method (rankingPlot),

51
ResubstituteParams, 4, 15, 16, 24, 26, 27,

29, 31, 54
ResubstituteParams,ANY,ANY,ANY-method

(ResubstituteParams), 54
ResubstituteParams,numeric,character,character-method

(ResubstituteParams), 54
ResubstituteParams-class

(ResubstituteParams), 54
ROCplot, 55
ROCplot,list-method (ROCplot), 55
runTest, 48, 55, 57, 65, 70
runTest,DataFrame-method (runTest), 57
runTest,matrix-method (runTest), 57
runTest,MultiAssayExperiment-method

(runTest), 57
runTests, 5, 6, 9, 49, 57, 58, 58
runTests,DataFrame-method (runTests), 58
runTests,matrix-method (runTests), 58
runTests,MultiAssayExperiment-method

(runTests), 58

sampleNames (ClassifyResult), 9
sampleNames,ClassifyResult-method

(ClassifyResult), 9
samplesMetricMap, 60
samplesMetricMap,list-method

(samplesMetricMap), 60
selectionPlot, 62
selectionPlot,list-method

(selectionPlot), 62

SelectParams, 57, 59, 65
SelectParams,ANY-method (SelectParams),

65
SelectParams,functionOrList-method

(SelectParams), 65
SelectParams-class (SelectParams), 65
SelectResult, 4, 15, 16, 24, 26, 28, 30, 31,

40, 49, 52, 62, 65, 66
SelectResult,character,character,list,list-method

(SelectResult), 66
SelectResult-class (SelectResult), 66
show,ClassifyResult-method

(ClassifyResult), 9
show,SelectResult-method

(SelectResult), 66
SnowParam, 53, 59, 63
stat_density, 11
stats, 4
subtractFromLocation, 67, 70
subtractFromLocation,DataFrame-method

(subtractFromLocation), 67
subtractFromLocation,matrix-method

(subtractFromLocation), 67
subtractFromLocation,MultiAssayExperiment-method

(subtractFromLocation), 67
svm, 68, 69
svm-class (svm), 68
SVMinterface, 68
SVMpredictInterface (SVMinterface), 68
SVMpredictInterface,svm,DataFrame-method

(SVMinterface), 68
SVMpredictInterface,svm,matrix-method

(SVMinterface), 68
SVMpredictInterface,svm,MultiAssayExperiment-method

(SVMinterface), 68
SVMtrainInterface (SVMinterface), 68
SVMtrainInterface,DataFrame-method

(SVMinterface), 68
SVMtrainInterface,matrix-method

(SVMinterface), 68
SVMtrainInterface,MultiAssayExperiment-method

(SVMinterface), 68

totalPredictions (ClassifyResult), 9
totalPredictions,ClassifyResult-method

(ClassifyResult), 9
TrainParams, 4, 14, 16, 24, 26, 27, 29, 31, 57,

59, 69
TrainParams,ANY-method (TrainParams), 69
TrainParams,function-method

(TrainParams), 69
TrainParams-class (TrainParams), 69
TransformParams, 57, 59, 70

76 INDEX

TransformParams,ANY-method
(TransformParams), 70

TransformParams,function-method
(TransformParams), 70

TransformParams-class
(TransformParams), 70

tunedParameters (ClassifyResult), 9
tunedParameters,ClassifyResult-method

(ClassifyResult), 9

	asthma
	bartlettSelection
	calcPerformance
	characterOrDataFrame
	classifyInterface
	ClassifyResult
	distribution
	dlda
	DLDAinterface
	DMDselection
	edgeRselection
	elasticNetGLMinterface
	fisherDiscriminant
	forestFeatures
	functionOrList
	functionOrNULL
	getLocationsAndScales
	KolmogorovSmirnovSelection
	KullbackLeiblerSelection
	leveneSelection
	likelihoodRatioSelection
	limmaSelection
	logisticRegressionInterface
	mixmodels
	mnlogit
	multnet
	naiveBayesKernel
	NSCpredictInterface
	NSCselectionInterface
	NSCtrainInterface
	pamrtrained
	performancePlot
	plotFeatureClasses
	PredictParams
	previousSelection
	randomForest
	randomForestInterface
	rankingPlot
	ResubstituteParams
	ROCplot
	runTest
	runTests
	samplesMetricMap
	selectionPlot
	SelectParams
	SelectResult
	subtractFromLocation
	svm
	SVMinterface
	TrainParams
	TransformParams
	Index

