Package ‘MetaScope’

October 28, 2025
Type Package

Title Tools and functions for preprocessing 16S and metagenomic
sequencing microbiome data

Version 1.9.10

Description This package contains tools and methods for preprocessing
microbiome data. Functionality includes library generation,
demultiplexing, alignment, and microbe identification. It is in part
an R translation of the PathoScope 2.0 pipeline.

License GPL (>=3)

URL https://github.com/wejlab/metascope
https://wejlab.github.io/metascope-docs/

BugReports https://github.com/wejlab/MetaScope/issues
Depends R (>=4.1.0)

Imports BiocFileCache, Biostrings, data.table (>= 1.16.2), dplyr,
ggplot2, magrittr, Matrix, MultiAssayExperiment, Rbowtie2,
readr, rlang, Rsamtools, S4 Vectors, stringr,
SummarizedExperiment, taxonomizr, tibble, tidyr, tools

Suggests animalcules, BiocStyle, biomformat, GenomicRanges, IRanges,
knitr, lintr, plyr, R.utils, RCurl, rmarkdown, Rsubread,
spelling, sys, testthat, usethis

Enhances BiocParallel

VignetteBuilder knitr

BiocType Software

biocViews MicrobiomeData, ReproducibleResearch, SequencingData
Encoding UTF-8

Language en-US

LazyData FALSE

RoxygenNote 7.3.2

git_url https://git.bioconductor.org/packages/MetaScope
git_branch devel

git_last_commit 1f63097

git_last_commit_date 2025-08-21

https://github.com/wejlab/metascope
https://wejlab.github.io/metascope-docs/
https://github.com/wejlab/MetaScope/issues

Repository Bioconductor 3.22
Date/Publication 2025-10-28

Author Sean Lu [aut, cre] (ORCID: <https://orcid.org/0009-0007-8005-6125>),
Aubrey Odom [aut] (ORCID: <https://orcid.org/0000-0001-7113-7598>),
Rahul Varki [aut] (ORCID: <https://orcid.org/0009-0003-5721-9484>),

W. Evan Johnson [aut] (ORCID: <https://orcid.org/0000-0002-6247-6595>)

Maintainer Sean Lu <seanlu96@gmail.com>

Contents

MetaScope-package
add_In_taxa e e,
add_in_taxa ncbi e
align_details
align_target e e e
align_target_bowtie
bam_reheader R
blastn_results e
blastn_single_result
blast_reassignment
blast_result_ metrics
bt2_16S_params
bt2_missing_paramso e
bt2_regular_paramso
check _blastn_exists e
check_samtools_existS e
combined_header
convert_animalcules L
convert_animalcules_patho Lo
convert_animalcules_silva
count_matches e
download_accessions e
download_refseq
download_refseq_16S
extract_readS e e e
filter_host e
filter_host_bowtie
filter_unmapped_reads
find_taxids e
get_children L
get_multi_Seqs e e e e e e e
GELLSEOS « « v v e
locations e e e e
merge_bam_files L
metascope_blast L
metascope_id L. e e
meta_demultiplex L
mk_bowtie_index
mk_subread_index
remove_matches
taxid_to_name e e e e e e e e e e

Contents

https://orcid.org/0009-0007-8005-6125
https://orcid.org/0000-0001-7113-7598
https://orcid.org/0009-0003-5721-9484
https://orcid.org/0000-0002-6247-6595

MetaScope-package 3

Index 46

MetaScope-package MetaScope: Tools and functions for preprocessing 16S and metage-
nomic sequencing microbiome data

Description

This package contains tools and methods for preprocessing microbiome data. Functionality in-
cludes library generation, demultiplexing, alignment, and microbe identification. It is in part an R
translation of the PathoScope 2.0 pipeline.

Author(s)

Maintainer: Sean Lu <seanlu96@gmail.com> (ORCID)
Authors:

* Aubrey Odom <aodom@bu.edu> (ORCID)
e Rahul Varki <rvarki@bu.edu> (ORCID)
* W. Evan Johnson <wej@bu.edu> (ORCID)

See Also
Useful links:

* https://github.com/wejlab/metascopehttps://wejlab.github.io/metascope-docs/
* Report bugs at https://github.com/wejlab/MetaScope/issues

add_in_taxa Adds in taxa if silva database Returns MetaScope Table with silva taxa
in separate columns

Description

Adds in taxa if silva database Returns MetaScope Table with silva taxa in separate columns

Usage

add_in_taxa(metascope_id_in, caching, path_to_write)

Arguments

metascope_id_in
MetaScope ID file with silva taxa

caching Boolean for if all_silva_headers.rds is already downloaded

path_to_write Path to save all_silva_headers.rds

Value

Data.frame of taxonomy information

https://orcid.org/0009-0007-8005-6125
https://orcid.org/0000-0001-7113-7598
https://orcid.org/0009-0003-5721-9484
https://orcid.org/0000-0002-6247-6595
https://github.com/wejlab/metascope https://wejlab.github.io/metascope-docs/
https://github.com/wejlab/MetaScope/issues

4 align_details

add_in_taxa_ncbi Adds in taxa if input used NCBI database

Description

Returns MetaScope Table with NCBI taxa in separate columns

Usage

add_in_taxa_ncbi(metascope_id_in, accession, BPPARAM)

Arguments

metascope_id_in
MetaScope ID file with NCBI taxa qnames

BPPARAM An optional BiocParallelParam instance determining the parallel back-end to be
used during evaluation.

Value

data.frame or tibble of taxonomy information

align_details A universal parameter settings object for Rsubread alignment

Description

This object is a named vector of multiple options that can be chosen for functions that involve
alignment with Rsubread, namely align_target() and filter_host(). Both functions take an
object for the parameter settings, which are provided by align_details by default, or may be
given by a user-created object containing the same information.

Usage

data(align_details)

Format

list

Details

The default options included in align_details are type = "dna"”, maxMismatches = 3, nsubreads
=10, phredOffset = 33, unique = FALSE, and nBestLocations = 16. Full descriptions of these
parameters can be read by accessing ?Rsubread: :align.

Examples

data("align_details")

align_target

align_target

Align microbiome reads to a set of reference libraries

Description

This is the main MetaScope target library mapping function, using Rsubread and multiple libraries.
Aligns to each library separately, filters unmapped reads from each file, and then merges and sorts
the .bam files from each library into one output file. If desired, output can be passed to ‘filter_host()*
to remove reads that also map to filter library genomes.

Usage

align_target(

readl,

read2 = NULL,
NULL,

lib_dir =
libs,
threads =

align_file = tools::file_path_sans_ext(readl),
subread_options = align_details,

quiet = TRUE

Arguments

readi
read2
lib_dir
libs

threads

align_file

subread_options

quiet

Value

Path to the .fastq file to align.
Optional: Location of the mate pair .fastq file to align.
Path to the index files for all libraries.

A vector of character strings giving the basenames of the Subread index files
for alignment. If ALL indices to be used are located in the current working
directory, set 1ib_dir = NULL. Default is 1ib_dir = NULL.

The number of threads that can be utilized by the function. Default is 1 thread.

The basename of the output alignment file (without trailing .bam extension).

A named list specifying alignment parameters for the Rsubread: :align()
function, which is called inside align_target(). Elements should include
type, nthreads, maxMismatches, nsubreads, phredOffset, unique, and nBestLo-
cations. Descriptions of these parameters are available under ?Rsubread: :align.
Defaults to the global align_details object.

Turns off most messages. Default is TRUE.

This function writes a merged and sorted .bam file after aligning to all reference libraries given,
along with a summary report file, to the user’s working directory. The function also outputs the new

.bam filename.

Examples

align_target_bowtie

#i### Align example reads to an example reference library using Rsubread

Create temporary directory
target_ref_temp <- tempfile()
dir.create(target_ref_temp)

tax <- "Ovine atadenovirus D"

Create temporary taxonomizr accession

tmp_accession <- system.file("extdata"”, "example_accessions.sql”, package = "MetaScope")

Download genome

all_ref <- MetaScope::download_refseq(tax,
reference = FALSE,
representative = FALSE,
compress = TRUE,

out_dir = target_ref_temp,

caching = TRUE,

accession_path = tmp_accession)

Create subread index
ind_out <- mk_subread_index(all_ref)

Get path to example reads

readPath <- system.file("extdata”, "reads.fastq”,
package = "MetaScope")

Copy the example reads to the temp directory

refPath <- file.path(target_ref_temp, "reads.fastq")

file.copy(from = readPath, to = refPath)

Modify alignment parameters object
data(”align_details")
align_details[["type"]1] <- "rna
align_details[["phredOffset”]] <- 50

Just to get it to align - toy example!
align_details[["maxMismatches”]] <- 100

"

Run alignment

target_map <- align_target(refPath,
libs = stringr::str_replace_all(tax,
lib_dir = target_ref_temp,
subread_options = align_details)

Remove temporary folder
unlink(target_ref_temp, recursive = TRUE)

non n n)
’ - ’

align_target_bowtie

Align microbiome reads to set of indexed Bowtie2 libraries

Description

This is the main MetaScope target library mapping function, using Rbowtie2 and multiple libraries.
Aligns to each library separately, filters unmapped reads from each file, and then merges and

align_target_bowtie 7

sorts the .bam files from each library into one output file. If desired, output can be passed to
“filter_host_bowtie()‘ to remove reads that also map to filter library genomes.

Usage
align_target_bowtie(
readl,
read2 = NULL,
lib_dir,
libs,
align_dir,
align_file,
bowtie2_options = NULL,
threads = 1,
overwrite = FALSE,
quiet = TRUE
)
Arguments
readl Path to the .fastq file to align.
read2 Optional: Location of the mate pair .fastq file to align.
lib_dir Path to the directory that contains the Bowtie2 indexes.
libs The basename of the Bowtie2 indexes to align against (without trailing .bt2 or
.bt21 extensions).
align_dir Path to the directory where the output alignment file should be created.
align_file The basename of the output alignment file (without trailing .bam extension).

bowtie2_options
Optional: Additional parameters that can be passed to the align_target_bowtie()
function. To see all the available parameters use Rbowtie2::bowtie2_usage().
See Details for default parameters. NOTE: Users should pass all their parame-
ters as one string and if optional parameters are given then the user is responsible
for entering all the parameters to be used by Bowtie2. The only parameter that
should NOT be specified here is the number of threads.

threads The number of threads that can be utilized by the function. Default is 1 thread.
overwrite Whether existing files should be overwritten. Default is FALSE.
quiet Turns off most messages. Default is TRUE.

Details

The default parameters are the same that PathoScope 2.0 uses. "—very-sensitive-local -k 100 —score-
min L,20,1.0"

If you experience any issues with reading the input files, make sure that the file(s) are not located in
a read-only folder. This can be circumvented by copying files to a new location before running the
function.

Value

Returns the path to where the output alignment file is stored.

8 align_target_bowtie

Examples

Align example reads to an example reference library using Rbowtie2

Create temporary directory to store file
target_ref_temp <- tempfile()
dir.create(target_ref_temp)

tmp_accession <- system.file("extdata”, "example_accessions.sql”, package = "MetaScope")

Dowload reference genome

MetaScope: :download_refseq("Morbillivirus hominis”,
reference = FALSE,
representative = FALSE,
compress = TRUE,
out_dir = target_ref_temp,
caching = TRUE,
accession_path = tmp_accession

Create temporary directory to store the indices
index_temp <- tempfile()
dir.create(index_temp)

Create bowtie2 index

MetaScope: :mk_bowtie_index(
ref_dir = target_ref_temp,
lib_dir = index_temp,
lib_name = "target”,
overwrite = TRUE

Create temporary directory for final file
output_temp <- tempfile()
dir.create(output_temp)

Get path to example reads
readPath <- system.file("extdata”, "virus_example.fastq”,
package = "MetaScope")

Align to target genomes
target_map <-
MetaScope::align_target_bowtie(

readl = readPath,
lib_dir = index_temp,
libs = "target”,
align_dir = output_temp,
align_file = "bowtie_target”,
overwrite = TRUE,
bowtie2_options = "--very-sensitive-local”

Remove extra folders
unlink(target_ref_temp, recursive = TRUE)
unlink(index_temp, recursive = TRUE)
unlink(output_temp, recursive = TRUE)

bam_reheader_R 9

bam_reheader_R Replace the header from a .bam file

Description

This function replaces the header from one .bam file with a header from a different .sam file. This
function mimics the function of the ’reheader’ function in samtools. It is not intended for use by

users.
Usage
bam_reheader_R(
head,
old_bam,
new_bam = paste(tools::file_path_sans_ext(old_bam), "h.bam"”, sep = "")
)
Arguments
head A file name and location for the .sam file with the new header.
old_bam A file name and location for the .bam file which you would
new_bam A file name for the new .bam file with a replaced header. Defaults to the same
base filename plus "h.bam’. For example, ’example.bam’ will be written as
’exampleh.bam’.
Value

This function will return a new .bam file with a replaced header. The function also outputs the new
.bam filename.

blastn_results Reformat BLASTn results

Description

Reformat BLASTn results

Usage

blastn_results(
results_table,
bam_file,
num_results = 10,
num_reads_per_result = 100,
hit_list = 10,
num_threads = 1,
db_path,
out_path,
db = NULL,

10 blastn_single_result

sample_name = NULL,
quiet = quiet,
accession_path,
fasta_dir = NULL,
BPPARAM

Arguments

results_table data.frame containing the MetaScope results.
bam_file Rsamtools: :bamFile instance for the given sample.

num_results Integer; maximum number of Metascope results to BLAST. Default is 10.

num_reads_per_result
Integer; number of reads to BLAST per result. Default is 100.

hit_list Integer; how many BLAST results to fetch for each read. Default is 10.
num_threads Integer; how many threads to use if multithreading. Default is 1.

db_path Character string; filepath for the location of the pre-installed BLAST database.
out_path Character string; Output directory to save CSV output files, including base name

of files. For example, given a sample "X78256", filepath would be file.path(directory_here,
"X78256") with extension omitted.

db Currently accepts one of c("ncbhi”, "silva"”, "other"”) Default is "ncbi”,
appropriate for samples aligned against indices compiled from NCBI whole
genome databases. Alternatively, usage of an alternate database (like Green-
genes2) should be specified with "other”.

sample_name Character string, sample name for output files.

quiet Logical, whether to print out more informative messages. Default is FALSE.

accession_path (character) Filepath to NCBI accessions SQL database. See taxonomzr: : prepareDatabase().
fasta_dir Character string; Directory where fastas from metascope_id are stored.

BPPARAM An optional BiocParallelParam instance determining the parallel back-end to be
used during evaluation.

Value

Creates and exports num_results number of csv files with blast results from local blast

blastn_single_result blastn_single_result

Description

blastn_single_result

blast_reassignment 11

Usage

blastn_single_result(
results_table,
bam_file,
which_result,
num_reads = 100,
hit_list = 10,
num_threads,
db_path,
quiet,
accession_path,
bam_seqgs,
out_path,
sample_name,
fasta_dir = NULL

Arguments

results_table A dataframe of the Metascope results
bam_file A sorted bam file and index file, loaded with Rsamtools::bamFile

which_result Index in results_table for which result to Blast search

num_reads Number of reads to blast per result

hit_list Number of how many blast results to fetch per read

num_threads Number of threads if multithreading

db_path Blast database path

quiet Logical, whether to print out more informative messages. Default is FALSE.

accession_path (character) Filepath to NCBI accessions SQL database. See taxonomzr: : prepareDatabase().

bam_seqgs A list of the sequence IDs from the bam file
out_path Path to output results.
sample_name Character string, sample name for output files.
fasta_dir Path to where fasta files are stored.

Value

Returns a dataframe of blast results for a metascope result

blast_reassignment Reassign reads from MetaScope BLASTn alignment

Description

Using the output from metascope_blast(), the blast_reassignment() function takes the re-
sults and alters the original metascope_id() output to reassign reads that were invalidated by the
BLAST findings. Currently, the implementation of this function only reassigns reads to a taxon that
was already found in the sample at a higher abundance.

12 blast_result_metrics

Usage

blast_reassignment(
metascope_blast_path,
species_threshold,
num_hits,
blast_tmp_dir,
out_dir,
sample_name,
reassign_validated = FALSE,
reassign_to_validated = TRUE

Arguments

metascope_blast_path
Character string. The filepath to a metascope_blast CSV output file.
species_threshold
Numeric. A number between 0 and 1 indicating the minimum proportion of
reads needed for a taxon to be considered validated from the BLAST results.
Default is 0.2, or 20%.

num_hits Integer. The number of hits for which to assess validation. Default is 10, i.e.,
only the top 10 taxa will be assessed.

blast_tmp_dir Character string. Filepath of the directory where BLAST results were output
from the metascope_blast function. Referencing the arguments from metascope_blast,
this would be file.path(tmp_dir, "blast"”)

out_dir Character string, path to output directory.

sample_name Character string, sample name for output files.
reassign_validated

Logical. Should reads from validated accessions be reassigned to other validated
accessions. Defaults to FALSE
reassign_to_validated

Logical. Should reads only be re-assigned to validated accessions or to any
accession with more reads than the current accession. Defaults to TRUE

Value

Returns a data. frame with the reassigned taxa and read counts.

blast_result_metrics Calculates result metrics from a blast results table

Description

This function calculates the best hit (genome with most blast read hits), uniqueness score (total
number of genomes hit), species percentage hit (percentage of reads where MetaScope species also
matched the blast hit species), genus percentage hit (percentage of reads where blast genus matched
MetaScope aligned genus) and species contaminant score (percentage of reads that blasted to other
species genomes) and genus contaminant score (percentage of reads that blasted to other genus
genomes)

bt2_16S_params 13

Usage

blast_result_metrics(blast_results_table_path, accession_path, db = NULL)

Arguments

blast_results_table_path
path for blast results csv file
accession_path (character) Filepath to NCBI accessions SQL database. See taxonomzr: : prepareDatabase().

db Currently accepts one of c("ncbi”, "silva"”, "other"”) Default is "ncbi”,
appropriate for samples aligned against indices compiled from NCBI whole
genome databases. Alternatively, usage of an alternate database (like Green-
genes2) should be specified with "other"”.

Value

a vector with best_hit, uniqueness_score, species_percentage_hit genus_percentage_hit, species_contaminant_score,
and genus_contaminant_score

bt2_16S_params A universal parameter object for Bowtie 2 16S alignment

Description

This character string provides several Bowtie 2 options to provide an optimized alignment specif-
ically optimized for 16S amplicon sequencing data. This object can be used with functions that
use the Bowtie 2 aligner through the Rbowtie2 package, namely align_target_bowtie() and
filter_host_bowtie. These settings can be substituted for default settings by passing to the
bowtie2_options argument.

Usage

data(bt2_16S_params)

Format

list

Details

The default parameters listed in this object are "—local -R 2 -N 0 -L 25 -i S,1,0.75 -k 5 —score-min
L,0,1.88"

Note that k is actually 10 and is doubled internally from 5. The score-min function was chosen
such that the minimum alignment score allowed requires 98

Further delineation of Bowtie 2 parameters is provided in the Bowtie 2 manual.

Examples

data("bt2_16S_params")

https://bowtie-bio.sourceforge.net/bowtie2/manual.shtml

14 bt2_regular_params

bt2_missing_params A universal parameter object for Bowtie 2 metagenomic alignment
where the host genome is thought to be absent from the reference
database
Description

This character string provides several Bowtie 2 options to conduct an alignment useful for metagenomes,
especially in the case where a genome may not be present in the reference database. This object
can be used with functions that use the Bowtie 2 aligner through the Rbowtie2 package, namely
align_target_bowtie() and filter_host_bowtie. These settings can be substituted for default
settings by passing to the bowtie2_options argument.

Usage

data(bt2_missing_params)

Format

list

Details

The default parameters listed in this object are "—local -R 2 -N 0 -L 25 -i S,1,0.75 -k 5 —score-min
L,0,1.4".

Further delineation of Bowtie 2 parameters is provided in the Bowtie 2 manual.

Examples

data(”"bt2_missing_params”)

bt2_regular_params A universal parameter object for Bowtie 2 metagenomic or non-16S
alignment

Description

This character string provides several Bowtie 2 options to provide a 95 alignment useful for metagenomes.
This object can be used with functions that use the Bowtie 2 aligner through the Rbowtie2 package,
namely align_target_bowtie() and filter_host_bowtie. These settings can be substituted for
default settings by passing to the bowtie2_options argument.

Usage

data(bt2_regular_params)

Format

list

https://bowtie-bio.sourceforge.net/bowtie2/manual.shtml

check blastn_exists 15

Details

The default parameters listed in this object are "-local -R 2 -N 0 -L 25 -i S,1,0.75 -k 5 —score-min
L,0,1.7".

Further delineation of Bowtie 2 parameters is provided in the Bowtie 2 manual.

Examples

data(”"bt2_regular_params”)

check_blastn_exists Check if blastn exists on the system

Description
This is an internal function that is not meant to be used outside of the package. It checks whether
blastn exists on the system.

Usage

check_blastn_exists()

Details

Checks if blastn is installed

Value

Returns TRUE if blastn exists on the system, else FALSE.

check_samtools_exists Check if samtools exists on the system

Description
This is an internal function that is not meant to be used outside of the package. It checks whether
samtools exists on the system.

Usage

check_samtools_exists()

Value

Returns TRUE if samtools exists on the system, else FALSE.

https://bowtie-bio.sourceforge.net/bowtie2/manual.shtml

16 convert_animalcules

combined_header Create a combined .bam header

Description

This function generates a combined header from multiple .bam files from different reference li-
braries (e.g. a split bacterial library). It is not intended for use by users.

Usage
combined_header(bam_files, header_file = "header_tmp.sam")
Arguments
bam_files A character vector of the locations/file names of .bam files from which to com-
bine the headers.
header_file A file name and location for the output file for the combined header. This will
be a .sam format file without any reads. Defaults to "header_tmp.sam’.
Value

This function will return a combined header from all the supplied .bam files.

convert_animalcules Create a multi-assay experiment from MetaScope output for usage
with animalcules

Description

Upon completion of the MetaScope pipeline, users can analyze and visualize abundances in their
samples using the animalcules package. This function allows interoperability of metascope_id
output with both animalcules and QIIME. After running this function, the user should save the re-
turned MAE to an RDS file using a function like saveRDS to upload the output into the animalcules
package.

Usage

convert_animalcules(
meta_counts,
annot_path,
which_annot_col,
end_string = ".metascope_id.csv",
giime_biom_out = FALSE,
path_to_write = ".",
accession_path = NULL

convert_animalcules 17

Arguments

meta_counts A vector of filepaths to the counts ID CSVs output by metascope_id().

annot_path The filepath to the CSV annotation file for the samples. This CSV metadata/annotation
file should contain at least two columns, one with names of all samples WITH-
OUT the extension listed in end_string, e.g. for output file "sample_x76.metascope_id.csv",
the column specified in which_annot_col should contain the entry "sample_x76".
Sample names containing characters "_", "-", and "." are fine, however sam-
ple names beginning with numbers should be renamed to have a prefix, e.g.
"777897sample" should be renamed to "X777897sample" for both the output
file name and the annotation name.

—

which_annot_col
The name of the column of the annotation file containing the sample IDs. These
should be the same as the meta_counts root filenames.

end_string The end string used at the end of the metascope_id files. Default is ".metas-
cope_id.csv".

giime_biom_out Would you also like a giime-compatible biom file output? If yes, two files will
be saved: one is a biom file of the counts table, and the other is a specifically
formatted mapping file of metadata information. Default is FALSE.

path_to_write Ifqgiime_biom_out = TRUE, where should output QIIME files be written? Should
be a character string of the folder path. Default is ’.’, i.e. the current working
directory.

accession_path (character) Path to taxonomizr accessions. See taxonomizr: : prepareDatabase().

Value

Returns a MultiAssay Experiment file of combined sample counts data and/or biom file and map-
ping file for analysis with QIIME. The MultiAssay Experiment will have a counts assay ("MGX").

Examples

tempfolder <- tempfile()
dir.create(tempfolder)

Create three different samples

samp_names <- c("X123", "X456", "X789")

all_files <- file.path(tempfolder,
paste@(samp_names, ".csv"))

create_IDcsv <- function (out_file) {
final_taxids <- c("273036", "418127", "11234")
final_genomes <- c(
"Staphylococcus aureus RF122, complete sequence”,
"Staphylococcus aureus subsp. aureus Mu3, complete sequence”,
"Measles virus, complete genome")
best_hit <- sample(seq(100, 1050), 3)
proportion <- best_hit/sum(best_hit) |> round(2)
EMreads <- best_hit + round(runif(3), 1)
EMprop <- proportion + 0.003
dplyr::tibble(TaxonomyID = final_taxids,
Genome = final_genomes,
read_count = best_hit, Proportion = proportion,
EMreads = EMreads, EMProportion = EMprop) |>
dplyr::arrange(dplyr::desc(.data$read_count)) |>

18 convert_animalcules_patho

utils::write.csv(file = out_file, row.names = FALSE)
message("Done!")
return(out_file)

3
out_files <- vapply(all_files, create_IDcsv, FUN.VALUE = character(1))

Create annotation data for samples
annot_dat <- file.path(tempfolder, "annot.csv")
dplyr::tibble(Sample = samp_names, RSV = c("pos”, "neg", "pos"),
month = c("March”, "July"”, "Aug"),
yrsold = c(0.5, 0.6, 0.2)) |>
utils::write.csv(file = annot_dat,
row.names = FALSE)

Create temporary taxonomizr accession
tmp_accession <- system.file("extdata”, "example_accessions.sql”, package = "MetaScope”)

Convert samples to MAE

OoUtMAE <- convert_animalcules(meta_counts = out_files,
annot_path = annot_dat,
which_annot_col = "Sample”,
end_string = ".metascope_id.csv",
giime_biom_out = FALSE,
accession_path = tmp_accession)

unlink(tempfolder, recursive = TRUE)

convert_animalcules_patho
Create a multi-assay experiment from PathoScope 2.0 output for usage
with animalcules

Description

This function serves as a legacy integration method for usage with PathoScope 2.0 outputs. Upon
completion of the PathoScope 2.0 pipeline, users can analyze and visualize abundances in their sam-
ples using the animalcules package. After running this function, the user should save the returned
MAE to an RDS file using a function like saveRDS to upload the output into the animalcules
package.

Usage

convert_animalcules_patho(
patho_counts,
annot_path,
which_annot_col,
end_string = "-sam-report.tsv”

Arguments

patho_counts Character string, a directory filepath to the counts ID CSVs output by metascope_id().
annot_path The filepath to the CSV annotation file for the samples.

convert_animalcules_silva 19

which_annot_col

end_string

Value

The name of the column of the annotation file containing the sample IDs. These
should be the same as the meta_counts root filenames.

The end string used at the end of the metascope_id files. Default is "-sam-
report.tsv".

Returns a MultiAssay Experiment file of combined sample counts data. The MultiAssay Experi-
ment will have a counts assay ("MGX").

convert_animalcules_silva

Create a multi-assay experiment from MetaScope output for usage
with animalcules with the SILVA 13_8 database

Description

Upon completion of the MetaScope pipeline, users can analyze and visualize abundances in their
samples using the animalcules package. This function allows interoperability of metascope_id
output with both animalcules and QIIME. After running this function, the user should save the re-
turned MAE to an RDS file using a function like saveRDS to upload the output into the animalcules
package. NOTE: This function is for outputs that were generated with the SILVA 13_8 database.

Usage

convert_animalcules_silva(

meta_counts,
annot_path,

which_annot_col,
end_string = ".metascope_id.csv",
qiime_biom_out = FALSE,

n on

path_to_write = ".",
caching = TRUE

Arguments

meta_counts

annot_path

which_annot_col

A vector of filepaths to the counts ID CSVs output by metascope_id() created
with the SILVA database.

The filepath to the CSV annotation file for the samples. This CSV metadata/annotation

file should contain at least two columns, one with names of all samples WITH-

OUT the extension listed in end_string, e.g. for output file "sample_x76.metascope_id.csv",
the column specified in which_annot_col should contain the entry "sample_x76".

Sample names containing characters "_", "-", and "." are fine, however sam-

ple names beginning with numbers should be renamed to have a prefix, e.g.
"777897sample" should be renamed to "X777897sample" for both the output

file name and the annotation name.

The name of the column of the annotation file containing the sample IDs. These
should be the same as the meta_counts root filenames.

20 convert_animalcules_silva

end_string The end string used at the end of the metascope_id files. Default is ".metas-
cope_id.csv".

giime_biom_out Would you also like a giime-compatible biom file output? If yes, two files will
be saved: one is a biom file of the counts table, and the other is a specifically
formatted mapping file of metadata information. Default is FALSE.

path_to_write Ifqgiime_biom_out = TRUE, where should output QIIME files be written? Should
be a character string of the folder path. Default is ’.’, i.e. the current working
directory.

caching Whether to use BiocFileCache when downloading genomes. Default is FALSE.

Value

Returns a MultiAssay Experiment file of combined sample counts data and/or saved biom file
and mapping file for analysis with QIIME. The MultiAssayExperiment will have a counts assay
("MGX”).

Examples

tempfolder <- tempfile()
dir.create(tempfolder)

Create three different samples

samp_names <- c("X123", "X456", "X789")

all_files <- file.path(tempfolder,
paste@(samp_names, ".csv"))

create_IDcsv <- function (out_file) {
final_taxids <- c("AY846380.1.2583", "AY909584.1.2313", "HG531388.1.1375")
final_genomes <- rep("”Genome name", 3)
best_hit <- sample(seq(100, 1050), 3)
proportion <- best_hit/sum(best_hit) |> round(2)
EMreads <- best_hit + round(runif(3), 1)
EMprop <- proportion + 0.003
dplyr::tibble("TaxonomyID" = final_taxids,
"Genome" = final_genomes,
"read_count” = best_hit, "Proportion"” = proportion,
"EMreads"” = EMreads, "EMProportion” = EMprop) |>
dplyr::arrange(dplyr::desc(.data$read_count)) |>
utils::write.csv(file = out_file, row.names = FALSE)
message("Done!")
return(out_file)

3
out_files <- vapply(all_files, create_IDcsv, FUN.VALUE = character(1))

Create annotation data for samples
annot_dat <- file.path(tempfolder, "annot.csv")
dplyr::tibble(Sample = samp_names, RSV = c("pos”, "neg", "pos"),
month = c("March”, "July", "Aug"),
yrsold = c(0.5, 0.6, 0.2)) |>
utils::write.csv(file = annot_dat,
row.names = FALSE)

Convert samples to MAE
OUtMAE <- convert_animalcules_silva(meta_counts = out_files,
annot_path = annot_dat,

count_matches 21

which_annot_col = "Sample”,
end_string = ".metascope_id.csv",
qiime_biom_out = FALSE,

caching = TRUE)

unlink(tempfolder, recursive = TRUE)

count_matches Count the number of base lengths in a CIGAR string for a given oper-
ation

Description

The "CIGAR’ (Compact Idiosyncratic Gapped Alignment Report) string is how the SAM/BAM
format represents spliced alignments. This function will accept a CIGAR string for a single read
and a single character indicating the operation to be parsed in the string. An operation is a type
of column that appears in the alignment, e.g. a match or gap. The integer following the operator
specifies a number of consecutive operations. The count_matches() function will identify all
occurrences of the operator in the string input, add them, and return an integer number representing
the total number of operations for the read that was summarized by the input CIGAR string.

Usage
count_matches(x, char = "M")
Arguments
X Character. A CIGAR string for a read to be parsed. Examples of possible oper-
atOrS include HMII’ IID"’ ||Ill’ "S"’ IYHH’ ll=”’ llPll’ and HXII.
char A single letter representing the operation to total for the given string.
Details

This function is best used on a vector of CIGAR strings using an apply function (see examples).

Value

an integer number representing the total number of alignment operations for the read that was sum-
marized by the input CIGAR string.

Examples

A single cigar string: 3M + 3M + 5M
cigar1l <- "3M1I3M1D5M"
count_matches(cigar1l, char = "M")

Parse with operator "P": 2P
cigar2 <- "4M1I2P9M"
count_matches(cigar2, char = "P")

Apply to multiple strings: 1I + 1I + 5I
cigar3 <- c("3M1I3M1D5M", "4M1I1P9M", "76M13M5I")

22 download_accessions

vapply(cigar3, count_matches, char = "I",
FUN.VALUE = numeric(1))

download_accessions Download indexes required for MetaScope ID and MetaBlast modules

Description

This is a necessary step for all samples utilizing NCBI and SILVA databases in the MetaScope
pipeline. As specified by the user, download_accessions will automatically download the NCBI
accessions database, the SILVA taxonomy database, and or the NCBI Blast 16S database and pre-
pare consolidated databases for downstream use with the MetalD and MetaBLAST modules. This
package relies on the taxonomizr package.

Usage

download_accessions(
ind_dir,
tmp_dir = file.path(ind_dir, "tmp"),
remove_tmp_dir = TRUE,
NCBI_accessions_database = TRUE,

NCBI_accessions_name = "accessionTaxa",
silva_taxonomy_database = TRUE,
silva_taxonomy_name = "all_silva_headers”,

blast_16S_database = TRUE,
blast_16S_name = "16S_ribosomal_RNA"

)

Arguments
ind_dir Character string. Directory filepath where indices should be saved. Required.
tmp_dir Character path to directory for storing temp files. (Useful to avoid redownload-

ing) Defaults to file.path(ind_dir, "tmp")
remove_tmp_dir Delete tmp_dir after downloads are complete? Defaults to TRUE
NCBI_accessions_database

Logical. Download taxonomizr NCBI accessions database? Defaults to TRUE.
NCBI_accessions_name

Character string. Filename (with or without extension) to save taxonomizr NCBI

accessions database. Defaults to "accessionTaxa.sql”.
silva_taxonomy_database

Logical. Download SILVA taxonomy database? Defaults to TRUE.
silva_taxonomy_name

Character string. Filename (with or without extension) to save SILVA taxonomy

database. Defaults to the file supplied with the package, "all_silva_headers.rds".
blast_16S_database

Logical. Download BLAST 16S database? Defaults to TRUE.

blast_16S_name Character string. Filename (without extension) to save \ BLAST 16S database.
Defaults to the file supplied with the package, "16S_ribosomal_RNA".

download_refseq 23

Value

Exports database(s) with names and to location specified by the user.

Examples

Not run:
download_accessions(
ind_dir = "C:/Users/JohnSmith/Research”,
tmp_dir = file.path(ind_dir, "tmp"),
remove_tmp_dir = TRUE,
NCBI_accessions_database = TRUE,

NCBI_accessions_name = "accessionTaxa.sql”,
silva_taxonomy_database = TRUE,
silva_taxonomy_name = "all_silva_headers.rds")

End(Not run)

download_refseq Download RefSeq genome libraries

Description

This function will automatically download RefSeq genome libraries in a fasta format from the speci-

fied taxon. The function will first download the summary report at: ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/+
and then use this file to download the genome(s) and combine them in a single compressed or un-

compressed .fasta file.

Usage

download_refseq(
taxon,
reference = TRUE,
representative = FALSE,
compress = TRUE,
patho_out = FALSE,
out_dir = NULL,
caching = FALSE,

quiet = TRUE,
accession_path = NULL
)
Arguments
taxon Name of single taxon to download. The taxon name should be a recognized
NCBI scientific or common name, with no grammatical or capitalization incon-
sistencies. All available taxonomies are visible by accessing the MetaScope: : : taxonomy_table
object included in the package.
reference Download only RefSeq reference genomes? Defaults to TRUE. Automatically set

to TRUE if representative = TRUE.

representative Download RefSeq representative and reference genomes? Defaults to FALSE. If
TRUE, reference is automatically set at TRUE.

24 download_refseq_16S

compress Compress the output .fasta file? Defaults to TRUE.

patho_out Create duplicate outpute files compatible with PathoScope? Defaults to FALSE.

out_dir Character string giving the name of the directory to which libraries should be
output. Defaults to creation of a new temporary directory.

caching Whether to use BiocFileCache when downloading genomes. Default is FALSE.

quiet Turns off most messages. Default is TRUE.

accession_path (character) Filepath to NCBI accessions SQL database. See taxonomzr: : prepareDatabase().

Details

When selecting the taxon to be downloaded, if you receive an error saying Your input is not a
valid taxon, please take a look at the taxonomy_table object, which can be accessed with the
command MetaScope: : : taxonomy_table). Only taxa with exact spelling as they appear at any
level of the table will be acknowledged.

Value

Returns a .fasta or .fasta.gz file of the desired RefSeq genomes. This file is named after the kingdom
selected and saved to the current directory (e.g. ’bacteria.fasta.gz’). This function also has the
option to return a .fasta file formatted for PathoScope as well (e.g. bacteria.pathoscope.fasta.gz’) if
path_out = TRUE.

Examples

Download RefSeq genomes

Create temporary taxonomizr accession
tmp_accession <- system.file("extdata”, "example_accessions.sql”, package = "MetaScope")

Download all RefSeq reference Bovismacovirus genus genomes
download_refseq('Bovismacovirus', reference = FALSE, representative = FALSE,
out_dir = NULL, compress = TRUE, patho_out = FALSE,
caching = TRUE, accession_path = tmp_accession)

download_refseq_16S Download RefSeq 16S rRNA Bacterial and Archael libraries

Description

This function will automatically download the 16S rRNA RefSeq libraries from https://ftp.ncbi.nlm.nih.gov/refs
and combine them into a single .fna file

Usage
download_refseq_16S(out_dir, combined_name = "refseq_16S.fna")
Arguments
out_dir Character string giving the name of the directory to which libraries should be

output. **Required**

combined_name Name of output combined file. Default is "refseq_16S.fna"

extract_reads 25

Value

Returns a character string of the path to the combined 16S rRNA .fna file

Note

This function requires the suggested packages RCurl and R.utils. If they are not installed, you will
need to install them manually.
Examples

Not run:
Download 16S rRNA Genomes

download_refseq_16S(out_dir = "out_dir",
combined_name = "refseq_16S.fna")

End(Not run)

extract_reads Helper function for demultiplexing

Description

Helper function for demultiplexing sequencing reads, designed in a way to allow for parallelization
across barcodes (parallel extraction of reads by barcode). This function takes a specific barcode
(numeric index) from lists of sample names/barcodes, a Biostrings: :DNAStringSet of barcodes
by sequence header, and a Biostrings::QualityScaledXStringSet of reads corresponding to
the barcodes. Based on the barcode index given, it extracts all reads for the indexed barcode and
writes all the reads from that barcode to a separate .fastq file.

Usage

extract_reads(
barcodeIndex,
barcodes,
sampleNames,
index,
reads,
location = "./demultiplex_fastq"”,
rcBarcodes = TRUE,
hDist = @,
quiet = TRUE

Arguments

barcodeIndex Which barcode (integer number or index) in the barcodes or sample name to use
for read extraction.

barcodes A list of all barcodes in the sequencing dataset. Correlates and in same order as
sampleNames.

26

extract_reads

sampleNames A list of sample names or identifiers associated with each barcode in the bar-
codes list.
index A Biostrings: :DNAStringSet that contains the read headers and barcode se-

quence for each header in the sequence slot.

reads A Biostrings::QualityScaledXStringSet that has the same headers and or-
der as the index file, but contains the read sequences and their quality scores.

location A directory location to store the demultiplexed read files. Defaults to generate a
new subdirectory at ’./demultiplex_fastq’

rcBarcodes Should the barcode indices in the barcodes list be reverse complemented to
match the sequences in the index DNAStringSet? Defaults to TRUE.

hDist Uses a Hamming Distance or number of base differences to allow for inexact
matches for the barcodes/indexes. Defaults to 0. Warning: if the Hamming Dis-
tance is >=1 and this leads to inexact index matches to more than one barcode,
that read will be written to more than one demultiplexed read files.

quiet Turns off most messages. Default is TRUE.

Value

Writes a single .fastq file that contains all reads whose index matches the barcode specified. This
file will be written to the location directory, and will be named based on the specified sampleName
and barcode, e.g. ’./demultiplex_fastq/SampleNamel_GGAATTATCGGT.fastq.gz’

Examples

Create temporary directory
ref_temp <- tempfile()
dir.create(ref_temp)

Load example barcode, index, and read data into R session
barcodePath <- system.file("extdata”, "barcodes.txt"”, package = "MetaScope")
bcFile <- read.table(barcodePath, sep = "\t", header = TRUE)

indexPath <- system.file("extdata”, "virus_example_index.fastq",
package = "MetaScope")
inds <- Biostrings::readDNAStringSet(indexPath, format = "fastq")

readPath <- system.file("extdata”, "virus_example.fastq”,
package = "MetaScope")
reads <- Biostrings::readQualityScaledDNAStringSet(readPath)

Extract reads from the first barcode
results <- extract_reads(1, bcFile[, 2], bcFile[, 1], inds, reads,
rcBarcodes = FALSE, location = ref_temp)

Extract reads from multiple barcodes
more_results <- lapply(1:6, extract_reads, bcFile[, 2], bcFile[, 1], inds,
reads, rcBarcodes = FALSE, location = ref_temp)

Remove temporary directory
unlink(ref_temp, recursive = TRUE)

filter host 27

filter_host Use Rsubread to align reads against one or more filter libraries and
subsequently remove mapped reads

Description

After aligning your sample to a target library with align_target(), use filter_host() to remove
unwelcome host contamination using filter reference libraries. This function takes as input the
name of the .bam file produced via align_target(), and produces a sorted .bam file with any
reads that match the filter libraries removed. This resulting .bam file may be used upstream for
further analysis. This function uses Rsubread. For the Rbowtie2 equivalent of this function, see
filter_host_bowtie.

Usage
filter_host(
reads_bam,
lib_dir = NULL,
libs,
make_bam = FALSE,
output = paste(tools::file_path_sans_ext(reads_bam), "filtered”, sep = "."),
subread_options = align_details,
YS = 1e+05,
threads = 1,
quiet = TRUE
)
Arguments
reads_bam The name of a merged, sorted .bam file that has previously been aligned to a ref-
erence library. Likely, the output from running an instance of align_target().
lib_dir Path to the directory that contains the filter Subread index files.
libs The basename of the filter libraries (without index extension).
make_bam Logical, whether to also output a bam file with host reads filtered out. A .csv.gz
file will be created instead if FALSE. Creating a bam file is costly on resources
over creating a compressed csv file with only relevant information, so default is
FALSE.
output The desired name of the output .bam or .csv.gz file. Extension is automatically

defined by whether make_bam = TRUE . Default is the basename of unfiltered_bam
+ .filtered + extension.

subread_options
A named list specifying alignment parameters for the Rsubread: :align()
function, which is called inside align_target(). Elements should include
type, nthreads, maxMismatches, nsubreads, phredOffset, unique, and nBestLo-
cations. Descriptions of these parameters are available under ?Rsubread: :align.
Defaults to the global align_details object.

YS yieldSize, an integer. The number of alignments to be read in from the bam file
at once for chunked functions. Default is 100000.
threads The amount of threads available for the function. Default is 1 thread.

quiet Turns off most messages. Default is TRUE.

28 filter_host

Details

A compressed .csv can be created to produce a smaller output file that is created more efficiently
and is still compatible with metascope_id().

Value

The name of a filtered, sorted .bam file written to the user’s current working directory. Or, if
make_bam = FALSE, a .csv.gz file containing a data frame of only requisite information to run metascope_id().

Examples

#i### Filter reads from bam file that align to any of the filter libraries
Assuming a bam file has been created previously with align_target()

Create temporary directory
filter_ref_temp <- tempfile()
dir.create(filter_ref_temp)

Create temporary taxonomizr accession
tmp_accession <- system.file("extdata"”, "example_accessions.sql”, package = "MetaScope")

Download filter genome
all_species <- c("Staphylococcus aureus subsp. aureus str. Newman")
all_ref <- vapply(all_species, MetaScope::download_refseq,
reference = FALSE, representative = FALSE, compress = TRUE,
out_dir = filter_ref_temp, caching = FALSE,
accession_path = tmp_accession,
FUN.VALUE = character(1))
ind_out <- vapply(all_ref, mk_subread_index, FUN.VALUE = character(1))

Get path to example reads
readPath <- system.file("extdata”, "subread_target.bam”,
package = "MetaScope")

Copy the example reads to the temp directory

refPath <- file.path(filter_ref_temp, "subread_target.bam")
file.copy(from = readPath, to = refPath)
utils::data("align_details")
align_details[["type"]1] <- "rna
align_details[["phredOffset”]] <- 10

Just to get it to align - toy example!
align_details[["maxMismatches”]] <- 10

n

Align and filter reads

filtered_map <- filter_host(
refPath, lib_dir = filter_ref_temp,
libs = stringr::str_replace_all(all_species, " ", "_"),
threads = 1, subread_options = align_details)

Remove temporary directory
unlink(filter_ref_temp, recursive = TRUE)

filter_host_bowtie 29

filter_host_bowtie Use Rbowtie2 to align reads against one or more filter libraries and
subsequently remove mapped reads

Description

After a sample is aligned to a target library with align_target_bowtie(), we may use filter_host_bowtie()
to remove unwelcome host contamination using filter reference libraries. This function takes as in-

put the name of the .bam file produced via align_target_bowtie(), and produces a sorted .bam

or .csv.gz file with any reads that match the filter libraries removed. This resulting .bam file may be

used downstream for further analysis. This function uses Rbowtie2 For the Rsubread equivalent of

this function, see filter_host.

Usage
filter_host_bowtie(
reads_bam,
lib_dir,
libs,
make_bam = FALSE,
output = paste(tools::file_path_sans_ext(reads_bam), "filtered”, sep = "."),
bowtie2_options = NULL,
YS = 1e+05,
threads = 1,
overwrite = FALSE,
quiet = TRUE
)
Arguments
reads_bam The name of a merged, sorted .bam file that has previously been aligned to a ref-
erence library. Likely, the output from running an instance of align_target_bowtie().
lib_dir Path to the directory that contains the filter Bowtie2 index files.
libs The basename of the filter libraries (without .bt2 or .bt2] extension).
make_bam Logical, whether to also output a bam file with host reads filtered out. A .csv.gz
file will be created instead if FALSE. Creating a bam file is costly on resources
over creating a compressed csv file with only relevant information, so default is
FALSE.
output The desired name of the output .bam or .csv.gz file. Extension is automatically

defined by whether make_bam = TRUE. Default is the basename of unfiltered_bam
+ .filtered + extension.

bowtie2_options
Optional: Additional parameters that can be passed to the filter_host_bowtie()
function. To see all the available parameters use Rbowtie2::bowtie2_usage().
See Details for default parameters. NOTE: Users should pass all their parame-
ters as one string and if optional parameters are given then the user is responsible
for entering all the parameters to be used by Bowtie2. The only parameters that
should NOT be specified here is the threads.

YS yieldSize, an integer. The number of alignments to be read in from the bam file
at once for chunked functions. Default is 100000.

30 filter_host_bowtie

threads The amount of threads available for the function. Default is 1 thread.
overwrite Whether existing files should be overwritten. Default is FALSE.
quiet Turns off most messages. Default is TRUE.

Details

A compressed .csv can be created to produce a smaller output file that is created more efficiently
and is still compatible with metascope_id().

The default parameters are the same that PathoScope 2.0 uses. "—very-sensitive-local -k 100 —score-
min L,20,1.0"

Value

The name of a filtered, sorted .bam file written to the user’s current working directory. Or, if
make_bam = FALSE, a .csv.gz file containing a data frame of only requisite information to run metascope_id().

Examples

Filter reads from bam file that align to any of the filter libraries

Assuming a bam file has already been created with align_target_bowtie()
Create temporary filter library

filter_ref_temp <- tempfile()

dir.create(filter_ref_temp)

Create temporary taxonomizr accession
tmp_accession <- system.file("extdata”, "example_accessions.sql”, package = "MetaScope")

Download reference genome

MetaScope: :download_refseq("Orthoebolavirus zairense",
reference = FALSE,
representative = FALSE,
compress = TRUE,
out_dir = filter_ref_temp,
caching = TRUE,
accession_path = tmp_accession)

Create temp directory to store the indices
index_temp <- tempfile()
dir.create(index_temp)

Create filter index

MetaScope: :mk_bowtie_index(
ref_dir = filter_ref_temp,
lib_dir = index_temp,
lib_name = "filter"”,
overwrite = TRUE

)

Create temporary folder to hold final output file
output_temp <- tempfile()
dir.create(output_temp)

Get path to example bam
bamPath <- system.file("extdata”, "bowtie_target.bam”,

filter_unmapped_reads 31

package = "MetaScope”)
target_copied <- file.path(output_temp, "bowtie_target.bam")
file.copy(bamPath, target_copied)

Align and filter reads
filter_out <-
filter_host_bowtie(
reads_bam = target_copied,
lib_dir = index_temp,
libs = "filter",
threads = 1
)

Remove temporary directories
unlink(filter_ref_temp, recursive = TRUE)
unlink(index_temp, recursive = TRUE)
unlink(output_temp, recursive = TRUE)

filter_unmapped_reads Filter unmapped reads

Description

This function will remove all unmapped reads or lines in a .bam file (warning: overwrites the orig-
inal file!). This function is needed because combining multiple .bam files from different microbial
libraries may lead to some reads that mapped to one library and have unmapped entries from an-
other library. This will remove any unmapped entries and leave all reference mapped lines in the
.bam file.

Usage

filter_unmapped_reads(bamfile)

Arguments

bamfile Location for the .bam file to filter & remove all unmapped reads

Details

It is not intended for direct use.

Value

This function will overwrite the existing .bam file with a new .bam file in the same location that has
only mapped lines. The function itself returns the output .bam file name.

32 get_children

find_taxids Gets Taxonomy IDS from accessions names Returns a dataframe with
the original accession, the associated taxonomy ID and associated
taxonomy species

Description
Gets Taxonomy IDS from accessions names Returns a dataframe with the original accession, the
associated taxonomy ID and associated taxonomy species

Usage

find_taxids(all_fastas, accession_path)

Arguments

all_fastas Biostrings loaded object of all fastas

accession_path Path to taxonomizr accessions database

Value

Data.frame of taxonomy Ids and Species name

get_children Get child nodes from NCBI taxonomy

Description
This function will utilize an organism classification table to obtain all children species and/or strains
with available NCBI reference sequences given a parent taxon and its rank.

Usage

get_children(input_taxon, input_rank, tax_dat = NULL)

Arguments
input_taxon The parent taxon.
input_rank The taxonomic rank of the input taxon.
tax_dat A dataframe of organism classification information. At minimum, should have a
column indicating "strain", and and all others should be taxonomic ranks. Each
row should be a taxonomic relationship. This defaults to NULL, which calls the
‘taxonomy_table* object.
Value

Returns a vector of all the child species and/or strains of the input taxon.

get_multi_seqs 33

Examples

Get all child species and strains in bacteria superkingdom
get_children('Bacteria', 'superkingdom')

Get all child species and strains in fungi kingdom
get_children('Fungi', 'kingdom')

Get all child species in primate order

get_children('Primates', 'order')
get_multi_seqs Gets multiple sequences from different accessions in a bam file
Description

Returns fasta sequences from a bam file with given taxonomy IDs

Usage

get_multi_seqs(ids_n, bam_file, seq_info_df, metascope_id_tax, sorted_bam_file)

Arguments
ids_n List of vectors with Taxonomy IDs and the number of sequences to get from
each
bam_file A sorted bam file and index file, loaded with Rsamtools::bamFile
seq_info_df Dataframe of sequence information from metascope_blast()

metascope_id_tax

Data.frame of taxonomy information
sorted_bam_file

Filepath to sorted bam file

Value

Biostrings format sequences

get_seqgs Gets sequences from bam file

Description

Returns fasta sequences from a bam file with a given taxonomy ID

Usage

get_seqs(id, bam_file, n = 10, bam_seqs)

34

Arguments

id
bam_file

n

bam_seqs

Value

Taxonomy ID of genome to get sequences from
A sorted bam file and index file, loaded with Rsamtools::bamFile
Number of sequences to retrieve

A list of the sequence IDs from the bam file

Biostrings format sequences

locations

locations

Helper Function for MetaScope ID

Description

Used to create plots of genome coverage for any number of accession numbers

Usage

locations(

which_taxid,
which_genome,
accessions,
taxids,
reads,
out_base,
out_dir

Arguments

which_taxid

which_genome

accessions

taxids

reads

out_base

out_dir

Value

Which taxid to plot

Which genome to plot

List of accessions from metascope_id()
List of accessions from metascope_id()
List of reads from input file

The basename of the input file

The path to the input file

A plot of the read coverage for a given genome

merge_bam_files 35

merge_bam_files Merge multiple .bam files

Description

This function merges .bam files. It first used the combined_header function to generate a combined
header for all the files, reheaders the files, and then merges and sorts the .bam files. It is similar
to the ’samtools merge’ function, but it allows the .bam files to have different headers. It is not
intended for direct use.

Usage
merge_bam_files(
bam_files,
destination,
head_file = paste(destination, "_header.sam”, sep = ""),
quiet = TRUE
)
Arguments
bam_files A list of file names for the .bam files to be merged.
destination A file name and location for the merged .bam file.
head_file A file name and location for the combined header file. Defaults to the destina-
tion. For example, "example.bam’ will be written as ’example.bam’.
quiet Turns off most messages. Default is TRUE.
Value

This function merges .bam files and combines them into a single file. The function also outputs the
new .bam filename.

metascope_blast Blast reads from MetaScope aligned files

Description

This function allows the user to check a subset of identified reads against NCBI BLAST and the nu-
cleotide database to confirm or contradict results provided by MetaScope. It aligns the top ‘metas-
cope_id()‘ results to NCBI BLAST database. It REQUIRES that command-line BLAST and a
separate nucleotide database have already been installed on the host machine. It returns a csv file
updated with BLAST result metrics.

36

Usage

metascope_blast

metascope_blast(
metascope_id_path,

bam_file_path = list.files(tmp_dir, ".updated.bam$”, full.names =

tmp_dir,
out_dir,

sample_name,

fasta_dir

num_results

num_reads

TRUE)[11,

NULL,
=10,
100,

hit_list = 10,
num_threads = 1,

db_path,

quiet = FALSE,

db = NULL,

accession_path = NULL

Arguments

metascope_id_path

bam_file_path

tmp_dir
out_dir
sample_name
fasta_dir

num_results

num_reads

hit_list

num_threads

db_path

quiet
db

accession_path (character) Filepath to NCBI accessions SQL database. See taxonomzr: : prepareDatabase().

Character string; path to a csv file output by ‘metascope_id()‘.

Character string; full path to bam file for the same sample processed by ‘metas-
cope_id‘. Note that the ‘filter_bam‘ function must have output a bam file,
and not a .csv.gz file. See ‘filter_bam_bowtie‘ for more details. Defaults to
list.files(file_temp, ".updated.bam$”)[1].

Character string, a temporary directory in which to host files.
Character string, path to output directory.

Character string, sample name for output files.

Directory where fasta files for blast will be stored.

Integer, the maximum number of taxa from the metascope_id output to check
reads. Takes the top n taxa, i.e. those with largest abundance. Default is 10.

Integer, the maximum number of reads to blast per microbe. If the true number
of reads assigned to a given taxon is smaller, then the smaller number will be
chosen. Default is 100. Too many reads will involve more processing time.

Integer, number of blast hit results to keep. Default is 10.
Integer, number of threads if running in parallel (recommended). Default is 1.

Character string. The database file to be searched (including basename, but
without file extension). For example, if the nt database is in the nt folder, this
would be /filepath/nt/nt assuming that the database files have the nt basename.
Check this path if you get an error message stating "No alias or index file found".

Logical, whether to print out more informative messages. Default is FALSE.

Currently accepts one of c("ncbi”, "silva”, "other”) Default is "ncbi”,
appropriate for samples aligned against indices compiled from NCBI whole
genome databases. Alternatively, usage of an alternate database (like Green-
genes2) should be specified with "other”.

metascope_blast

Details

37

This function assumes that you used the NCBI nucleotide database to process samples, with a

download date of 2021 or later. This is necessary for compatibility with the bam file headers.

This is highly computationally intensive and should be ran with multiple cores, submitted as a

multi-threaded computing job if possible.

Note, if best_hit_strain is FALSE, then no strain was observed more often among the BLAST

results.

Value

This function writes an updated csv file with metrics.

Examples

Not run:

Create temporary directory
file_temp <- tempfile()
dir.create(file_temp)

bamPath <- system.file("extdata”, "bowtie_target.bam”,
package = "MetaScope”)
file.copy(bamPath, file_temp)

metascope_id(file.path(file_temp, "bowtie_target.bam”), aligner = "bowtie2",
input_type = "bam”, out_dir = file_temp, num_species_plot = 0,

update_bam = TRUE)

Run metascope blast

Get export name and metascope id results

out_base <- bamPath |> basename() |> tools::file_path_sans_ext() |>
tools::file_path_sans_ext()

metascope_id_path <- file.path(file_temp, paste@(out_base, ".metascope_id.csv"))

NOTE: change db_path to the location where your BLAST database is stored!

db <- "/restricted/projectnb/pathoscope/data/blastdb/nt/nt"

tmp_accession <- system.file("extdata”, "example_accessions.sql”, package

metascope_blast(metascope_id_path,

bam_file_path = file.path(file_temp, "bowtie_target.bam"),

tmp_dir = file_temp,
out_dir = file_temp,
sample_name = out_base,
db_path = db,
num_results = 10,
num_reads = 5,

hit_list = 10,
num_threads = 3,

db = "ncbi”,

quiet = FALSE,
fasta_dir = NULL,
accession_path = tmp_accession)

Remove temporary directory
unlink(file_temp, recursive = TRUE)

"MetaScope”

38 metascope_id

End(Not run)

metascope_id Identify which genomes are represented in a processed sample

Description

This function will read in a .bam or .csv.gz file, annotate the taxonomy and genome names, reduce
the mapping ambiguity using a mixture model, and output a .csv file with the results. Currently, it
assumes that the genome library/.bam files use NCBI accession names for reference names (rnames
in .bam file).

Usage
metascope_id(
input_file,
input_type = "csv.gz",
aligner = "bowtie2”,
db = "ncbi",

db_feature_table = NULL,
accession_path = NULL,
priors_df = NULL,

tmp_dir = dirname(input_file),
out_dir = dirname(input_file),
convEM = 1/10000,

maxitsgEM = 25,

update_bam = FALSE,
num_species_plot = NULL,

group_by_taxa = "species”,
quiet = TRUE
)
Arguments
input_file The .bam or .csv.gz file of sample reads to be identified.
input_type Extension of file input. Should be either "bam" or "csv.gz". Default is "csv.gz".
aligner The aligner which was used to create the bam file. Default is "bowtie2" but can
also be set to "subread" or "other".
db Currently accepts one of c("ncbi”, "silva"”, "other"”) Default is "ncbi”,

appropriate for samples aligned against indices compiled from NCBI whole
genome databases. Alternatively, usage of an alternate database (like Green-
genes2) should be specified with "other".

db_feature_table
If db = "other”, a data.frame must be supplied with two columns, "Feature ID"
matching the names of the alignment indices, and a second character column
supplying the taxon identifying information.

accession_path (character) Filepath to NCBI accessions SQL database. See taxonomzr: : prepareDatabase().

metascope_id 39

priors_df data.frame containing priors data. The data.frame consists of two columns,
’species’ containing species name, and *prior_weights’ containing the prior weights
(as a percent; integer).

tmp_dir Path to a directory to which bam and updated bam files can be saved. Required.

out_dir The directory to which the .csv output file will be output. Defaults to dirname (input_file).
convEM The convergence parameter of the EM algorithm. Default set at 1/10000.

maxitsEM The maximum number of EM iterations, regardless of whether the convEM is

below the threshhold. Default set at 50. If set at @, the algorithm skips the EM
step and summarizes the .bam file ’as is’.

update_bam Whether to update BAM file with new read assignments. Default is FALSE. If
TRUE, requires input_type = "bam” such that a BAM file is the input to the
function.

num_species_plot
The number of genome coverage plots to be saved. Default is NULL, which saves
coverage plots for the ten most highly abundant species.

group_by_taxa Character. Taxonomy level at which accessions should be grouped. Defaults to
"species”

quiet Turns off most messages. Default is TRUE.

Value

This function exports a .csv file with annotated read counts to genomes with mapped reads to the lo-
cation returned by the function. Depending on the parameters specified, can also output an updated
BAM file, and fasta files for additional analysis downstream.

Examples

Align reads to reference library and then apply metascope_id()
Assuming filtered bam files already exist

Create temporary directory
file_temp <- tempfile()
dir.create(file_temp)

Get temporary accessions database
tmp_accession <- system.file("extdata”, "example_accessions.sql”, package = "MetaScope")

#i### Subread aligned bam file

Create object with path to filtered subread csv.gz file
filt_file <- "subread_target.filtered.csv.gz"

bamPath <- system.file("extdata”, filt_file, package = "MetaScope”)
file.copy(bamPath, file_temp)

Run metascope id with the aligner option set to subread
metascope_id(input_file = file.path(file_temp, filt_file),

aligner = "subread”, num_species_plot = 0,

input_type = "csv.gz", accession_path = tmp_accession)

#i#t## Bowtie 2 aligned .csv.gz file

Create object with path to filtered bowtie2 bam file
bowtie_file <- "bowtie_target.filtered.csv.gz"

40

bamPath <- system.file("extdata”, bowtie_file, package = "MetaScope"”)
file.copy(bamPath, file_temp)

Run metascope id with the aligner option set to bowtie2

metascope_id(file.path(file_temp, bowtie_file), aligner = "bowtie2",
num_species_plot = @, input_type = "csv.gz",
accession_path = tmp_accession)

Remove temporary directory
unlink(file_temp, recursive = TRUE)

meta_demultiplex

meta_demultiplex Demultiplexing sequencing reads

Description

Function for demultiplexing sequencing reads arranged in a common format provided by sequencers
(such as Illumina) generally for 16S data. This function takes a matrix of sample names/barcodes,
a .fastq file of barcodes by sequence header, and a .fastq file of reads corresponding to the barcodes.
Based on the barcodes given, the function extracts all reads for the indexed barcode and writes all

the reads from that barcode to separate .fastq files.

Usage

meta_demultiplex(
barcodeFile,
indexFile,
readFile,
rcBarcodes = TRUE,
location = NULL,

threads = 1,
hammingDist = @,
quiet = TRUE
)
Arguments
barcodeFile Path to a file containing a .tsv matrix with a header row, and then sample names
(column 1) and barcodes (column 2).
indexFile Path to a .fastq file that contains the barcodes for each read. The headers should
be the same (and in the same order) as readFile, and the sequence in the
indexFile should be the corresponding barcode for each read. Quality scores
are not considered.
readfFile Path to the sequencing read .fastq file that corresponds to the indexFile.
rcBarcodes Should the barcode indexes in the barcodeFile be reverse complemented to
match the sequences in the indexFile? Defaults to TRUE.
location A directory location to store the demultiplexed read files. Defaults to generate a

new temporary directory.

mk_bowtie_index 41

threads The number of threads to use for parallelization (BiocParallel). This function
will parallelize over the barcodes and extract reads for each barcode separately
and write them to separate demultiplexed files.

hammingDist Uses a Hamming Distance or number of base differences to allow for inexact
matches for the barcodes/indexes. Defaults to @. Warning: if the Hamming Dis-
tance is >=1 and this leads to inexact index matches to more than one barcode,
that read will be written to more than one demultiplexed read files.

quiet Turns off most messages. Default is TRUE.

Value

Returns multiple .fastq files that contain all reads whose index matches the barcodes given. These
files will be written to the location directory, and will be named based on the given sampleNames
and barcodes, e.g. ’./demultiplex_fastq/SampleNamel_GGAATTATCGGT.fastq.gz’

Examples

Get barcode, index, and read data locations
barcodePath <- system.file("extdata”, "barcodes.txt"”, package = "MetaScope")

indexPath <- system.file("extdata", "virus_example_index.fastq",
package = "MetaScope")
readPath <- system.file("extdata”, "virus_example.fastq”,

package = "MetaScope”)

Demultiplex

demult <- meta_demultiplex(barcodePath, indexPath, readPath, rcBarcodes = FALSE,
hammingDist = 2)

demult

mk_bowtie_index Make a Bowtie2 index

Description

This function is a wrapper for the Rbowtie2: :bowtie2_build function. It will create either small
(.bt2) or large Bowtie2 indexes (.bt2l) depending on the combined size of the reference fasta files.

Usage

mk_bowtie_index(
ref_dir,
lib_dir,
lib_name,
bowtie2_build_options,
threads = 1,

overwrite = FALSE

42
Arguments

ref_dir

lib_dir

lib_name

mk_subread_index

The path to the directory that contains the reference files either uncompressed or
compressed (.gz). NOTE: This directory should contain only the reference fasta
files to be indexed.

The path to the directory where Bowtie2 index files should be created.

The basename of the index file to be created (without the .bt2 or .bt2l extension)

bowtie2_build_options

threads

overwrite

Value

Optional: Options that can be passed to the mk_bowtie_index() function. All
options should be passed as one string. To see all the available options that can
be passed to the function use Rbowtie2::bowtie2_build_usage(). NOTE: Do not
specify threads here.

The number of threads available to the function. Default is 1 thread.

Whether existing files should be overwritten. Default is FALSE.

Creates the Bowtie2 indexes of the supplied reference .fasta files. Returns the path to the directory
containing these files.

Examples

Create a bowtie index from the example reference library

Create a temporary directory to store the reference library
ref_temp <- tempfile()
dir.create(ref_temp)

tmp_accession <- system.file("extdata”, "example_accessions.sql”, package = "MetaScope")

Download reference genome
download_refseq('Bovismacovirus', reference = FALSE, representative = FALSE,

out_dir = ref_temp, compress = TRUE, patho_out = FALSE,
caching = TRUE, accession_path = tmp_accession)

Create the reference library index files in the current directory
mk_bowtie_index(ref_dir = ref_temp, lib_dir = ref_temp,

lib_name = "target”, threads = 1, overwrite = FALSE)

Remove temporary directory
unlink(ref_temp, recursive = TRUE)

mk_subread_index

Make a Subread index

Description

This function is a wrapper for the Rsubread: :buildindex function. It will generate one or more
Subread indexes from a .fasta file. If the library is too large (default >4GB) it will automatically be
split into multiple indexes, with _1, _2, etc at the end of the ref_lib basename.

remove_matches 43

Usage

mk_subread_index(ref_lib, split = 4, mem = 8000, quiet = TRUE)

Arguments
ref_lib The name/location of the reference library file, in (uncompressed) .fasta format.
split The maximum allowed size of the genome file (in GB). If the ref_lib file is
larger than this, the function will split the library into multiple parts.
mem The maximum amount of memory (in MB) that can be used by the index gener-
ation process (used by the Rsubread::buildindex function).
quiet Turns off most messages. Default is TRUE.
Value

Creates one or more Subread indexes for the supplied reference .fasta file. If multiple indexes are
created, the libraries will be named the ref_lib basename + "_1", "_2", etc. The function returns
the names of the folders holding these files.

Examples

Create a subread index from the example reference library

Create a temporary directory to store the reference library

ref_temp <- tempfile()

dir.create(ref_temp)

tmp_accession <- system.file("extdata”, "example_accessions.sql”, package = "MetaScope")

Download reference genome

out_fasta <- download_refseq('Orthoebolavirus zairense', reference = FALSE,
representative = FALSE, out_dir = ref_temp,
compress = TRUE, patho_out = FALSE,
caching = TRUE, accession_path = tmp_accession)

Make subread index of reference library
mk_subread_index (out_fasta)
unlink(ref_temp)

remove_matches Helper function to remove reads matched to filter libraries

Description

Using the filter_host () function, we align our sequencing sample to all filter libraries of interest.
The remove_matches () function allows for removal of any target reads that are also aligned to filter
libraries.

44

Usage

remove_matches(
reads_bam,
read_names,
output,
YS,
threads,
aligner,
make_bam,
quiet

Arguments

reads_bam

read_names

output

YS

threads
aligner

make_bam

quiet

Details

taxid_to_name

The name of a merged, sorted .bam file that has previously been aligned to a ref-
erence library. Likely, the output from running an instance of align_target().

A list of target query names from reads_bam that have also aligned to a filter
reference library. Each 1ist element should be a vector of read names.

The name of the .bam or .csv.gz file that to which the filtered alignments will be
written.

yieldSize, an integer. The number of alignments to be read in from the bam file
at once for chunked functions. Default is 100000.

The number of threads to be used in filtering the bam file. Default is 1.
The aligner which was used to create the bam file.

Logical, whether to also output a bam file with host reads filtered out. A .csv.gz
file will be created instead if FALSE. Creating a bam file is costly on resources
over creating a compressed csv file with only relevant information, so default is
FALSE.

Turns off most messages. Default is TRUE.

This function is not intended for direct use.

Value

Depending on input make_bam, either the name of a filtered, sorted .bam file written to the user’s
current working directory, or an RDS file containing a data frame of only requisite information to
run metascope_id().

taxid_to_name

Converts NCBI taxonomy ID to scientific name

Description

Converts NCBI taxonomy ID to scientific name

Usage

taxid_to_name(taxids, accession_path)

taxid_to_name 45

Arguments

taxids List of NCBI taxids to convert to scientific name

accession_path (character) Filepath to NCBI accessions SQL database. See taxonomzr: : prepareDatabase().

Value

Returns a dataframe of blast results for a metascope result

Index

+ datasets
align_details, 4
bt2_16S_params, 13
bt2_missing_params, 14
bt2_regular_params, 14
+ internal
add_in_taxa, 3
add_in_taxa_ncbi, 4
find_taxids, 32
get_multi_segs, 33
MetaScope-package, 3

add_in_taxa, 3
add_in_taxa_ncbi, 4
align_details, 4
align_target, 5
align_target_bowtie, 6

bam_reheader_R, 9
blast_reassignment, 11
blast_result_metrics, 12
blastn_results, 9
blastn_single_result, 10
bt2_16S_params, 13
bt2_missing_params, 14
bt2_regular_params, 14

check_blastn_exists, 15
check_samtools_exists, 15
combined_header, 16
convert_animalcules, 16

convert_animalcules_patho, 18
convert_animalcules_silva, 19

count_matches, 21

download_accessions, 22
download_refseq, 23
download_refseq_16S, 24

extract_reads, 25

filter_host, 27
filter_host_bowtie, 29
filter_unmapped_reads, 31
find_taxids, 32

46

get_children, 32
get_multi_segs, 33
get_segs, 33

locations, 34

merge_bam_files, 35
meta_demultiplex, 40

MetaScope (MetaScope-package), 3
MetaScope-package, 3
metascope_blast, 35
metascope_id, 38
mk_bowtie_index, 41
mk_subread_index, 42

remove_matches, 43

taxid_to_name, 44

	MetaScope-package
	add_in_taxa
	add_in_taxa_ncbi
	align_details
	align_target
	align_target_bowtie
	bam_reheader_R
	blastn_results
	blastn_single_result
	blast_reassignment
	blast_result_metrics
	bt2_16S_params
	bt2_missing_params
	bt2_regular_params
	check_blastn_exists
	check_samtools_exists
	combined_header
	convert_animalcules
	convert_animalcules_patho
	convert_animalcules_silva
	count_matches
	download_accessions
	download_refseq
	download_refseq_16S
	extract_reads
	filter_host
	filter_host_bowtie
	filter_unmapped_reads
	find_taxids
	get_children
	get_multi_seqs
	get_seqs
	locations
	merge_bam_files
	metascope_blast
	metascope_id
	meta_demultiplex
	mk_bowtie_index
	mk_subread_index
	remove_matches
	taxid_to_name
	Index

