Package ‘puma’

November 1, 2025
Type Package

Title Propagating Uncertainty in Microarray Analysis(including
Affymetrix tranditional 3" arrays and exon arrays and Human
Transcriptome Array 2.0)

Version 3.52.0
Date 2015-7-29

Author Richard D. Pearson, Xuejun Liu, Magnus Rattray, Marta Milo, Neil D.
Lawrence, Guido Sanguinetti, Li Zhang
Maintainer Xuejun Liu <xuejun.liu@nuaa.edu.cn>
Depends R (>=3.2.0), oligo (>= 1.32.0),graphics,grDevices, methods,
stats, utils, mclust, oligoClasses
Imports Biobase (>=2.5.5), affy (>= 1.46.0), affyio, oligoClasses
Suggests pumadata, affydata, snow, limma, ROCR,annotate
Description Most analyses of Affymetrix GeneChip data (including tranditional 3' arrays and exon ar-
rays and Human Transcriptome Array 2.0) are based on point estimates of expression lev-
els and ignore the uncertainty of such estimates. By propagating uncertainty to downstream anal-
yses we can improve results from microarray analyses. For the first time, the puma pack-
age makes a suite of uncertainty propagation methods available to a general audience. In addi-
ton to calculte gene expression from Affymetrix 3' arrays, puma also provides methods to pro-
cess exon arrays and produces gene and isoform expression for alternative splic-
ing study. puma also offers improvements in terms of scope and speed of execution over previ-
ously available uncertainty propagation methods. Included are summarisation, differential ex-
pression detection, clustering and PCA methods, together with useful plotting functions.
License LGPL
biocViews Microarray, OneChannel, Preprocessing,
DifferentialExpression, Clustering, ExonArray, GeneExpression,
mRNAMicroarray, ChipOnChip, AlternativeSplicing,
DifferentialSplicing, Bayesian, TwoChannel, Datalmport, HTA2.0

URL http://umber.sbs.man.ac.uk/resources/puma
NeedsCompilation yes

git_url https://git.bioconductor.org/packages/puma
git_branch RELEASE_3_22

git_last_commit fa4369b

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2025-10-31

http://umber.sbs.man.ac.uk/resources/puma

2 Contents

Contents
puma-package e 3
bcomb 4
calcAUC o e 6
calculateFC e 7
calculateLimma 8
calculateTtest e 9
ClustexampleE e 10
Clust.exampleStd e 11
clusterApplyLBDots 11
clusterNormE e 12
clusterNormVar e 12
ClustitexampleE 13
Clustii.exampleStd e 14
compareLimmapumaDEo 0oL 14
createContrastMatriX L. e 16
createDesignMatrixX e 20
CIEAE_ESEL T . .« v v v v o e e e e e e e e 23
DEResult e e 24
erfC . . e 27
ESEL_MMEZMOS . « . v v v v v et e e e e e e e e e e e e e e e e e e 28
exampleE 28
exampleStd e e 29
exprReslt-class 29
gmhta e 31
gmOEXONno 33
hcomb L e 35
hgu9Saphis e 36
igmoExon 36
JustmgMOS . L e 38
JjustmmgMOS . L. 40
legend2 e e e e 41
license.puma e e e 44
matrixDistance L L 44
1074 0010 £ 45
MMEMOS « ¢ o v v v v e e et e e e e e e e e e e e 47
normalisation.g@s e e e e e 48
numFP . . . Lo e 49
numOfFactorsToUse 50
numTPo 51
orig PpIr . . . e e e 52
plot-methods L e 53
plotErrorBars 54
plotHistTwoClasses o i e 56
PIOtROC e e e e 57
plotWhiskers e e e 58
PMmmgmos e 59
PPIr . e 61
pplrtUnsorted 62
pumaClust e e e e e e 63

pumaClustii e e e 64

puma-package 3

pumaComb L 66
pumaCombImproved 68
pumaDE e e e 69
pumaDEUnsorted L 71
pumaFull e 72
pumaNormalize 73
pumaPCA e e 74
pumaPCAExpectations-class L 76
pumaPCAModel-class e 77
pumaPCARes-class e 77
removeUninformativeFactors oL 78

Index 80

puma-package puma - Propagating Uncertainty in Microarray Analysis
Description

Most analyses of Affymetrix GeneChip data (including tranditional 3* arrays and exon arrays) are
based on point estimates of expression levels and ignore the uncertainty of such estimates. By
propagating uncertainty to downstream analyses we can improve results from microarray analyses.
For the first time, the puma package makes a suite of uncertainty propagation methods available to
a general audience. In additon to calculte gene expression from Affymetrix 3’ arrays, puma also
provides methods to process exon arrays and produces gene and isoform expression for alternative
splicing study. puma also offers improvements in terms of scope and speed of execution over
previously available uncertainty propagation methods. Included are summarisation, differential
expression detection, clustering and PCA methods, together with useful plotting functions.

Details

Package: puma

Type: Package

Version: 3.4.3

Date: 2013-11-04

License: LGPL excluding donlp2

For details of using the package please refer to the Vignette

Author(s)

Richard Pearson, Xuejun Liu, Guido Sanguinetti, Marta Milo, Neil D. Lawrence, Magnus Rattray,
Li Zhang

Maintainer: Richard Pearson <richard.pearson @postgrad.manchester.ac.uk>, Li Zhang <leo.zhang @nuaa.edu.cn>

4 bcomb

References

Milo, M., Niranjan, M., Holley, M. C., Rattray, M. and Lawrence, N. D. (2004) A probabilistic
approach for summarising oligonucleotide gene expression data, technical report available upon
request.

Liu, X., Milo, M., Lawrence, N. D. and Rattray, M. (2005) A tractable probabilistic model for
Affymetrix probe-level analysis across multiple chips, Bioinformatics, 21(18):3637-3644.

Sanguinetti, G., Milo, M., Rattray, M. and Lawrence, N. D. (2005) Accounting for probe-level noise
in principal component analysis of microarray data, Bioinformatics, 21(19):3748-3754.

Rattray, M., Liu, X., Sanguinetti, G., Milo, M. and Lawrence, N. D. (2006) Propagating uncertainty
in Microarray data analysis, Briefings in Bioinformatics, 7(1):37-47.

Liu, X., Milo, M., Lawrence, N. D. and Rattray, M. (2006) Probe-level measurement error improves
accuracy in detecting differential gene expression, Bioinformatics, 22(17):2107-2113.

Liu, X. Lin, K., Andersen, B. Rattray, M. (2007) Including probe-level uncertainty in model-based
gene expression clustering, BMC Bioinformatics, 8(98).

Pearson, R. D., Liu, X., Sanguinetti, G., Milo, M., Lawrence, N. D., Rattray, M. (2008) puma: a
Bioconductor package for Propagating Uncertainty in Microarray Analysis, BMC Bioinformatics,
2009, 10:211.

Zhang,L. and Liu,X. (2009) An improved probabilistic model for finding differential gene expres-
sion, the 2nd BMEI 17-19 oct. 2009. Tianjin. China.

Liu,X. and Rattray,M. (2009) Including probe-level measurement error in robust mixture clustering
of replicated microarray gene expression, Statistical Application in Genetics and Molecular Biol-
ogy, 9(1), Article 42.

puma 3.0: improved uncertainty propagation methods for gene and transcript expression analysis,
Liu et al. BMC Bioinformatics, 2013, 14:39.

Examples

Next 4 lines commented out to save time in package checks, and saved version used
if (require(affydata)) {
data(Dilution)
eset_mmgmos <- mmgmos(Dilution)
3
data(eset_mmgmos)
pumapca_mmgmos <- pumaPCA(eset_mmgmos)
plot(pumapca_mmgmos)
eset_mmgmos_100 <- eset_mmgmos[1:100,]
eset_comb <- pumaComb(eset_mmgmos_100)
eset_combImproved <- pumaCombImproved(eset_mmgmos_100)
esetDE <- pumaDE(eset_comb)
esetDEImproved <- pumaDE(eset_combImproved)

bcomb Combining replicates for each condition

bcomb 5

Description

This function calculates the combined signal for each condition from replicates using Bayesian
models. The inputs are gene expression levels and the probe-level standard deviation associated
with expression measurement for each gene on each chip. The outputs include gene expression lev-
els and standard deviation for each condition. This function was originally part of the pplr package.
Although this function can be called directly, it is recommended to use the pumaComb function in-
stead, which can work directly on ExpressionSet objects, and can automatically determine which
arrays are replicates.

Usage

n on

bcomb(e, se, replicates, method=c("map”,"em"),
gsnorm=FALSE, nsample=1000, eps=1.0e-6)

Arguments
e a data frame containing the expression level for each gene on each chip.
se a data frame containing the standard deviation of gene expression levels.
replicates a vector indicating which chip belongs to which condition.
method character specifying the method algorithm used.
gsnorm logical specifying whether do global scaling normalisation or not.
nsample integer. The number of sampling in parameter estimation.
eps a numeric, optimisation parameter.

Details

Each element in replicate represents the condition of the chip which is in the same column order as
in the expression and standard deviation matrix files.

Method "map" uses MAP of a hierarchical Bayesion model with Gamma prior on the between-
replicate variance (Gelman et.al. p.285) and shares the same variance across conditions. This
method is fast and suitable for the case where there are many conditions.

Method "em" uses variational inference of the same hierarchical Bayesion model as in method
"map" but with conjugate prior on between-replicate variance and shares the variance across condi-
tions.

The parameter nsample should be large enough to ensure stable parameter estimates. Should be at
least 1000.

Value

The result is a data frame with components named "M1’, "M2’, and so on, which represent the mean
expression values for condition 1, condition 2, and so on. It also has components named ’Std1’,
’Std2’, and so on, which represent the standard deviation of the gene expression values for condition
1, condtion 2, and so on.

Author(s)

Xuejun Liu, Marta Milo, Neil D. Lawrence, Magnus Rattray

6 calcAUC

References

Gelman,A., Carlin,J.B., Stern,H.S., Rubin,D.B., Bayesian data analysis. London: Chapman & Hall;
1995.

Liu,X., Milo,M., Lawrence,N.D. and Rattray,M. (2006) Probe-level variances improve accuracy in
detecting differential gene expression, Bioinformatics, 22:2107-2113.

See Also

Related methods pumaComb, mmgmos and pplr

Examples

data(exampleE)
data(exampleStd)
r<-bcomb(exampleE,exampleStd,replicates=c(1,1,1,2,2,2),method="map")

calcAUC Calculate Area Under Curve (AUC) for a standard ROC plot.

Description

Calculates the AUC values for one or more ROC plots.

Usage

calcAUC(scores, truthValues, includedProbesets = 1:length(truthValues))

Arguments
scores A vector of scores. This could be, e.g. one of the columns of the statistics of a
DEResult object.
truthValues A boolean vector indicating which scores are True Positives.
includedProbesets
A vector of indices indicating which scores (and truthValues) are to be used in
the calculation. The default is to use all, but a subset can be used if, for example,
you only want a subset of the probesets which are not True Positives to be treated
as False Positives.
Value

A single number which is the AUC value.

Author(s)
Richard D. Pearson

See Also

Related methods plotROC and numFP.

calculateFC 7

Examples

#classla <- rnorm(1000,0.2,0.1)

#class2a <- rnorm(1000,0.6,0.2)

#class1b <- rnorm(1000,0.3,0.1)

#class2b <- rnorm(1000,0.5,0.2)

#scores_a <- c(classla, class2a)

#tscores_b <- c(classlb, class2b)

#classElts <- c(rep(FALSE,1000), rep(TRUE,1000))
#print(calcAUC(scores_a, classElts))
#print(calcAUC(scores_b, classElts))

calculateFC Calculate differential expression between conditions using FC

Description

Automatically creates design and contrast matrices if not specified. This function is useful for
comparing fold change results with those of other differential expression (DE) methods such as
pumaDE.

Usage

calculateFC(

eset

, design.matrix = createDesignMatrix(eset)

, contrast.matrix = createContrastMatrix(eset)

)

Arguments

eset An object of class ExpressionSet

design.matrix A design matrix

contrast.matrix
A contrast matrix

Details

The eset argument must be supplied, and must be a valid ExpressionSet object. Design and
contrast matrices can be supplied, but if not, default matrices will be used. These should usually be
sufficient for most analyses.

Value

An object of class DEResult.

Author(s)

Richard D. Pearson

8 calculateLimma

See Also

Related methods pumaDE, calculatelLimma, calculateTtest, createDesignMatrix and createContrastMatrix
and class DEResult

Examples

#if (require(affydata)) {

data(Dilution)

eset_rma <- affy:::rma(Dilution)

Next line used so eset_rma only has information about the liver factor

The scanner factor will thus be ignored, and the two arrays of each level
of the liver factor will be treated as replicates

pData(eset_rma) <- pData(eset_rma)[,1, drop=FALSE]

FCRes <- calculateFC(eset_rma)
topGenelDs(FCRes,numberOfGenes=6)
plotErrorBars(eset_rma, topGenes(FCRes))

#}

calculatelLimma Calculate differential expression between conditions using limma

Description

Runs a default analysis using the limma package. Automatically creates design and contrast ma-
trices if not specified. This function is useful for comparing limma results with those of other
differential expression (DE) methods such as pumaDE.

Usage

calculateLimma(

eset

, design.matrix = createDesignMatrix(eset)

, contrast.matrix = createContrastMatrix(eset)

)

Arguments

eset An object of class ExpressionSet

design.matrix A design matrix
contrast.matrix
A contrast matrix

Details

The eset argument must be supplied, and must be a valid ExpressionSet object. Design and
contrast matrices can be supplied, but if not, default matrices will be used. These should usually be
sufficient for most analyses.

Value

An object of class DEResult.

calculateTtest 9

Author(s)
Richard D. Pearson

See Also

Related methods pumaDE, calculateTtest, calculateFC, createDesignMatrix and createContrastMatrix
and class DEResult

Examples

#if (require(affydata)) {

data(Dilution)

eset_rma <- affy:::rma(Dilution)

Next line used so eset_rma only has information about the liver factor

The scanner factor will thus be ignored, and the two arrays of each level
of the liver factor will be treated as replicates

pData(eset_rma) <- pData(eset_rma)[,1, drop=FALSE]

limmaRes <- calculateLimma(eset_rma)
topGenelIDs(limmaRes,numberOfGenes=6)
plotErrorBars(eset_rma, topGenes(limmaRes))

#}

calculateTtest Calculate differential expression between conditions using T-test

Description

Automatically creates design and contrast matrices if not specified. This function is useful for
comparing T-test results with those of other differential expression (DE) methods such as pumaDE.

Usage

calculateTtest(

eset

, design.matrix = createDesignMatrix(eset)

, contrast.matrix = createContrastMatrix(eset)

)

Arguments

eset An object of class ExpressionSet

design.matrix A design matrix
contrast.matrix
A contrast matrix

Details

The eset argument must be supplied, and must be a valid ExpressionSet object. Design and
contrast matrices can be supplied, but if not, default matrices will be used. These should usually be
sufficient for most analyses.

10 Clust.exampleE

Value

An object of class DEResult.

Author(s)

Richard D. Pearson

See Also

Related methods pumaDE, calculatelLimma, calculateFC, createDesignMatrix and createContrastMatrix
and class DEResult

Examples

eset_test <- new("ExpressionSet”, exprs=matrix(rnorm(400,8,2),100,4))
pData(eset_test) <- data.frame("class”"=c("A", "A", "B", "B"))

TtestRes <- calculateTtest(eset_test)

plotErrorBars(eset_test, topGenes(TtestRes))

Clust.exampleE The example data of the mean gene expression levels

Description

This data is an artificial example of the mean gene expression levels.

Usage

data(Clust.exampleE)

Format

A 700x20 matrix including 700 genes and 20 chips. Every 100 genes belong to one cluster from
the first gene. There are 7 clusters.

Source

Liu, X. Lin, K., Andersen, B. Rattray, M. (2007) Including probe-level uncertainty in model-based
gene expression clustering, BMC Bioinformatics, 8(98).

See Also

Clust.exampleStd

Clust.exampleStd 11

Clust.exampleStd The example data of the standard deviation for gene expression levels

Description

This data is an artificial example of the standard deviation for gene expression levels.

Usage

data(Clust.exampleStd)

Format
A 700x20 matrix including 700 genes and 20 chips. Every 100 genes belong to one cluster from
the first gene. There are 7 true clusters.

Source
Liu, X. Lin, K., Andersen, B. Rattray, M. (2007) Including probe-level uncertainty in model-based
gene expression clustering, BMC Bioinformatics, 8(98).

See Also

Clust.exampleE

clusterApplylLBDots clusterApplyLB with dots to indicate progress

Description

This is basically the clusterApplyLB function from the snow package, but with dots displayed to
indicate progress.

Usage

clusterApplylLBDots(cl, x, fun, ...)
Arguments

cl cluster object

X array

fun function or character string naming a function

additional arguments to pass to standard function

Author(s)

Richard D. Pearson (modified from original snow function)

12 clusterNorm Var

clusterNormE Zero-centered normalisation

Description

This function normalise the data vector to have zero mean.

Usage

clusterNormE(x)

Arguments

X a vector which contains gene expression level on log2 scale.

Details

Vector x is related to a gene and each element is related to a chip.

Value

The return vector is in the same format as the input x.

Author(s)

Xuejun Liu, Magnus Rattray

See Also

See Also as pumaClust and pumaClustii

Examples

#data(Clust.exampleE)
#Clust.exampleE.centered<-t(apply(Clust.exampleE, 1, clusterNormE))

clusterNormvar Adjusting expression variance for zero-centered normalisation

Description
This function adjusts the variance of the gene expression according to the zero-centered normalisa-
tion.

Usage

clusterNormVar(x)

Arguments

X a vector which contains the variance of gene expression level on log2 scale.

Clustii.exampleE 13

Details

Vector x is related to a gene and each element is related to a chip.

Value

The return vector is in the same format as the input x.

Author(s)

Xuejun Liu, Magnus Rattray

See Also

See Also as pumaClust and pumaClustii

Examples

#data(Clust.exampleE)

#data(Clust.exampleStd)

#Clust.exampleVar<-Clust.exampleStd*2
#Clust.exampleStd.centered<-t(apply(cbind(Clust.exampleE,Clust.exampleVar), 1, clusterNormVar))

Clustii.exampleE The example data of the mean gene expression levels

Description

This data is an artificial example of the mean gene exapression levels generated by package mmgmos.

Usage

data(Clustii.exampleE)

Format

A 600x80 matrix including 600 genes and 20 conditions. Each condition has 4 replicates. Every
100 genes belong to one cluster from the first gene. There are 6 clusters.

Source

Liu,X. and Rattray,M. (2009) Including probe-level measurement error in robust mixture clustering
of replicated microarray gene expression, Statistical Application in Genetics and Molecular Biol-
ogy, 9(1), Article 42.

See Also

Clustii.exampleStd

14 compareLimmapumaDE

Clustii.exampleStd The example data of the standard deviation for gene expression levels

Description

This data is an artificial example of the standard deviation for gene exapression levels generated by
package mmgmos.

Usage
data(Clustii.exampleStd)

Format
A 600x80 matrix including 600 genes and 20 conditions. Each condition has 4 replicates. Every
100 genes belong to one cluster from the first gene. There are 6 clusters.

Source
Liu,X. and Rattray,M. (2009) Including probe-level measurement error in robust mixture clustering
of replicated microarray gene expression, technical report available upon request.

See Also

Clustii.exampleE

compareL immapumaDE Compare pumaDE with a default Limma model

Description

This function compares the identification of differentially expressed (DE) genes using the pumaDE
function and the limma package.

Usage

comparelL immapumaDE (

eset_mmgmos

, eset_comb = NULL

, eset_other = eset_mmgmos

, limmaRes = calculatelLimma(eset_other)
, pumaDERes = pumaDE(eset_comb)

, contrastMatrix = createContrastMatrix(eset_mmgmos)
, numberToCompareForContrasts = 3

, numberToCompareForVenn = 100

, plotContrasts = TRUE

, contrastsFilename = NULL

, plotOther = FALSE

, otherFilename = "other”

, plotBcombContrasts = FALSE

compareLimmapumaDE 15

, bcombContrastsFilename = "bcomb_contrasts”
, plotVenn = FALSE

, vennFilename = "venn.pdf"”

, showTopMatches = FALSE

returnResults = FALSE

Arguments

eset_mmgmos An object of class ExpressionSet, that includes both expression levels as well
as standard errors of the expression levels. This will often have been created
using mmgmos, but might also have been created by mgmos, or any other method
capable of providing standard errors.

eset_comb An object of class ExpressionSet, includes both expression levels as well as
standard errors of the expression levels for each unique condition in an exper-
iment (i.e. created from combining the information from each replicate). This
will usually have been created using pumaComb.

eset_other An object of class ExpressionSet, that includes expression levels , and may
optionally also include standard errors of the expression levels. This is used for
comparison with eset_mmgmos, and might have been created by any summari-
sation method, e.g. rma.

limmaRes A list with two elements, usually created using the function calculatelLimma.
The first element is a matrix of p-values. Each column represent one contrast.
Within each column the p-values are ordered. The second element is a matrix
of row numbers, which can be used to map p-values back to probe sets. If not
supplied this will be automatically created from eset_other.

pumaDERes A list with two elements, usually created using the function pumaDE. The first
element is a matrix of PPLR values. Each column represent one contrast. Within
each column the PPLR values are ordered. The second element is a matrix of
row numbers, which can be used to map PPLR values back to probe sets. If not
supplied this will be automatically created from eset_comb.

contrastMatrix A contrast matrix. If not supplied this will be created from eset_mmgmos
numberToCompareForContrasts
An integer specifying the number of most differentially expressed probe sets
(genes) that will be used in comparison charts.
numberToCompareForVenn

An integer specifying the number of most differentially expressed probe sets
(genes) that will be used for comparison in the Venn diagram.

plotContrasts A boolean specifying whether or not to plot the most differentially expressed
probe sets (genes) for each contrast for the eset_mmgmos ExpressionSet.
contrastsFilename
A character string specifying a file name stem for the PDF files which will be
created to hold the contrast plots for the eset_mmgmos ExpressionSet. The
actually filenames will have the name of the contrast appended to this stem.

plotOther A boolean specifying whether or not to plot the most differentially expressed
probe sets (genes) for each contrast for the eset_other ExpressionSet.

otherFilename A character string specifying a file name stem for the PDF files which will be
created to hold the contrast plots for the eset_other ExpressionSet. The
actually filenames will have the name of the contrast appended to this stem.

16 createContrastMatrix

plotBcombContrasts
A boolean specifying whether or not to plot the most differentially expressed
probe sets (genes) for each contrast for the eset_comb ExpressionSet.

bcombContrastsFilename
A character string specifying a file name stem for the PDF files which will be
created to hold the contrast plots for the eset_comb ExpressionSet. The actu-
ally filenames will have the name of the contrast appended to this stem.

plotVenn A boolean specifying whether or not to plot a Venn diagram showing the overlap
in the most differentially expressed probe sets (genes) as identified from the two
different methods being compared.

vennFilename A character string specifying the filename for the PDF file which will hold the
Venn diagram showing the overlap in the most differentially expressed probe
sets (genes) as identified from the two different methods being compared.

showTopMatches A boolean specifying whether or not to show the probe sets which are deemed
most likely to be differentially expressed.

returnResults A boolean specifying whether or not to return a list containing results generated.

Value

The main outputs from this function are a number of PDF files.

The function only returns results if returnResults=TRUE

Author(s)

Richard D. Pearson

See Also

Related methods pumaDE and calculatelLimma

createContrastMatrix Automatically create a contrast matrix from an ExpressionSet and op-
tional design matrix

Description

To appear

Usage

createContrastMatrix(eset, design=NULL)

Arguments

eset An object of class ExpressionSet.

design A design matrix

createContrastMatrix 17

Details

The puma package has been designed to be as easy to use as possible, while not compromising
on power and flexibility. One of the most difficult tasks for many users, particularly those new to
microarray analysis, or statistical analysis in general, is setting up design and contrast matrices.
The puma package will automatically create such matrices, and we believe the way this is done
will suffice for most users’ needs.

It is important to recognise that the automatic creation of design and contrast matrices will only
happen if appropriate information about the levels of each factor is available for each array in the
experimental design. This data should be held in an AnnotatedDataFrame class. The easiest way
of doing this is to ensure that the AnnotatedDataFrame object holding the raw CEL file data has an
appropriate phenoData slot. This information will then be passed through to any ExpressionSet
object created, for example through the use of mmgmos. The phenoData slot of an ExpressionSet
object can also be manipulated directly if necessary.

Design and contrast matrices are dependent on the experimental design. The simplest experimental
designs have just one factor, and hence the phenoData slot will have a matrix with just one column.
In this case, each unique value in that column will be treated as a distinct level of the factor, and
hence pumaComb will group arrays according to these levels. If there are just two levels of the factor,
e.g. A and B, the contrast matrix will also be very simple, with the only contrast of interest being
A vs B. For factors with more than two levels, a contrast matrix will be created which reflects all
possible combinations of levels. For example, if we have three levels A, B and C, the contrasts of
interest will be A vs B, A vs C and B vs C. In addition, if the others argument is set to TRUE, the
following additional contrasts will be created: A vs other (i.e. A vs B \& C), B vs other and C vs
other. Note that these additional contrasts are experimental, and not currently recommended for use
in calculating differential expression.

If we now consider the case of two or more factors, things become more complicated. There are
now two cases to be considered: factorial experiments, and non-factorial experiments. A factorial
experiment is one where all the combinations of the levels of each factor are tested by at least one
array (though ideally we would have a number of biological replicates for each combination of
factor levels). The estrogen case study from the package vignette is an example of a factorial
experiment.

A non-factorial experiment is one where at least one combination of levels is not tested. If we treat
the example used in the puma-package help page as a two-factor experiment (with factors “level”
and “batch”), we can see that this is not a factorial experiment as we have no array to test the
conditions “level=ten” and “batch=B”. We will treat the factorial and non-factorial cases separately
in the following sections.

Factorial experiments

For factorial experiments, the design matrix will use all columns from the phenoData slot. This will
mean that pumaComb will group arrays according to a combination of the levels of all the factors.

Non-factorial designs

For non-factorial designed experiments, we will simply ignore columns (right to left) from the
phenoData slot until we have a factorial design or a single factor. We can see this in the example
used in the puma-package help page. Here we have ignored the “batch” factor, and modelled the
experiment as a single-factor experiment (with that single factor being “level”).

Value

The result is a matrix. See the code below for an example.

18 createContrastMatrix

Author(s)
Richard D. Pearson

See Also

Related methods createDesignMatrix and pumaDE

Examples

if (FALSE){
This is a simple example based on a real data set. Note that this is an "unbalanced” design, the "level” factor

Next 4 lines commented out to save time in package checks, and saved version used
if (require(affydata)) {
data(Dilution)
eset_mmgmos <- mmgmos(Dilution)
}
data(eset_mmgmos)
createContrastMatrix(eset_mmgmos)

The following shows a set of 15 synthetic data sets with increasing complexity. We first create the data sets,

single 2-level factor
esetl <- new("ExpressionSet”, exprs=matrix(0,100,4))
pData(eset1) <- data.frame("class"=c(1,1,2,2))

single 2-level factor - unbalanced design
eset2 <- new("ExpressionSet”, exprs=matrix(0,100,4))
pData(eset2) <- data.frame("class"=c(1,2,2,2))

single 3-level factor
eset3 <- new("ExpressionSet", exprs=matrix(@,100,6))
pData(eset3) <- data.frame("class"=c(1,1,2,2,3,3))

single 4-level factor
eset4 <- new("ExpressionSet”, exprs=matrix(@,100,8))
pData(eset4) <- data.frame("class"=c(1,1,2,2,3,3,4,4))

2x2 factorial
eset5 <- new("ExpressionSet”, exprs=matrix(@,100,8))
pData(eset5) <- data.frame("fac1"=c("a","a","a","a","b","b","b","b"), "fac2"=c(1,1,2,2,1,1,2,2))

2x2 factorial - unbalanced design
esetb6 <- new("ExpressionSet"”, exprs=matrix(0,100,10))
pData(eset6) <- data.frame("facl”=c("a","a","”a","b","b","b","b","b","b","b"), "fac2"=c(1,2,2,1,1,1,2,2,2,2)

3x2 factorial
eset7 <- new("ExpressionSet"”, exprs=matrix(0,100,12))
pData(eset7) <- data. _Frame(ufac-l ":C(”a" , nan , nan , "a" , ubn , nbu , nbn , ubn , ”C” , "C” , ”C” , ”C") , n.FaCZ”:C(-] , -l , 2’ 2’ -l ’1 ,I

2x3 factorial

eset8 <- new("ExpressionSet"”, exprs=matrix(0,100,12))

pData(eset8) <- data.frame(
"fac1"=c("a","a","a","a","a","a","b","b","b","b","b","b")

, "fac2"=c(1,1,2,2,3,3,1,1,2,2,3,3))

non

createContrastMatrix 19

2x2x2 factorial
eset9 <- new("ExpressionSet”, exprs=matrix(0,100,8))
pData(eset9) <- data.frame(
Hfac-l ":C(”a” s Ilall s ”a” , Ha” s Hb" s Hb”) Hbll , ”b”)
, "fac2"=c(1,1,2,2,1,1,2,2)
L TEac3 = (X, Y, X Y X Y X Yy Y

3x2x2 factorial

eset10 <- new("ExpressionSet”, exprs=matrix(0,100,12))

pData(eset10) <- data.frame(
"fac1"=c("a","a","a","a","b","b","b","b","c","c","c","c")

, "fac2"=c(1,1,2,2,1,1,2,2,1,1,2,2)

, fac3=c (X, Y XY XY X Y X Y XYY)

3x2x2 factorial

eset11 <- new("ExpressionSet"”, exprs=matrix(@,100,12))

pData(eset11) <- data.frame(
"fac1"=c("a","a","a","a","a","a","b","b","b","b","b","b")

, "fac2"=c(1,1,2,2,3,3,1,1,2,2,3,3)

, "fac3 =X, YT XY X Y X Y XY X YY))

3x2x2 factorial

eset12 <- new("ExpressionSet”, exprs=matrix(0,100,18))

pData(eset12) <- data.frame(
"fac1"=c("a","a","a","a","a","a","b","b","b","b","b","b","c","c","c","c","c","c")

, "fac2"=c(1,1,2,2,3,3,1,1,2,2,3,3,1,1,2,2,3,3)

, Fac3 = (X Y XY X Y X Y XY X Y XY X Y XYY)

2x2x2x2 factorial

eset13 <- new("ExpressionSet"”, exprs=matrix(0,100,16))

pData(eset13) <- data.frame(
"facl"=c("a","a","a","a","a","a","a","a","b","b","b","b","b","b","b","b")

, "fac2"=c(0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1)

, "fac3"=c(2,2,3,3,2,2,3,3,2,2,3,3,2,2,3,3)

L FacAT=C (XM, Y X YT KT YK Y X Y Iy e ey ey

"Un-analysable” data set - all arrays are from the same class
eset14 <- new("ExpressionSet"”, exprs=matrix(0,100,4))
pData(eset14) <- data.frame("class"=c(1,1,1,1))

"Non-factorial” data set - there are no arrays for fac1="b" and fac2=2. In this case only the first factor (fac
eset15 <- new("ExpressionSet"”, exprs=matrix(@,100,6))
pData(eset15) <- data.frame(”facl”=c("a","”a","a","a","b","b"), "fac2"=c(1,1,2,2,1,1))

createContrastMatrix(eset1)

createContrastMatrix(eset2)

createContrastMatrix(eset3)

createContrastMatrix(eset4)

createContrastMatrix(eset5)

createContrastMatrix(eset6)

createContrastMatrix(eset7)

createContrastMatrix(eset8)

createContrastMatrix(eset9)

For the last 4 data sets, the contrast matrices get pretty big, so we'll just show the names of each contrast
colnames(createContrastMatrix(eset10))

colnames(createContrastMatrix(eset11))

Note that the number of contrasts can rapidly get very large for multi-factorial experiments!

20 createDesignMatrix

colnames(createContrastMatrix(eset12))
For this final data set, note that the puma package does not currently create interaction terms for data sets w
colnames(createContrastMatrix(eset13))

"Un-analysable” data set - all arrays are from the same class - gives an error. Note that we've commented this
createContrastMatrix(eseti14)
"Non-factorial” data set - there are no arrays for fac1="b" and fac2=2. In this case only the first factor (fac
createContrastMatrix(eset15)

}

createDesignMatrix Automatically create a design matrix from an ExpressionSet

Description

Automatically create a design matrix from an ExpressionSet.

Usage

createDesignMatrix(eset)

Arguments

eset An object of class ExpressionSet.

Details

The puma package has been designed to be as easy to use as possible, while not compromising
on power and flexibility. One of the most difficult tasks for many users, particularly those new to
microarray analysis, or statistical analysis in general, is setting up design and contrast matrices.
The puma package will automatically create such matrices, and we believe the way this is done
will suffice for most users’ needs.

It is important to recognise that the automatic creation of design and contrast matrices will only
happen if appropriate information about the levels of each factor is available for each array in the
experimental design. This data should be held in an AnnotatedDataFrame class. The easiest way
of doing this is to ensure that the AnnotatedDataFrame object holding the raw CEL file data has an
appropriate phenoData slot. This information will then be passed through to any ExpressionSet
object created, for example through the use of mmgmos. The phenoData slot of an ExpressionSet
object can also be manipulated directly if necessary.

Design and contrast matrices are dependent on the experimental design. The simplest experimental
designs have just one factor, and hence the phenoData slot will have a matrix with just one column.
In this case, each unique value in that column will be treated as a distinct level of the factor, and
hence pumaComb will group arrays according to these levels. If there are just two levels of the factor,
e.g. A and B, the contrast matrix will also be very simple, with the only contrast of interest being
A vs B. For factors with more than two levels, a contrast matrix will be created which reflects all
possible combinations of levels. For example, if we have three levels A, B and C, the contrasts of
interest will be A vs B, A vs C and B vs C.

If we now consider the case of two or more factors, things become more complicated. There are
now two cases to be considered: factorial experiments, and non-factorial experiments. A factorial
experiment is one where all the combinations of the levels of each factor are tested by at least one
array (though ideally we would have a number of biological replicates for each combination of

createDesignMatrix 21

factor levels). The estrogen case study from the package vignette is an example of a factorial
experiment.

A non-factorial experiment is one where at least one combination of levels is not tested. If we treat
the example used in the puma-package help page as a two-factor experiment (with factors “level”
and “batch”), we can see that this is not a factorial experiment as we have no array to test the
conditions “level=ten” and “batch=B”. We will treat the factorial and non-factorial cases separately
in the following sections.

Factorial experiments

For factorial experiments, the design matrix will use all columns from the phenoData slot. This will
mean that pumaComb will group arrays according to a combination of the levels of all the factors.

Non-factorial designs

For non-factorial designed experiments, we will simply ignore columns (right to left) from the
phenoData slot until we have a factorial design or a single factor. We can see this in the example
used in the puma-package help page. Here we have ignored the “batch” factor, and modelled the
experiment as a single-factor experiment (with that single factor being “level”).

Value

The result is a matrix. See the code below for an example.

Author(s)

Richard D. Pearson

See Also

Related methods createContrastMatrix, pumaComb, pumaDE and pumaCombImproved

Examples

if (FALSE){
This is a simple example based on a real data set. Note that this is an "unbalanced” design, the "level” factor

Next 4 lines commented out to save time in package checks, and saved version used
if (require(affydata)) {

data(Dilution)

eset_mmgmos <- mmgmos(Dilution)

3

data(eset_mmgmos)

createDesignMatrix(eset_mmgmos)

The following shows a set of 15 synthetic data sets with increasing complexity. We first create the data sets,

single 2-level factor
esetl <- new("ExpressionSet"”, exprs=matrix(0,100,4))
pData(esetl) <- data.frame("class"=c(1,1,2,2))

single 2-level factor - unbalanced design
eset2 <- new("ExpressionSet"”, exprs=matrix(@,100,4))
pData(eset2) <- data.frame("class"=c(1,2,2,2))

single 3-level factor
eset3 <- new("ExpressionSet"”, exprs=matrix(@,100,6))
pData(eset3) <- data.frame("class"=c(1,1,2,2,3,3))

createDesignMatrix

single 4-level factor
eset4 <- new("ExpressionSet”, exprs=matrix(@,100,8))
pData(eset4) <- data.frame("class”"=c(1,1,2,2,3,3,4,4))

2x2 factorial
eset5 <- new("ExpressionSet"”, exprs=matrix(@,100,8))
pData(eset5) <- data.frame("fac1”=c("a",”a","a","a","b"”,"b","b","b"), "fac2"=c(1,1,2,2,1,1,2,2))

2x2 factorial - unbalanced design
eset6 <- new("ExpressionSet”, exprs=matrix(@,100,10))
pData(eset6) <- data.frame("facl"=c("a","a","a","b","b","b","b","b","b","b"), "fac2"=c(1,2,2,1,1,1,2,2,2,2)

3x2 factorial
eset7 <- new("ExpressionSet”, exprs=matrix(@,100,12))
pData(eSet7) <- data. ‘Frame(”fac‘] ”:C("a” , "a" , uan , nau , nbn , ubn , nbu , ubn , ”C” , ”C" , ”C” , "C”) , nfacznzc(-l ,1 , 2, 2’1 ’1 ,

2x3 factorial

eset8 <- new("ExpressionSet"”, exprs=matrix(@,100,12))

pData(eset8) <- data.frame(
"fac1"=c("a","a","a","a","a","a","b","b","b","b","b","b")

, "fac2"=c(1,1,2,2,3,3,1,1,2,2,3,3))

2x2x2 factorial

eset9 <- new("ExpressionSet"”, exprs=matrix(@,100,8))

pData(eset9) <- data.frame(
"fac1"=c("a","a","a","a","b","b","b","b")

, "fac2"=c(1,1,2,2,1,1,2,2)

L MFac3=c (KT Y XY KT XYY)

3x2x2 factorial

eset10 <- new("ExpressionSet”, exprs=matrix(0,100,12))

pData(eset10) <- data.frame(
"fac1"=c("a","a","a","a","b","b","b","b","c","c","c","c")

, "fac2"=c(1,1,2,2,1,1,2,2,1,1,2,2)

;o fac3 = (X, YT XY XY X Y XY XYY)

3x2x2 factorial

eset1l <- new("ExpressionSet”, exprs=matrix(0,100,12))

pData(eset11) <- data.frame(
"fac1"=c("a","a","a","a","a","a","b","b","b","b","b","b")

, "fac2"=c(1,1,2,2,3,3,1,1,2,2,3,3)

, MFac3=c (X, YT XY XY XY X YT XTI)

3x2x2 factorial

eset12 <- new("ExpressionSet”, exprs=matrix(0,100,18))

pData(eset12) <- data.frame(
"facl"=c("a","a","a","a","a","a","b","b","b","b","b","b","c","c","c","c","c","c")

, "fac2"=c(1,1,2,2,3,3,1,1,2,2,3,3,1,1,2,2,3,3)

, "fac3=c (XY X Y X Y XY XY XY X Y X Y X, YY))

2x2x2x2 factorial
eset13 <- new("ExpressionSet”, exprs=matrix(0,100,16))
pData(eset13) <- data.frame(

’Ifac1 H:c(llall , llaH s Ilall s Ilall s Ilall , llall , Ilal) s Ilall s Hbll , Ilbll N Hbll s Ilbll , Nbll s Ilbll s Hbll s llbll)
, "fac2"=c(0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1)
, "fac3"=c(2,2,3,3,2,2,3,3,2,2,3,3,2,2,3,3)

create_eset_r 23

, u.FaC4n:C<nXu , myn , nyn , nyn , ny , nmyn , nyn , nyn , nyn , nyn , ny , nyn , nyn , nyn , ny , uYn))

"Un-analysable” data set - all arrays are from the same class
eset14 <- new("ExpressionSet”, exprs=matrix(0,100,4))
pData(eset14) <- data.frame("class"=c(1,1,1,1))

"Non-factorial” data set - there are no arrays for fac1="b" and fac2=2. In this case only the first factor (fa
eset15 <- new("ExpressionSet”, exprs=matrix(0,100,6))
pData(eset15) <- data.frame("facl"=c("a","a","a","a","b","b"), "fac2"=c(1,1,2,2,1,1))

"pseduo 2 factor” data set - second factor is informative
eset16 <- new("ExpressionSet”, exprs=matrix(@,100,8))
pData(eset16) <- data.frame(”"fac1”=c("a","a","b","b"), "fac2"=c(1,1,1,1))

"pseduo 2 factor” data set - first factor is informative
eset17 <- new("ExpressionSet”, exprs=matrix(@,100,8))
pData(eset17) <- data.frame("facl"=c("a","a","a","a"), "fac2"=c(1,1,2,2))

"pseudo 3 factor” data set - first factor is uninformative so actually a 2x2 factorial
eset18 <- new("ExpressionSet”, exprs=matrix(@,100,8))
pData(eset18) <- data.frame(
"fac1"=c("a","a","a","a","a","a","a","a")
, "fac2"=c(1,1,2,2,1,1,2,2)
, "fac3"=c (XN, YT XY XY X YY))

"pseudo 3 factor” data set - first and third factors are uninformative so actually a single factor

eset19 <- new("ExpressionSet”, exprs=matrix(0,100,8))

pData(eset19) <- data.frame(
"facl"=c("a","a","a","a","a

, "fac2"=c(1,1,2,2,1,1,2,2)

, MFac3=c (X, XXX X X X, XY)

non
’

nonmon non
a » a ’ a)

createDesignMatrix(eset1)
createDesignMatrix(eset2)
createDesignMatrix(eset3)
createDesignMatrix(eset4)
createDesignMatrix(esetb)
createDesignMatrix(eset6)
createDesignMatrix(eset7)
createDesignMatrix(eset8)
createDesignMatrix(eset9)
createDesignMatrix(eset10)
createDesignMatrix(eset11)
createDesignMatrix(eset12)
createDesignMatrix(eset13)

"Un-analysable” data set - all arrays are from the same class - gives an error. Note that we've commented this
createDesignMatrix(eset14)

"Non-factorial” data set - there are no arrays for fac1="b" and fac2=2. In this case only the first factor (fa
createDesignMatrix(eset15)

3

create_eset_r Create an ExpressionSet from a PPLR matrix

24 DEResult

Description

This is really an internal function called from pumaComb. It is used to create an ExpressionSet
object from the output of the bcomb function (which was originally part of the pplr package. Don’t
worry about it!

Usage

create_eset_r(

eset

, r

, design.matrix=createDesignMatrix(eset)

)
Arguments
eset An object of class ExpressionSet. The phenotype information from this is
used as the phenotype information of the returned object
r A data frame with components named "M1’, "M2’, and so on, which represent

the mean expression values for condition 1, condition 2, and so on. It also
has components named ’Std1’, ’Std2’, and so on, which represent the standard
deviation of the gene expression values for condition 1, condtion 2, and so on.
This type of data frame is output by function bcomb and hcomb

design.matrix A design matrix.

Value

An object of class ExpressionSet.

Author(s)

Richard D. Pearson

See Also

Related methods bcomb, hcomb, pumaComb and pumaCombImproved

DEResult Class DEResult

Description

Class to contain and describe results of a differential expression (DE) analysis. The main compo-
nents are statistic which hold the results of any statistic (e.g. p-values, PPLR values, etc.), and
FC which hold the fold changes.

DEResult 25

Creating Objects

DEResult objects will generally be created using one of the functions pumaDE, calculatelLimma,
calculateFC or calculateTtest.

Objects can also be created from scratch:
new("DEResult")

new("DEResult”, statistic=matrix() ,FC=matrix() ,statisticDescription="unknown"” ,DEMethod="unknown

)

Slots

statistic: Object of class "matrix" holding the statistics returned by the DE method.
FC: Object of class "matrix" holding the fold changes returned by the DE method.
statisticDescription: A text description of the contents of the statistic slot.

DEMethod: A string indicating which DE method was used to create the object.

Methods
Class-specific methods.

statistic(DEResult), statistic(DEResult,matrix)<- Access and set the statistic slot.
FC(DEResult), FC(DEResult,matrix)<- Access and set the FC slot.

statisticDescription(DEResult), statisticDescription(DEResult,character)<- Access
and set the statisticDescription slot.

DEMethod (DEResult), DEMethod (DEResult,character)<- Access and set the DEMethod slot.

pLikeValues(object, contrast=1, direction="either"”) Access the statistics of an object of
class DEResult, converted to "p-like values". If the object holds information on more than one
contrast, only the values of the statistic for contrast number contrast are given. Direction
can be "either" (meaning we want order genes by probability of being either up- or down-
regulated), "up" (meaning we want to order genes by probability of being up-regulated), or
"down" (meaning we want to order genes by probability of being down-regulated). "p-like
values" are defined as values between O and 1, where O identifies the highest probability of
being differentially expressed, and 1 identifies the lowest probability of being differentially
expressed. We use this so that we can easily compare results from methods that provide true
p-values (e.g. calculateLimma) and methods methods that do not provide p-values (e.g.
pumaDE). For objects created using pumaDE, this returns 1-PPLR if the direction is "up", PPLR
if direction is "down", and 1-abs(2*(PPLR-0.5)) if direction is "either". For objects created
using calculatelimma or calculateTtest, this returns the p-value if direction is "either",
((p-1 * sign(FC))/2)+ 0.5, if the direction is "up”, and ((1-p * sign(FC))/2)+ 0.5 if the direction
is "down". For all other methods, this returns the rank of the appropriate statistic, scaled to lie
between 0 and 1. contrast will be returned.

topGenes(object, numberOfGenes=1, contrast=1, direction="either") Returns the index
numbers (row numbers) of the genes determined to be most likely to be differentially ex-
pressed. numberOfGenes specifies the number of genes to be returned by the function. If the
object holds information on more than one contrast, only the values of the statistic for con-
trast number contrast are given. Direction can be "either" (meaning we want order genes by
probability of being either up- or down-regulated), "up" (meaning we want to order genes by
probability of being up-ragulated), or "down" (meaning we want to order genes by probability
of being down-regulated). Note that genes are ordered by "p-like values" (see pLikeValues).
object is an object of class DEResult.

26 DEResult

topGeneIDs(object, numberOfGenes=1, contrast=1, direction="either") Returns the Affy
IDs (row names) of the genes determined to be most likely to be differentially expressed.
numberOfGenes specifies the number of genes to be returned by the function. If the ob-
ject holds information on more than one contrast, only the values of the statistic for contrast
number contrast are given. Direction can be "either" (meaning we want order genes by
probability of being either up- or down-regulated), "up" (meaning we want to order genes by
probability of being up-ragulated), or "down" (meaning we want to order genes by probability
of being down-regulated). Note that genes are ordered by "p-like values" (see pLikeValues).
object is an object of class DEResult.

numberOfProbesets(object) Returns the number of probesets (number of rows) in an object of
class DEResult. This method is synonymous with numberOfGenes.

numberOfGenes(object) Returns the number of probesets (number of rows) in an object of class
DEResult. This method is synonymous with numberOfProbesets.

numberOfContrasts(object) Returns the number of contrasts (number of columns) in an object
of class DEResult.

write.reslts(object) signature(x = "DEResult"): writes the statistics and related fold changes
(FCs) to files. It takes the same arguments as write.table. The argument "file" does not need
to set any extension. The different file marks and extension "csv" will be added automatically.
The default file name is "tmp". In the final results, statistics are in the file "tmp_statistics.csv",
and FCs are in "tmp_FCs.csv" respectively.

Standard generic methods:

show(object) Informatively display object contents.

Author(s)
Richard D. Pearson

See Also

Related methods pumaDE, calculateLimma, calculateFC or calculateTtest.

Examples

if (FALSE){

Create an example DEResult object

Next 4 lines commented out to save time in package checks, and saved version used
if (require(affydata)) {

data(Dilution)

eset_mmgmos <- mmgmos(Dilution)

3

data(eset_mmgmos)

Next line used so eset_mmgmos only has information about the liver factor
The scanner factor will thus be ignored, and the two arrays of each level
of the liver factor will be treated as replicates

pData(eset_mmgmos) <- pData(eset_mmgmos)[,1,drop=FALSE]

To save time we'll just use 100 probe sets for the example
eset_mmgmos_100 <- eset_mmgmos[1:100,]

eset_comb <- pumaComb(eset_mmgmos_100)

esetDE <- pumaDE(eset_comb)

erfc

Use some of the methods
statisticDescription(esetDE)
DEMethod(esetDE)
numberOfProbesets(esetDE)
numberOfContrasts(esetDE)
topGenes(esetDE)

topGenes(esetDE, 3)
pLikeValues(esetDE)[topGenes(esetDE,3)]
topGenelIDs(esetDE, 3)
topGeneIDs(esetDE, 3, direction="down")

save the expression results into files
write.reslts(esetDE, file="example")

}

27

erfc The complementary error function

Description

This function calculates the complementary error function of an input x.

Usage
erfc(x)

Arguments

X a numeric, the input.

Details

erfc is implemented using the function gnorm.

Value

The return is a numeric.

Author(s)

Xuejun Liu

See Also

gnorm

Examples

erfc(0.5)

28 exampleE

eset_mmgmos An example ExpressionSet created from the Dilution data with mmg-
mos

Description
This data is created by applying mmgmos to the Dilution AffyBatch object from the affydata pack-
age.

Usage

data(eset_mmgmos)

Format

An object of class ExpressionSet.

Source

see Dilution

exampleE The example data of the mean gene expression levels

Description
This data is an artificial example of the mean gene expression levels from golden spike-in data set
in Choe et al. (2005).

Usage

data(exampleE)

Format
A 200x6 matrix including 200 genes and 6 chips. The first 3 chips are replicates for C condition
and the last 3 chips are replicates for S conditon.

Source

Choe,S.E., Boutros,M., Michelson,A.M., Church,G.M., Halfon,M.S.: Preferred analysis methods
for Affymetrix GeneChips revealed by a wholly defined control dataset. Genome Biology, 6 (2005)
R16.

See Also

exampleStd

exampleStd 29

exampleStd The example data of the standard deviation for gene expression levels

Description
This data is an artificial example of the standard deviation for gene exapression levels from golden
spike-in data set in Choe et al. (2005).

Usage

data(exampleStd)

Format
A 200x6 matrix including 200 genes and 6 chips. The first 3 chips are replicates for C condition
and the last 3 chips are replicates for S conditon.

Source

Choe,S.E., Boutros,M., Michelson,A.M., Church,G.M., Halfon,M.S.: Preferred analysis methods
for Affymetrix GeneChips revealed by a wholly defined control dataset. Genome Biology, 6 (2005)
R16.

See Also

exampleE

exprReslt-class Class exprReslt

Description

This is a class representation for Affymetrix GeneChip probe level data. The main component are
the intensities, estimated expression levels and the confidence of expression levels from multiple
arrays of the same CDF type. In extends ExpressionSet.

Objects from the Class

Objects can be created by calls of the form new("exprReslt”, ...).

Fields

prcfive: Object of class "matrix" representing the 5 percentile of the observed expression levels.
This is a matrix with columns representing patients or cases and rows representing genes.

prctwfive: Object of class "matrix" representing the 25 percentile of the observed expression
levels. This is a matrix with columns representing patients or cases and rows representing
genes.

prcfifty: Object of class "matrix" representing the 50 percentile of the observed expression lev-
els. This is a matrix with columns representing patients or cases and rows representing genes.

30 exprReslt-class

prcsevfive: Object of class "matrix" representing the 75 percentile of the observed expression
levels. This is a matrix with columns representing patients or cases and rows representing
genes.

prcninfive: Object of class "matrix" representing the 95 percentile of the observed expression
levels. This is a matrix with columns representing patients or cases and rows representing
genes.

phenoData: Object of class "phenoData" inherited from ExpressionSet.

annotation: A character string identifying the annotation that may be used for the ExpressionSet
instance.

Extends

Class "ExpressionSet”, directly.

Methods

se.exprs signature(object = "exprReslt"”): obtains the standard error of the estimated expres-
sion levels.

se.exprs<- signature(object = "exprReslt"): replaces the standard error of the estimated ex-
pression levels.

prefifty signature(object = "exprReslt”): obtains the 50 percentile of the estimated expres-
sion levels.

prefifty<- signature(object = "exprReslt"”): replaces the 50 percentile of the estimated ex-
pression levels.

prefive signature(object = "exprReslt”): obtains the 5 percentile of the estimated expression
levels.

prefive<- signature(object = "exprReslt"): replaces the 5 percentile of the estimated expres-
sion levels.

preninfive signature(object = "exprReslt”): obtains the 95 percentile of the estimated ex-
pression levels.

preninfive<- signature(object = "exprReslt"”): replaces the 95 percentile of the estimated ex-
pression levels.

presevfive signature(object = "exprReslt"): obtains the 75 percentile of the estimated expres-
sion levels.

presevfive<- signature(object = "exprReslt"): replaces the 75 percentile of the estimated ex-
pression levels.

pretwfive signature(object = "exprReslt”): obtains the 25 percentile of the estimated expres-
sion levels.

pretwfive<- signature(object = "exprReslt"): replaces the 25 percentile of the estimated ex-
pression levels.

show signature(object = "exprReslt"): renders information about the exprReslt in a concise
way on stdout.

write.reslts signature(x = "exprReslt"): writes the expression levels and related confidences
to files. It takes the same arguments as write.table. The argument "file" does not need
to set any extension. The different file marks and extension "csv" will be added automati-
cally. The default file name is "tmp". In the final results, expression levels are in the file
"tmp_exprs.csv", standard deviations in "tmp_se.csv", 5 percentiles in "tmp_prctileS.csv",

likewise, 25, 50, 75 and 95 percentiles in "tmp_prctile25.csv", "tmp_prctile50.csv", "tmp_prctile75.csv"
and "tmp_prctile95.csv" respectively.

gmhta 31

Author(s)

Xuejun Liu, Magnus Rattray, Marta Milo, Neil D. Lawrence, Richard D. Pearson

See Also

Related method mmgmos and related class ExpressionSet.

Examples

if (FALSE){

load example data from package affydata

Next 4 lines commented out to save time in package checks, and saved version used
if (require(affydata)) {

data(Dilution)

eset_mmgmos <- mmgmos(Dilution)

3

data(eset_mmgmos)

save the expression results into files
write.reslts(eset_mmgmos, file="example")

3
gmhta Compute gene and transcript expression values and standard devia-
tons from hta2.0 CEL Files
Description

This function converts an object of FeatureSet into an object of class exprReslt using the gamma
model for hta2.0 chips. This function obtains confidence of measures, standard deviation and 5, 25,
50, 75 and 95 percentiles, as well as the estimated expression levels.

Usage
gmhta(
object
,background=FALSE
,gsnorm=c("median”, "none", "mean"”, "meanlog")
,savepar=FALSE
,eps=1.0e-6
,addConstant = @
,c1=NULL
,BatchFold=10
)
Arguments
object an object of FeatureSet
background Logical value. If TRUE, perform background correction before applying gmhta.

gsnorm character. specifying the algorithm of global scaling normalisation.

32

gmhta

savepar Logical value. If TRUE the estimated parameters of the model are saved in file
par_gmbhta.txt

eps Optimisation termination criteria.

addConstant numeric. This is an experimental feature and should not generally be changed
from the default value.

cl This function can be parallelised by setting parameter cl. For more details,
please refer to the vignette.

BatchFold we divide tasks into BatchFold*n jobs where n is the number of cluster nodes.
The first n jobs are placed on the n nodes. When the first job is completed,the
next job is placed on the available node. This continues until all jobs are com-
pleted. The default value is ten. The user also can change the value according
to the number of cluster nodes n. We suggest that for bigger n BatchFold should
be smaller.

Details

The obtained expression measures are in log base 2 scale. Using the known relationships between
genes, transcripts and probes, we propose a gamma model for hta2.0 data to calculate transcript
and gene expression levels. The algorithms of global scaling normalisation can be one of "median",
"none", "mean", "meanlog". "mean" and "meanlog" are mean-centered normalisation on raw scale
and log scale respectively, and "median" is median-centered normalisation. "none" will result in no
global scaling normalisation being applied. This function can be parallelised by setting parameter

cl. For more details, please refer to the vignette.

Value

A list of two object of class exprReslt.

Author(s)

Xuejun Liu,WuJun Zhang,Zhenzhu gao, Magnus Rattray

References

XueJun Liu. (2013) puma 3.0: improved uncertainty propagation methods for gene and transcript
expression analysis, BMC Bioinformatics, 14:39.

Manhong Dai, Pinglang Wang,Andrew D. Boyd. (2005) Evolving gene/transcript definitions sig-
nificantly alter the interpretation of GeneChip data,Nucleic Acid Research 33(20):e175.

See Also

Related class exprReslt-class

Examples

if (FALSE){

The following scripts show the use of the method.
#library(puma)

load CEL files

object<-read.celfiles("celnames”)
#eset<-gmhta(object,gsnorm="none",cl=cl)

}

gmoExon 33

gmoExon Compute gene and transcript expression values and standard devia-
tons from exon CEL Files

Description

This function converts an object of FeatureSet into an object of class exprReslt using the gamma
model for exon chips. This function obtains confidence of measures, standard deviation and 5, 25,
50, 75 and 95 percentiles, as well as the estimated expression levels.

Usage
gmoExon (
object
,exontype = c("Human", "Mouse”, "Rat")
,background=FALSE
,gsnorm=c("median”, "none", "mean", "meanlog")
,savepar=FALSE
,eps=1.0e-6
,addConstant = 0
,c1=NULL
,BatchFold=10
)
Arguments

object an object of FeatureSet

exontype character. specifying the type of exon chip.

background Logical value. If TRUE, perform background correction before applying gmoExon.

gsnorm character. specifying the algorithm of global scaling normalisation.

savepar Logical value. If TRUE the estimated parameters of the model are saved in file
par_gmoExon.txt

eps Optimisation termination criteria.

addConstant numeric. This is an experimental feature and should not generally be changed
from the default value.

cl This function can be parallelised by setting parameter cl. For more details,
please refer to the vignette.

BatchFold we divide tasks into BatchFold*n jobs where n is the number of cluster nodes.
The first n jobs are placed on the n nodes. When the first job is completed,the
next job is placed on the available node. This continues until all jobs are com-
pleted. The default value is ten. The user also can change the value according
to the number of cluster nodes n. We suggest that for bigger n BatchFold should
be smaller.

Details

The obtained expression measures are in log base 2 scale. Using the known relationships between
genes, transcripts and probes, we propose a gamma model for exon array data to calculate transcript
and gene expression levels. The algorithms of global scaling normalisation can be one of "median",

34 gmoExon

non non

"none", "mean", "meanlog". "mean" and "meanlog" are mean-centered normalisation on raw scale
and log scale respectively, and "median" is median-centered normalisation. "none" will result in no
global scaling normalisation being applied. This function can be parallelised by setting parameter
cl. For more details, please refer to the vignette.

Value

A list of two object of class exprReslt.

Author(s)

Xuejun Liu, Zhenzhu gao, Magnus Rattray, Marta Milo, Neil D. Lawrence

References

Liu,X., Milo,M., Lawrence,N.D. and Rattray,M. (2005) A tractable probabilistic model for Affymetrix
probe-level analysis across multiple chips, Bioinformatics, 21:3637-3644.

Milo,M., Niranjan,M., Holley,M.C., Rattray,M. and Lawrence,N.D. (2004) A probabilistic approach
for summarising oligonucleotide gene expression data, technical report available upon request.

Milo,M., Fazeli,A., Niranjan,M. and Lawrence,N.D. (2003) A probabilistic model for the extrac-
tioin of expression levels from oligonucleotide arrays, Biochemical Society Transactions, 31: 1510-
1512.

Peter Spellucci. DONLP2 code and accompanying documentation. Electronically available via
http://plato.la.asu.edu/donlp2.html

Risueno A, Fontanillo C, Dinger ME, De Las Rivas J. GATExplorer: genomic and transcriptomic
explorer; mapping expression probes to gene loci, transcripts, exons and ncRNAs. BMC Bioinfor-
matics.2010.

See Also

Related class exprReslt-class

Examples

if (FALSE){

The following scripts show the use of the method.

load CEL files

celFiles<-c("SR20070419HEXQ1.CEL", "SR20070419HEXQ@2.CEL", "SR20070419HEX06.CEL","SR20070419HEXQ7.CEL)
#oligo_object.exon<-read.celfiles(celFiles);

use method gmoExon to calculate the expression levels and related confidence
of the measures for the example data
#eset_gmoExon<-gmoExon(oligo_object.exon,exontype="Human",gsnorm="none",cl=cl)

3

hcomb 35

hcomb Combining replicates for each condition with the true gene expression

Description

This function calculates the combined (from replicates) signal for each condition using Bayesian
models, which are added a hidden variable to represent the true expression for each gene on each
chips. The inputs are gene expression levels and the probe-level standard deviations associated with
expression measurements for each gene on each chip. The outputs include gene expression levels
and standard deviation for each condition.

Usage
hcomb(e, se, replicates, max_num=c(200,500,1000),gsnorm=FALSE, eps=1.0e-6)

Arguments
e a data frame containing the expression level for each gene on each chip.
se a data frame containing the standard deviation of gene expression levels.
replicates a vector indicating which chip belongs to which condition.
max_num integer. The maximum number of iterations controls the convergence.
gsnorm logical specifying whether do global scaling normalisation or not.
eps a numeric, optimisation parameter.

Details

Each element in replicate represents the condition of the chip which is in the same column order as
in the expression and standard deviation matrix files.

The max_num is used to control the maximum number of the iterations in the EM algorithm. The
best value of the max_num is from 200 to 1000, and should be set 200 at least. The default value
is 200.

Value

The result is a data frame with components named "M1’, ’M2’, and so on, which represent the mean
expression values for condition 1, condition 2, and so on. It also has components named ’Std1’,
’Std2’, and so on, which represent the standard deviation of the gene expression values for condition
1, condtion 2, and so on.

Author(s)

Li Zhang, Xuejun Liu

References
Gelman,A., Carlin,J.B., Stern,H.S., Rubin,D.B., Bayesian data analysis. London: Chapman & Hall,
1995.

Zhang,L. and Liu,X. (2009) An improved probabilistic model for finding differential gene expres-
sion, technical report available request.

Liu,X., Milo,M., Lawrence,N.D. and Rattray,M. (2006) Probe-level variances improve accuracy in
detecting differential gene expression, Bioinformatics, 22(17):2107-13.

36 igmoExon

See Also

Related method pumaCombImproved, mmgmos and pplr

Examples

if(FALSE){

data(exampleE)

data(exampleStd)

r<-hcomb(exampleE, exampleStd, replicates=c(1,1,1,2,2,2))
3

hgu95aphis Estimated parameters of the distribution of phi

Description

The pre-estimated parameters of log normal distribution of ¢, which is the fraction of specific signal
binding to mismatch probe.

Usage

data(hgu95aphis)

Format

The format is: num [1:3] 0.171 -1.341 0.653

Details

The current values of hgu95aphis are estimated from Affymetrix spike-in data sets. It was loaded
in the method "mmgmos”.

hgu95aphis[1:3] is respectively the mode, mean and variance of the log normal distribution of ¢,
and hgu95aphis[1] is also the intial value of ¢ in the model optimisation.

igmoExon Separately Compute gene and transcript expression values and stan-
dard deviatons from exon CEL Files by the conditions.

Description

The principle of this function is as same as the function gmoExon.This function separately calcu-
lates gene expression values by the conditions and then combined every condition’s results, and
normalises them finally.

igmoExon 37

Usage
igmoExon(
cel.path
,SampleNameTable
,exontype = c("Human", "Mouse”, "Rat")
,background=FALSE
,gsnorm=c("median”, "none", "mean", "meanlog")
,savepar=FALSE
,eps=1.0e-6
,addConstant = @
,condition=c("Yes”,"No")
,c1=NULL
,BatchFold=10
)
Arguments

cel.path The directory where you put the CEL files.

SampleNameTable
It is a tab-separated table with two columns,ordered by "Celnames","Condition"

exontype character. specifying the type of exon chip.

background Logical value. If TRUE, perform background correction before applying gmoExon.

savepar Logical value. If TRUE the estimated parameters of the model are saved in file
par_gmoExon.txt

eps Optimisation termination criteria.

addConstant numeric. This is an experimental feature and should not generally be changed
from the default value.

gsnorm character. specifying the algorithm of global scaling normalisation.

condition Yes or No. “Yes” means the igmoExon function separately calculates gene ex-
pression values by the conditions and then combined every condition’s results,
and normalises them finally. “No” means the igmoExon calulates the gene ex-
pression values as same as the gmoExon function.

cl This function can be parallelised by setting parameter cl. For more details,
please refer to the vignette.

BatchFold we divide tasks into BatchFold*n jobs where n is the number of cluster nodes.
The first n jobs are placed on the n nodes. When the first job is completed,the
next job is placed on the available node. This continues until all jobs are com-
pleted. The default value is ten. The user also can change the value according
to the number of cluster nodes n. We suggest that for bigger n BatchFold should
be smaller.

Details

The obtained expression measures are in log base 2 scale. Using the known relationships between
genes, transcripts and probes, we propose a gamma model for exon array data to calculate transcript
and gene expression levels. The algorithms of global scaling normalisation can be one of "median",
"none", "mean", "meanlog". "mean" and "meanlog" are mean-centered normalisation on raw scale
and log scale respectively, and "median" is median-centered normalisation. "none" will result in no

global scaling normalisation being applied.

38 JjustmgMOS

Value

A list of two object of class exprReslt.

Author(s)

Xuejun Liu, Zhenzhu gao, Magnus Rattray, Marta Milo, Neil D. Lawrence

References

Liu,X., Milo,M., Lawrence,N.D. and Rattray,M. (2005) A tractable probabilistic model for Affymetrix
probe-level analysis across multiple chips, Bioinformatics, 21:3637-3644.

Milo,M., Niranjan,M., Holley,M.C., Rattray,M. and Lawrence,N.D. (2004) A probabilistic approach
for summarising oligonucleotide gene expression data, technical report available upon request.

Milo,M., Fazeli,A., Niranjan,M. and Lawrence,N.D. (2003) A probabilistic model for the extrac-
tioin of expression levels from oligonucleotide arrays, Biochemical Society Transactions, 31: 1510-
1512.

Peter Spellucci. DONLP2 code and accompanying documentation. Electronically available via
http://plato.la.asu.edu/donlp2.html

Risueno A, Fontanillo C, Dinger ME, De Las Rivas J. GATExplorer: genomic and transcriptomic
explorer; mapping expression probes to gene loci, transcripts, exons and ncRNAs. BMC Bioinfor-
matics.2010.

See Also

Related class exprReslt-class

Examples

if (FALSE){
The following scripts show the use of the method.
load CEL files
cel.path<-cel.path;
SampleNameTable<-"SampleNameTable"
#teset_igmoExon<-igmoExon(cel.path="cel.path”
, SampleNameTable="SampleNameTable"
, exontype="Human"
, gsnorm="none", condition="Yes", cl=cl)

justmgMOS Compute mgmos Directly from CEL Files

Description

This function converts CEL files into an exprReslt using mgmos.

JjustmgMOS 39

Usage

justmgMOS(..., filenames=character(9),
widget=getOption("BioC")$affy$use.widgets,
compress=getOption("BioC")$affy$compress.cel,
celfile.path=getwd(),
sampleNames=NULL,
phenoData=NULL,
description=NULL,
notes="",
background=TRUE, gsnorm=c("median”, "none"”, "mean”, "meanlog"”), savepar=FALSE, eps=1.0e-6)

just.mgmos(..., filenames=character (@),
phenoData=new("AnnotatedDataFrame"),
description=NULL,

nn

notes="",
compress=getOption("BioC")$affy$compress.cel,
background=TRUE, gsnorm=c("median”, "none”, "mean”, "meanlog"), savepar=FALSE, eps=1.0e-6)

Arguments

file names separated by comma.
filenames file names in a character vector.
widget a logical specifying if widgets should be used.
compress are the CEL files compressed?
celfile.path a character denoting the path where cel files locate.
sampleNames a character vector of sample names to be used in the FeatureSet.
phenoData an AnnotatedDataFrame object.

description a MIAME object.

notes notes.

background Logical value. If TRUE, then perform background correction before applying
mgmos.

gsnorm character. specifying the algorithm of global scaling normalisation.

savepar Logical value. If TRUE, then the estimated parameters of the model are saved in

file par_mgmos.txt and phi_mgmos.txt.

eps Optimisation termination criteria.

Details

This method should require much less RAM than the conventional method of first creating an
FeatureSet and then running mgmos.

Note that this expression measure is given to you in log base 2 scale. This differs from most of the
other expression measure methods.

non non non

The algorithms of global scaling normalisation can be one of "median", "none", "mean", "meanlog".
"mean" and "meanlog" are mean-centered normalisation on raw scale and log scale respectively, and
"median" is median-centered normalisation. "none" will result in no global scaling normalisation
being applied.

40 justmmgMOS

Value

An exprReslt.

See Also

Related class exprReslt-class and related method mgmos

justmmgMOS Compute mmgmos Directly from CEL Files

Description

This function converts CEL files into an exprReslt using mmgmos.

Usage
justmmgMOS(..., filenames=character (@),
widget=getOption("BioC")$affy$use.widgets,
compress=getOption(”"BioC")$affy$compress.cel,
celfile.path=getwd(),
sampleNames=NULL,
phenoData=NULL,
description=NULL,
notes="",
background=TRUE, gsnorm=c("”"median”, "none”, "mean”, "meanlog"), savepar=FALSE, eps=1.0e-6)
just.mmgmos(..., filenames=character(0),
phenoData=new("AnnotatedDataFrame"),
description=NULL,
notes="",
compress=getOption(”"BioC")$affy$compress.cel,
background=TRUE, gsnorm=c("median”, "none"”, "mean”, "meanlog"”), savepar=FALSE, eps=1.0e-6)
Arguments
file names separated by comma.
filenames file names in a character vector.
widget a logical specifying if widgets should be used.
compress are the CEL files compressed?
celfile.path a character denoting the path where cel files locate.
sampleNames a character vector of sample names to be used in the FeatureSet.
phenoData an AnnotatedDataFrame object.

description a MIAME object

notes notes

background Logical value. If TRUE, then perform background correction before applying
mmgmos.

gsnorm character. specifying the algorithm of global scaling normalisation.

savepar Logical value. If TRUE, the the estimated parameters of the model are saved in

file par_mmgmos.txt and phi_mmgmos.txt.

eps Optimisation termination criteria.

legend? 41

Details
This method should require much less RAM than the conventional method of first creating an
FeatureSet and then running mmgmos.

Note that this expression measure is given to you in log base 2 scale. This differs from most of the
other expression measure methods.

non non non

The algorithms of global scaling normalisation can be one of "median", "none", "mean", "meanlog".
"mean" and "meanlog" are mean-centered normalisation on raw scale and log scale respectively, and
"median" is median-centered normalisation. "none" will result in no global scaling normalisation
being applied.

Value

An exprReslt.

See Also

Related class exprReslt-class and related method mmgmos

legend?2 A legend which allows longer lines

Description

This function can be used to add legends to plots. This is almost identical to the legend function,
accept it has an extra parameter, seg. len which allows the user to change the lengths of lines shown
in legends.

Usage

legend2(x, y = NULL, legend, fill = NULL, col = par("col"),
1ty, lwd, pch, angle = 45, density = NULL, bty = "o0", bg = par("bg"),
box.1lwd = par(”"lwd"), box.lty = par("1ty"), pt.bg = NA, cex =1,
pt.cex = cex, pt.lwd = lwd, xjust = @, yjust = 1, x.intersp = 1,
y.intersp = 1, adj = c(@, 0.5), text.width = NULL, text.col = par("col"),
merge = do.lines && has.pch, trace = FALSE, plot = TRUE,
ncol = 1, horiz = FALSE, title = NULL, inset = @, seg.len = 2)

Arguments

Y the x and y co-ordinates to be used to position the legend. They can be specified
by keyword or in any way which is accepted by xy.coords: See Details.

legend a character or expression vector. of length > 1 to appear in the legend. Other
objects will be coerced by as.graphicsAnnot.

fill if specified, this argument will cause boxes filled with the specified colors (or
shaded in the specified colors) to appear beside the legend text.

col the color of points or lines appearing in the legend.

1ty, lwd the line types and widths for lines appearing in the legend. One of these two

must be specified for line drawing.

42

pch

angle

density

bty

bg

box.1ty, box.1lwd

pt.bg
cex
pt.cex

pt.lwd

xjust

yjust
X.1intersp
y.intersp

adj

text.width

text.col

merge

trace
plot

ncol

horiz

title

inset

seg.len

Details

legend?2

the plotting symbols appearing in the legend, either as vector of 1-character
strings, or one (multi character) string. Must be specified for symbol drawing.

angle of shading lines.

the density of shading lines, if numeric and positive. If NULL or negative or NA
color filling is assumed.

the type of box to be drawn around the legend. The allowed values are "o" (the
default) and "n".

the background color for the legend box. (Note that this is only used if bty !=
Ilnll.)

the line type and width for the legend box.

the background color for the points, corresponding to its argument bg.
character expansion factor relative to current par(”cex").

expansion factor(s) for the points.

line width for the points, defaults to the one for lines, or if that is not set, to
par("lwd").

how the legend is to be justified relative to the legend x location. A value of 0
means left justified, 0.5 means centered and 1 means right justified.

the same as xjust for the legend y location.
character interspacing factor for horizontal (x) spacing.
the same for vertical (y) line distances.

numeric of length 1 or 2; the string adjustment for legend text. Useful for y-
adjustment when labels are plotmath expressions.

the width of the legend text in X ("user"”) coordinates. (Should be positive even

for areversed x axis.) Defaults to the proper value computed by strwidth(legend).

the color used for the legend text.

logical; if TRUE, “merge” points and lines but not filled boxes. Defaults to TRUE
if there are points and lines.

logical; if TRUE, shows how legend does all its magical computations.
logical. If FALSE, nothing is plotted but the sizes are returned.

the number of columns in which to set the legend items (default is 1, a vertical
legend).

logical; if TRUE, set the legend horizontally rather than vertically (specifying
horiz overrides the ncol specification).

a character string or length-one expression giving a title to be placed at the top
of the legend. Other objects will be coerced by as.graphicsAnnot.

inset distance(s) from the margins as a fraction of the plot region when legend
is placed by keyword.

numeric specifying length of lines in legend.

Arguments x, y, legend are interpreted in a non-standard way to allow the coordinates to be spec-
ified via one or two arguments. If legend is missing and y is not numeric, it is assumed that the
second argument is intended to be legend and that the first argument specifies the coordinates.

legend2 43

The coordinates can be specified in any way which is accepted by xy.coords. If this gives the
coordinates of one point, it is used as the top-left coordinate of the rectangle containing the legend.
If it gives the coordinates of two points, these specify opposite corners of the rectangle (either pair
of corners, in any order).

The location may also be specified by setting x to a single keyword from the list "bottomright”,
"bottom”, "bottomleft”, "left”, "topleft”, "top”, "topright"”, "right" and "center". This
places the legend on the inside of the plot frame at the given location. Partial argument matching
is used. The optional inset argument specifies how far the legend is inset from the plot margins.
If a single value is given, it is used for both margins; if two values are given, the first is used for x-
distance, the second for y-distance.

“Attribute” arguments such as col, pch, 1ty, etc, are recycled if necessary. merge is not.

Points are drawn after lines in order that they can cover the line with their background color pt.bg,
if applicable.

See the examples for how to right-justify labels.

Value

A list with list components

rect a list with components

w, h positive numbers giving width and height of the legend’s box.
left, top x andy coordinates of upper left corner of the box.
text a list with components
x, y numeric vectors of length length(legend), giving the x and y coordinates
of the legend’s text(s).

returned invisibly.

Author(s)

Richard Pearson (modified from original graphics package function.)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth \&
Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

legend

Examples

if (FALSE){

x <- seq(-pi, pi, len = 65)

plot(x, sin(x), type = "1", ylim = c(-1.2, 1.8), col = 3, 1ty = 2)

points(x, cos(x), pch = 3, col = 4)

lines(x, tan(x), type = "b", 1ty = 1, pch

title("legend(..., 1ty = c(2, -1, 1), pch
cex.main = 1.1)

legend2(-1, 1.9, c("sin"”, "cos"”, "tan"), col = c(3,4,6),

4, col = 6)
c(-1,3,4), merge = TRUE)",

44

text.col = "green4”, lty = c(2, -1, 1), pch = c(-1, 3, 4),
merge = TRUE, bg = 'gray90', seg.len=6)

matrixDistance

license.puma Print puma license

Description

This function prints the license under which puma is made available.

Usage

license.puma()

Value

Null.

Author(s)

Richard Pearson (based on the license.cosmo function from the cosmo package)

Examples

license.puma()

matrixDistance Calculate distance between two matrices

Description

This calculates the mean Euclidean distance between the rows of two matrices. It is used in the

function pumaPCA

Usage

matrixDistance(
matrixA
R matrixB

Arguments

matrixA the first matrix

matrixB the second matrix

Value

A numeric giving the mean distance

mgmos 45

Author(s)

Richard D. Pearson

See Also

Related class pumaPCA

Examples
if (FALSE){
show(matrixDistance(matrix(1,2,2),matrix(2,2,2)))
3
mgmos modified gamma Model for Oligonucleotide Signal
Description

This function converts an object of class FeatureSet into an object of class exprReslt using the
modified gamma Model for Oligonucleotide Signal (multi-mgMOS). This function obtains confi-
dence of measures, standard deviation and 5, 25, 50, 75 and 95 percentiles, as well as the estimated
expression levels.

Usage

mgmos (

object

, background=FALSE

, replaceZerolIntensities=TRUE

, gsnorm=c("median”, "none"”, "mean”, "meanlog")
, savepar=FALSE
, eps=1.0e-6
)
Arguments
object an object of FeatureSet
background Logical value. If TRUE, perform background correction before applying mmg-
mos.

replaceZerolntensities
Logical value. If TRUE, replace 0 intensities with 1 before applying mmgmos.

gsnorm character. specifying the algorithm of global scaling normalisation.

savepar Logical value. If TRUE the estimated parameters of the model are saved in file
par_mmgmos.txt and phi_mmgmos.txt.

eps Optimisation termination criteria.

46 mgmos

Details

The obtained expression measures are in log base 2 scale.

"non non non

The algorithms of global scaling normalisation can be one of "median", "none", "mean", "meanlog".
"mean" and "meanlog" are mean-centered normalisation on raw scale and log scale respectively, and
"median" is median-centered normalisation. "none" will result in no global scaling normalisation
being applied.

There are 4*n columns in file par_mgmos.txt, n is the number of chips. Every 4 columns are
parameters for a chip. Among every 4 columns, the first one is for ’alpha’ values, the 2nd one is for
’a’ values, The 3rd column is for ’c’ and the final column is values for ’d’.

Value

An object of class exprReslt.

Author(s)

Xuejun Liu, Magnus Rattray, Marta Milo, Neil D. Lawrence

References

Liu,X., Milo,M., Lawrence,N.D. and Rattray,M. (2005) A tractable probabilistic model for Affymetrix
probe-level analysis across multiple chips, Bioinformatics, 21:3637-3644.

Milo,M., Niranjan,M., Holley,M.C., Rattray,M. and Lawrence,N.D. (2004) A probabilistic approach
for summarising oligonucleotide gene expression data, technical report available upon request.

Milo,M., Fazeli,A., Niranjan,M. and Lawrence,N.D. (2003) A probabilistic model for the extrac-
tioin of expression levels from oligonucleotide arrays, Biochemical Society Transactions, 31: 1510-
1512.

Peter Spellucci. DONLP2 code and accompanying documentation. Electronically available via
http://plato.la.asu.edu/donlp2.html

See Also

Related class exprReslt-class and related method mmgmos

Examples

if(FALSE){
Code commented out to speed up checks
load example data from package affydata
if (require(pumadata)&&require(puma)){
data(oligo.estrogen)
use method mgMOS to calculate the expression levels and related confidence
of the measures for the example data
eset<-mgmos(oligo.estrogen,gsnorm="none")
#
3

mmgmos 47

mmgmos Multi-chip modified gamma Model for Oligonucleotide Signal

Description

This function converts an object of class FeatureSet into an object of class exprReslt using
the Multi-chip modified gamma Model for Oligonucleotide Signal (multi-mgMOS). This function
obtains confidence of measures, standard deviation and 5, 25, 50, 75 and 95 percentiles, as well as
the estimated expression levels.

Usage

mmgmos (

object

, background=FALSE

, replaceZerolntensities=TRUE

, gsnorm=c("median”, "none"”, "mean”, "meanlog")
, savepar=FALSE
, eps=1.0e-6
, addConstant = @
)
Arguments
object an object of FeatureSet
background Logical value. If TRUE, perform background correction before applying mmg-

mos.
replaceZeroIntensities
Logical value. If TRUE, replace O intensities with 1 before applying mmgmos.

gsnorm character. specifying the algorithm of global scaling normalisation.

savepar Logical value. If TRUE the estimated parameters of the model are saved in file
par_mmgmos.txt and phi_mmgmos.txt.

eps Optimisation termination criteria.

addConstant numeric. This is an experimental feature and should not generally be changed

from the default value.

Details

The obtained expression measures are in log base 2 scale.

non non non

The algorithms of global scaling normalisation can be one of "median", "none", "mean", "meanlog".
"mean" and "meanlog" are mean-centered normalisation on raw scale and log scale respectively, and
"median" is median-centered normalisation. "none" will result in no global scaling normalisation
being applied.

There are 2*n+2 columns in file par_mmgmos.txt, n is the number of chips. The first n columns are
“alpha’ values for n chips, the next n columns are ’a’ values for n chips, column 2*n+1 is ’¢’ values
and the final column is values for ’d’. The file phi_mmgmos.txt keeps the final optimal value of
"phi’.

48 normalisation.gs

Value

An object of class exprReslt.

Author(s)

Xuejun Liu, Magnus Rattray, Marta Milo, Neil D. Lawrence

References

Liu,X., Milo,M., Lawrence,N.D. and Rattray,M. (2005) A tractable probabilistic model for Affymetrix
probe-level analysis across multiple chips, Bioinformatics 21: 3637-3644.

Milo,M., Niranjan,M., Holley,M.C., Rattray,M. and Lawrence,N.D. (2004) A probabilistic approach
for summarising oligonucleotide gene expression data, technical report available upon request.

Milo,M., Fazeli,A., Niranjan,M. and Lawrence,N.D. (2003) A probabilistic model for the extrac-
tioin of expression levels from oligonucleotide arrays, Biochemical Society Transactions, 31: 1510-
1512.

Peter Spellucci. DONLP2 code and accompanying documentation. Electronically available via
http://plato.la.asu.edu/donlp2.html

See Also

Related class exprReslt-class and related method mgmos

Examples

if (FALSE){

Code commented out to speed up checks

load example data from package affydata

if (require(pumadata)&&require(puma)){

data(oligo.estrogen)

use method mmgMOS to calculate the expression levels and related confidence
of the measures for the example data

eset<-mmgmos(oligo.estrogen,gsnorm="none")

#

}

normalisation.gs Global scaling normalisation

Description

This function is only included for backwards compatibility with the pplr package. This function is
now superceded by pumaNormalize.

This function does the global scaling normalisation.

Usage

normalisation.gs(x)

Arguments

X a matrix or data frame which contains gene expression level on log2 scale.

numFP 49

Details

Each row of x is related to a gene and each column is related to a chip.

Value

The return matrix is in the same format as the input x.

Author(s)

Xuejun Liu, Marta Milo, Neil D. Lawrence, Magnus Rattray

See Also

See Also as bcomb and hcomb

Examples

if (FALSE){

data(exampleE)
exampleE.normalised<-normalisation.gs(exampleE)
data(Clust.exampleE)
Clust.exampleE.normalised<-normalisation.gs(Clust.exampleE)

}

numFP Number of False Positives for a given proportion of True Positives.

Description

Often when evaluating a differential expression method, we are interested in how well a classifier
performs for very small numbers of false positives. This method gives one way of calculating this,
by determining the number of false positives for a set proportion of true positives.

Usage

numfFP(scores, truthValues, TPRate = 0.5)

Arguments
scores A vector of scores. This could be, e.g. one of the columns of the statistics of a
DEResult object.
truthvValues A boolean vector indicating which scores are True Positives.
TPRate A number between 0 and 1 identify the proportion of true positives for which
we wish to determine the number of false positives.
Value

An integer giving the number of false positives.

Author(s)
Richard D. Pearson

50 numOfFactorsToUse

See Also

Related methods plotROC and calcAUC.

Examples

if (FALSE){

classla <- rnorm(1000,0.2,0.1)
class2a <- rnorm(1000,0.6,0.2)
class1b <- rnorm(1000,0.3,0.1)
class2b <- rnorm(1000,0.5,0.2)
scores_a <- c(classla, class2a)
scores_b <- c(classlb, class2b)
classElts <- c(rep(FALSE,1000), rep(TRUE,1000))
print(numFP(scores_a, classElts))
print(numFP(scores_b, classElts))
3

numOfFactorsToUse Determine number of factors to use from an ExpressionSet

Description
This is really an internal function used to determine how many factors to use in design and contrast
matrices

Usage

numOfFactorsToUse(eset)

Arguments

eset An object of class ExpressionSet.

Value

An integer denoting the number of factors to be used.

Author(s)

Richard D. Pearson

See Also

Related methods createDesignMatrix and createContrastMatrix

numTP

Examples

if(FALSE){

51

Next 4 lines commented out to save time in package checks, and saved version used
if (require(affydata)) {

data(Dilution)

eset_mmgmos <- mmgmos(Dilution)

3

data(eset_mmgmos)
numOfFactorsToUse (eset_mmgmos)

numTP

Number of True Positives for a given proportion of False Positives.

Description

Often when evaluating a differential expression method, we are interested in how well a classifier
performs for very small numbers of true positives. This method gives one way of calculating this,
by determining the number of true positives for a set proportion of false positives.

Usage

numTP(scores, truthValues, FPRate = 0.5)

Arguments
scores A vector of scores. This could be, e.g. one of the columns of the statistics of a
DEResult object.
truthValues A boolean vector indicating which scores are True Positives.
FPRate A number between 0 and 1 identify the proportion of flase positives for which
we wish to determine the number of true positives.
Value

An integer giving the number of true positives.

Author(s)

Richard D. Pearson

See Also

Related methods numFP, plotROC and calcAUC.

Examples

if (FALSE){
classla <-
class2a <-
classlib <-
class2b <-

rnorm(1000,0.2,0.1)
rnorm(1000,0.6,0.2)
rnorm(1000,0.3,0.1)
rnorm(1000,0.5,0.2)

scores_a <- c(classla, class2a)

52 orig_pplr

scores_b <- c(classlb, class2b)

classkElts <- c(rep(FALSE,1000), rep(TRUE,1000))
print(numTP(scores_a, classElts))
print(numTP(scores_b, classElts))

}

orig_pplr Probability of positive log-ratio

Description

This is the original version of the pplr function as found in the pplr package. This should give
exactly the same results as the pplr function. This function is only included for testing purposes
and is not intended to be used. It will not be available in future versions of puma.

This function calculates the probability of positive log-ratio (PPLR) between any two specified con-
ditions in the input data, mean and standard deviation of gene expression level for each condition.

Usage

orig_pplr(e, control, experiment)

Arguments
e a data frame containing the mean and standard deviation of gene expression
levels for each condition.
control an integer denoting the control condition.
experiment an integer denoting the experiment condition.
Details

The input of ’e’ should be a data frame comprising of 2*n components, where n is the number of
conditions. The first 1,2,...,n components include the mean of gene expression values for conditions
1,2,....n, and the n+1, n+2,...,2%n components contain the standard deviation of expression levels
for condition 1,2,...,n.

Value

The return is a data frame. The description of the components are below.

index The original row number of genes.

cM The mean expression levels under control condition.

sM The mean expression levels under experiment condition.

cStd The standard deviation of gene expression levels under control condition.
sStd The standard deviation of gene expression levels under experiment condition.
LRM The mean log-ratio between control and experiment genes.

LRStd The standard deviation of log-ratio between control and experiment genes.
stat A statistic value which is -mean/(sqrt(2)*standard deviation).

PPLR Probability of positive log-ratio.

plot-methods 53

Author(s)

Xuejun Liu, Marta Milo, Neil D. Lawrence, Magnus Rattray

References

Liu,X., Milo,M., Lawrence,N.D. and Rattray,M. (2006) Probe-level variances improve accuracy in
detecting differential gene expression, Bioinformatics, 22(17):2107-13.

See Also

Related method bcomb

Examples

if (FALSE){
data(exampleE)
data(exampleStd)
r<-bcomb(exampleE,exampleStd, replicates=c(1,1,1,2,2,2),method="map")
p<-orig_pplr(r,1,2)

plot-methods Plot method for pumaPCARes objects

Description

This is the method to plot objects of class pumaPCARes. It will produce a scatter plot of two of the
principal components

Usage

S4 method for signature 'pumaPCARes,missing'

plot(..., firstComponent = 1, secondComponent = 2, useFilenames = FALSE, phenotype = pData(pumaPCARe
Arguments

Optional graphical parameters to adjust different components of the plot

firstComponent Integer identifying which principal component to plot on the x-axis
secondComponent
Integer identifying which principal component to plot on the x-axis

useFilenames Boolean. If TRUE then use filenames as plot points. Otherwise just use points.
phenotype Phenotype information
legendipos String indicating where to put legend for first factor

legend2pos String indicating where to put legend for second factor

54 plotErrorBars

Examples

Next 4 lines commented out to save time in package checks, and saved version used
if (require(affydata)) {

data(Dilution)

eset_mmgmos <- mmgmos(Dilution)

3

data(eset_mmgmos)

pumapca_mmgmos <- pumaPCA(eset_mmgmos)

plot(pumapca_mmgmos)

plotErrorBars Plot mean expression levels and error bars for one or more probesets

Description

This produces plots of probesets of interest.

Usage

plotErrorBars(

eset

, probesets = if(dim(exprs(eset))[1] <= 12) 1:dim(exprs(eset))[1] else 1

, arrays = 1:dim(pData(eset))[1] # default is to use all

, xlab = paste(colnames(pData(eset))[1:numOfFactorsToUse(eset)], collapse=":")

, ylab = "Expression Estimate”

, xLabels = apply(

as.matrix(pData(eset)[arrays,1:numOfFactorsToUse(eset)])

, 1
, function(mat){paste(mat, collapse=":")}
)

, ylim = NA

, numOfSEs = gnorm(@.975)

, globalYlim = FALSE # Not yet implemented!

, plot_cols = NA

, plot_rows = NA

, featureNames = NA

, showGeneNames = FALSE

, showErrorBars = if(

length(assayDataElement (eset, "se.exprs”))==0 ||
length(assayDataElement (eset, "se.exprs”)) == sum(is.na(assayDataElement(eset, "se.exprs”)))
) FALSE else TRUE

, plotColours = FALSE

, log.it = if(max(exprs(eset)) > 32) TRUE else FALSE

, eset_comb = NULL

, jitterWidth = NA

, gtpcrData = NULL

plotErrorBars

Arguments

eset

probesets

arrays
xlab
ylab
xLabels
ylim
numOfSEs

globalYlim
plot_cols

plot_rows

featureNames

showGeneNames
showErrorBars
plotColours
log.it

eset_comb

jitterWidth
gtpcrData

Value

55

An object of class ExpressionSet. This is the main object being plotted.

A vector of integers indicating the probesets to be plotted. These integers refer
to the row numbers of the eset.

A vector of integers indicating the arrays to be shown on plots.

Character string of title to appear on x-axis

Character string of title to appear on y-axis

Vector of strings for labels of individual points on x-axis.

2-element numeric vector showing minimum and maximum values for y-axis.

Numeric indicating the scaling for the error bars. The default value give error
bars that include 95% of expected values.

Not yet implemented!
Integer specifying number of columns for multi-figure plot.
Integer specifying number of rows for multi-figure plot.

A vector of strings for featureNames (Affy IDs). This is an alternative (to the
probesets argument) way of specifying probe sets.

Boolean indicating whether to use Affy IDs as titles for each plot.
Boolean indicating whether error bars should be shown on plots.
A vector of colours to plot.

Boolean indicating whether expression values should be logged.

An object of class ExpressionSet. This is a secondary object to be plotted on
the same charts as eset. This should be an object created using pumaComb and
pumaCombImproved which holds the values created by combining information
from the replicates of each condition.

Numeric indicating the x-axis distance between replicates of the same condition.

A 2-column matrix of qRT-PCR values (or other data to be plotted on the same
charts).

Additional arguments to be passed to plot.

This function has no return value. The output is the plot created.

Author(s)

Richard D. Pearson

Examples

Next 4 lines commented out to save time in package checks, and saved version used
if (require(affydata)) {

data(Dilution)

eset_mmgmos <- mmgmos(Dilution)

3

data(eset_mmgmos)
plotErrorBars(eset_mmgmos)
plotErrorBars(eset_mmgmos,1:6)

56

plotHistTwoClasses

plotHistTwoClasses Stacked histogram plot of two different classes

Description

Stacked histogram plot of two different classes

Usage

plotHistTwoClasses(

scores

, class1Elements
, class2Elements

, Space=0

, col=c("white”

, xlab="PPLR"

, 'grey40")

, ylab="Number of genes"”

, ylim=NULL

, las=0 # axis labels all perpendicular to axes
, legend=c("non-spike-in genes”, "spike-in genes")

, inset=0.05
, minScore=0
, maxScore=1
, numOfBars=20
main=NULL

Arguments

scores
class1Elements
class2Elements
space

col

xlab

ylab

ylim

las

legend

inset

minScore
maxScore
numOfBars

main

Value

A numeric vector of scores (e.g. from the output of pumaDE)

Boolean vector, TRUE if element is in first class

Boolean vector, TRUE if element is in second class

Numeric. x-axis distance between bars

Colours for the two different classes

Title for the x-axis

Title for the y-axis

2-element numeric vector showing minimum and maximum values for y-axis.
See par. Default of 0 means axis labels all perpendicular to axes.
2-element string vector giving text to appear in legend for the two classes.
See legend

Numeric. Minimum score to plot.

Numeric. Maximum score to plot.

Integer. Number of bars to plot.

String. Main title for the plot.

This function has no return value. The output is the plot created.

plotROC 57

Author(s)
Richard D. Pearson

Examples

class1 <- rnorm(1000,0.2,0.1)

class2 <- rnorm(1000,0.6,0.2)

class1[which(class1<@)] <- @

class1[which(class1>1)] <- 1

class2[which(class2<@)] <- @

class2[which(class2>1)] <- 1

scores <- c(class1, class2)

classlelts <- c(rep(TRUE,1000), rep(FALSE,1000))

class2elts <- c(rep(FALSE,1000), rep(TRUE,1000))
plotHistTwoClasses(scores, classlelts, class2elts, ylim=c(@,300))

plotROC Receiver Operator Characteristic (ROC) plot

Description

Plots a Receiver Operator Characteristic (ROC) curve.

Usage

plotROC(

scoresList

truthValues
includedProbesets=1:1ength(truthValues)
legendTitles=1:1length(scoreslList)
main = "PUMA ROC plot"”

1ty = 1:length(scoreslList)

col = rep(1,length(scoresList))
lwd = rep(1,length(scoresList))
yaxisStat = "tpr”

xaxisStat = "fpr”

downsampling = 100

showLegend = TRUE

showAUC = TRUE

)

Arguments
scoresList A list, each element of which is a numeric vector of scores.
truthValues A boolean vector indicating which scores are True Positives.
includedProbesets

A vector of indices indicating which scores (and truthValues) are to be used in
the calculation. The default is to use all, but a subset can be used if, for example,
you only want a subset of the probesets which are not True Positives to be treated
as False Positives.

58 plotWhiskers
legendTitles Vector of names to appear in legend.
main Main plot title
1ty Line types.
col Colours.
lwd Line widths.
yaxisStat Character string identifying what is to be plotted on the y-axis. The default is
"tpr" for True Positive Rate. See performance function from ROCR package.
xaxisStat Character string identifying what is to be plotted on the x-axis. The default is
"fpr" for False Positive Rate. See performance function from ROCR package.
downsampling See details for plot.performance from the ROCR package.
showLegend Boolean. Should legend be displayed?
showAUC Boolean. Should AUC values be included in legend?
Other parameters to be passed to plot.
Value
This function has no return value. The output is the plot created.
Author(s)
Richard D. Pearson
See Also
Related method calcAUC
Examples
if (FALSE){
classla <- rnorm(1000,0.2,0.1)
class2a <- rnorm(1000,0.6,0.2)
classlb <- rnorm(1000,0.3,0.1)
class2b <- rnorm(1000,0.5,0.2)
scores_a <- c(classla, class2a)
scores_b <- c(classlb, class2b)
scores <- list(scores_a, scores_b)
classklts <- c(rep(FALSE,1000), rep(TRUE,1000))
plotROC(scores, classElts)
3
plotWhiskers Standard errors whiskers plot
Description

A plot showing error bars for genes of interest.

PMmmgmos 59

Usage

plotWhiskers(

eset

, comparisons=c(1,2)

, sortMethod = c("logRatio”, "PPLR")
, humGenes=50

, xlim

, main = "PUMA Whiskers plot”

, highlightedGenes=NULL

)
Arguments
eset An object of class ExpressionSet.
comparisons A 2-element integer vector specifying the columns of data to be compared.
sortMethod The method used to sort the genes. "logRatio" is fold change. PPLR is Proba-
bility of Positive Log Ratio (as determined by the pumaDE method).
numGenes Integer. Number of probesets to plot.
x1lim The x limits of the plot. See plot.default.
main A main title for the plot. See plot.default.
highlightedGenes
Row numbers of probesets to highlight with an asterisk.
Value

This function has no return value. The output is the plot created.

Author(s)

Richard D. Pearson

See Also

Related method pumaDE

PMmmgmos Multi-chip modified gamma Model for Oligonucleotide Signal using
only PM probe intensities

Description

This function converts an object of class FeatureSet into an object of class exprReslt using the
Multi-chip modified gamma Model for Oligonucleotide Signal (PMmulti-mgMOS). This method
uses only PM probe intensites. This function obtains confidence of measures, standard deviation
and 5, 25, 50, 75 and 95 percentiles, as well as the estimated expression levels.

60 PMmmgmos

Usage

PMmmgmos (

object

, background=TRUE

, replaceZerolntensities=TRUE

, gsnorm=c("median”, "none"”, "mean"”, "meanlog")
, Savepar=FALSE
, eps=1.0e-6
, addConstant = 0
)
Arguments
object an object of FeatureSet
background Logical value. If TRUE, perform background correction before applying PMm-

mgmos.

replaceZerolntensities
Logical value. If TRUE, replace O intensities with 1 before applying PMmmgmos.

gsnorm character. specifying the algorithm of global scaling normalisation.

savepar Logical value. If TRUE the estimated parameters of the model are saved in file
par_pmmmgmos.txt

eps Optimisation termination criteria.

addConstant numeric. This is an experimental feature and should not generally be changed
from the default value.

Details

The obtained expression measures are in log base 2 scale.

"non non non

The algorithms of global scaling normalisation can be one of "median", "none", "mean", "meanlog".
"mean" and "meanlog" are mean-centered normalisation on raw scale and log scale respectively, and
"median" is median-centered normalisation. "none" will result in no global scaling normalisation
being applied.

There are n+2 columns in file par_pmmmgmos.txt, n is the number of chips. The first n columns
are “alpha’ values for n chips, column n+1 is ’c’ values and the final column is values for ’d’.

Value

An object of class exprReslt.

Author(s)

Xuejun Liu, Zhenzhu Gao, Magnus Rattray, Marta Milo, Neil D. Lawrence

References
Liu,X., Milo,M., Lawrence,N.D. and Rattray,M. (2005) A tractable probabilistic model for Affymetrix
probe-level analysis across multiple chips, Bioinformatics 21: 3637-3644.

Milo,M., Niranjan,M., Holley,M.C., Rattray,M. and Lawrence,N.D. (2004) A probabilistic approach
for summarising oligonucleotide gene expression data, technical report available upon request.

pplr 61

Milo,M., Fazeli,A., Niranjan,M. and Lawrence,N.D. (2003) A probabilistic model for the extrac-
tioin of expression levels from oligonucleotide arrays, Biochemical Society Transactions, 31: 1510-
1512.

Peter Spellucci. DONLP2 code and accompanying documentation. Electronically available via
http://plato.la.asu.edu/donlp2.html

See Also

Related class exprReslt-class and related method mgmos

Examples

Code commented out to speed up checks
load example data from package pumadata
#if (require(pumadata)&&require(puma)){
data(oligo.estrogen)
use method PMmmgMOS to calculate the expression levels and related confidence
##of the measures for the example data
eset<-PMmmgmos(oligo.estrogen,gsnorm="none")

#}

pplr Probability of positive log-ratio

Description

WARNING - this function is generally not expected to be used, but is intended as an internal func-
tion. It is included for backwards compatibility with the pplr package, but may be deprecated and
then hidden in future. Users should generally use pumaDE instead.

This function calculates the probability of positive log-ratio (PPLR) between any two specified con-
ditions in the input data, mean and standard deviation of gene expression level for each condition.

Usage

pplr(e, control, experiment, sorted=TRUE)

Arguments
e a data frame containing the mean and standard deviation of gene expression
levels for each condition.
control an integer denoting the control condition.
experiment an integer denoting the experiment condition.
sorted Boolean. Should PPLR values be sorted by value? If FALSE, PPLR values are
returned in same order as supplied.
Details

The input of "¢’ should be a data frame comprising of 2*n components, where n is the number of
conditions. The first 1,2,...,n components include the mean of gene expression values for conditions
1,2,...,n, and the n+1, n+2,...,2*n components contain the standard deviation of expression levels
for condition 1,2,...,n.

62 pplrUnsorted

Value

The return is a data frame. The description of the components are below.

index The original row number of genes.
cM The mean expression levels under control condition.
sM The mean expression levels under experiment condition.
cStd The standard deviation of gene expression levels under control condition.
sStd The standard deviation of gene expression levels under experiment condition.
LRM The mean log-ratio between control and experiment genes.
LRStd The standard deviation of log-ratio between control and experiment genes.
stat A statistic value which is -mean/(sqrt(2)*standard deviation).
PPLR Probability of positive log-ratio.

Author(s)

Xuejun Liu, Marta Milo, Neil D. Lawrence, Magnus Rattray

References
Liu,X., Milo,M., Lawrence,N.D. and Rattray,M. (2006) Probe-level variances improve accuracy in
detecting differential gene expression, Bioinformatics, 22(17):2107-13.

See Also

Related methods pumaDE, bcomb and hcomb

Examples

data(exampleE)

data(exampleStd)

r<-bcomb(exampleE,exampleStd, replicates=c(1,1,1,2,2,2),method="map")
p<-pplr(r,1,2)

pplrUnsorted Return an unsorted matrix of PPLR values

Description
Returns the output from pplr as an unsorted matrix (i.e. sorted according to the original sorting in
the original matrix)

Usage

pplrUnsorted(p)

Arguments

p A matrix as output by pplr.

pumaClust

Value

63

A matrix of PPLR values

Author(s)

Richard D. Pearson

See Also

Related method pplr

pumaClust

Propagate probe-level uncertainty in model-based clustering on gene
expression data

Description

This function clusters gene expression using a Gaussian mixture model including probe-level mea-
surement error. The inputs are gene expression levels and the probe-level standard deviation as-
sociated with expression measurement for each gene on each chip. The outputs is the clustering

results.

Usage

pumaClust(e=NULL, se=NULL, efile=NULL, sefile=NULL,
subset=NULL, gsnorm=FALSE, clusters,
iter.max=100, nstart=10, eps=1.0e-6, del0=0.01)

Arguments

e

se
efile

sefile

subset
gsnorm
clusters

iter.max

nstart
eps
delo

Details

either a valid ExpressionSet object, or a data frame containing the expression
level for each gene on each chip.

data frame containing the standard deviation of gene expression levels.
character, the name of the file which contains gene expression measurements.

character, the name of the file which contains the standard deviation of gene
expression measurements.

vector specifying the row number of genes which are clustered on.
logical specifying whether do global scaling normalisation or not.
integer, the number of clusters.

integer, the maximum number of iterations allowed in the parameter initialisa-
tion.

integer, the number of random sets chosen in the parameter initialisation.
numeric, optimisation parameter.

numeric, optimisation parameter.

The input data is specified either as an ExpressionSet object (in which case se, efile and sefile will
be ignored), or by e and se, or by efile and sefile.

64 pumaClustii

Value

The result is a list with components

cluster: vector, containing the membership of clusters for each gene; centers: matrix, the center
of each cluster; centersigs: matrix, the center variance of each cluster; likelipergene: matrix, the
likelihood of belonging to each cluster for each gene; bic: numeric, the Bayesian Information
Criterion score.

Author(s)

Xuejun Liu, Magnus Rattray

References

Liu,X., Lin,K.K., Andersen,B., and Rattray,M. (2006) Propagating probe-level uncertainty in model-
based gene expression clustering, BMC Bioinformatics, 8(98).

Liu,X., Milo,M., Lawrence,N.D. and Rattray,M. (2005) A tractable probabilistic model for Affymetrix
probe-level analysis across multiple chips, Bioinformatics, 21(18):3637-3644.

See Also

Related method mmgmos and pumaClustii

Examples

data(Clust.exampleE)
data(Clust.exampleStd)
pumaClust.example<-pumaClust(Clust.exampleE,Clust.exampleStd,clusters=7)

pumaClustii Propagate probe-level uncertainty in robust t mixture clustering on
replicated gene expression data

Description

This function clusters gene expression by including uncertainties of gene expression measurements
from probe-level analysis models and replicate information into a robust t mixture clustering model.
The inputs are gene expression levels and the probe-level standard deviation associated with expres-
sion measurement for each gene on each chip. The outputs is the clustering results.

Usage

pumaClustii(e=NULL, se=NULL, efile=NULL, sefile=NULL,
subset=NULL, gsnorm=FALSE, mincls, maxcls, conds, reps, verbose=FALSE,
eps=1.0e-5, del0=0.01)

pumaClustii 65

Arguments
e data frame containing the expression level for each gene on each chip.
se data frame containing the standard deviation of gene expression levels.
efile character, the name of the file which contains gene expression measurements.
sefile character, the name of the file which contains the standard deviation of gene
expression measurements.
subset vector specifying the row number of genes which are clustered on.
gsnorm logical specifying whether do global scaling normalisation or not.
mincls integer, the minimum number of clusters.
maxcls integer, the maximum number of clusters.
conds integer, the number of conditions.
reps vector, specifying which condition each column of the input data matrix belongs
to.
verbose logical value. If "TRUE’ messages about the progress of the function is printed.
eps numeric, optimisation parameter.
delo numeric, optimisation parameter.
Details

The input data is specified either by e and se, or by efile and sefile.

Value

The result is a list with components

cluster: vector, containing the membership of clusters for each gene; centers: matrix, the center
of each cluster; centersigs: matrix, the center variance of each cluster; likelipergene: matrix, the
likelihood of belonging to each cluster for each gene; optK: numeric, the optimal number of clusters.
optF: numeric, the maximised value of target function.

Author(s)

Xuejun Liu

References

Liu,X. and Rattray,M. (2009) Including probe-level measurement error in robust mixture clustering
of replicated microarray gene expression, Statistical Application in Genetics and Molecular Biol-
ogy, 9(1), Article 42.

Liu,X., Lin,K.K., Andersen,B., and Rattray,M. (2007) Propagating probe-level uncertainty in model-
based gene expression clustering, BMC Bioinformatics, 8:98.

Liu,X., Milo,M., Lawrence,N.D. and Rattray,M. (2005) A tractable probabilistic model for Affymetrix
probe-level analysis across multiple chips, Bioinformatics, 21(18):3637-3644.

See Also

Related method mmgmos and pumaclust

66 pumaComb

Examples

data(Clustii.exampleE)
data(Clustii.exampleStd)
r<-vector(mode="integer",0)
for (i in c(1:20))
for (j in c(1:4))
r<-c(r,i)
cl<-pumaClustii(Clustii.exampleE,Clustii.exampleStd,mincls=6,maxcls=6,conds=20,reps=r,eps=1e-3)

pumaComb Combining replicates for each condition

Description

This function calculates the combined (from replicates) signal for each condition using Bayesian
models. The inputs are gene expression levels and the probe-level standard deviations associated
with expression measurements for each gene on each chip. The outputs include gene expression
levels and standard deviation for each condition.

Usage
pumaComb (
eset
, design.matrix=NULL
, method="em"

, numOfChunks=1000

, save_r=FALSE

, cl=NULL
parallelCompute=FALSE

Arguments

eset An object of class ExpressionSet.
design.matrix A design matrix.

method Method "map" uses MAP of a hierarchical Bayesion model with Gamma prior
on the between-replicate variance (Gelman et.al. p.285) and shares the same
variance across conditions. This method is fast and suitable for the case where
there are many conditions.
Method "em" uses variational inference of the same hierarchical Bayesian model
as in method "map" but with conjugate prior on between-replicate variance and
shares the variance across conditions. This is generaly much slower than "map",
but is recommended where there are few conditions (as is usually the case).

numOfChunks An integer defining how many chunks the data is divided into before processing.
There is generally no need to change the default value.

save_r Will save an internal variable r to a file. Used for debugging purposes.

cl A "cluster" object. See makeCluster function from snow package for more
details (if available).

parallelCompute

Boolean identifying whether processing in parallel should occur.

pumaComb 67

Details

It is generally recommended that data is normalised prior to using this function. Note that the
default behaviour of mmgmos is to normalise data so this shouldn’t generally be an issue. See the
function pumaNormalize for more details on normalisation.

Value

The result is an ExpressionSet object.

Author(s)

Xuejun Liu, Marta Milo, Neil D. Lawrence, Magnus Rattray

References

Gelman,A., Carlin,J.B., Stern,H.S., Rubin,D.B., Bayesian data analysis. London: Chapman & Hall,
1995.

Liu,X., Milo,M., Lawrence,N.D. and Rattray,M. (2006) Probe-level variances improve accuracy in
detecting differential gene expression, Bioinformatics, 22:2107-2113.

See Also

Related methods pumaNormalize, bcomb, mmgmos and pumaDE

Examples

Next 4 lines commented out to save time in package checks, and saved version used
if (require(affydata)) {

data(Dilution)

eset_mmgmos <- mmgmos(Dilution)

3

data(eset_mmgmos)

Next line shows that eset_mmgmos has 4 arrays, each of which is a different
condition (the experimental design is a 2x2 factorial, with both liver and
scanner factors)
pData(eset_mmgmos)

Next line shows expression levels of first 3 probe sets
exprs(eset_mmgmos)[1:3,]

Next line used so eset_mmgmos only has information about the liver factor
The scanner factor will thus be ignored, and the two arrays of each level
of the liver factor will be treated as replicates

pData(eset_mmgmos) <- pData(eset_mmgmos)[,1,drop=FALSE]

To save time we'll just use 100 probe sets for the example
eset_mmgmos_100 <- eset_mmgmos[1:100,]
eset_comb <- pumaComb(eset_mmgmos_100)

We can see that the resulting ExpressionSet object has just two conditions
and 1 expression level for each condition

pData(eset_comb)

exprs(eset_comb)[1:3,]

68 pumaCombImproved

pumaCombImproved Combining replicates for each condition with the true gene expression

Description

This function calculates the combined (from replicates) signal for each condition using Bayesian
models, which are added a hidden variable to represent the true expression for each gene on each
chips. The inputs are gene expression levels and the probe-level standard deviations associated with
expression measurements for each gene on each chip. The outputs include gene expression levels
and standard deviation for each condition.

Usage

pumaCombImproved(

eset

, design.matrix=NULL

, numOfChunks=1000

, maxOfIterations=200
, save_r=FALSE

, cl=NULL
parallelCompute=FALSE

Arguments

eset An object of class ExpressionSet.
design.matrix A design matrix.

numOfChunks An integer defining how many chunks the data is divided into before processing.
There is generally no need to change the default value.

maxOfIterations
The maximum number of iterations controls the convergence.

save_r Will save an internal variable r to a file. Used for debugging purposes.

cl A "cluster" object. See makeCluster function from snow package for more
details (if available).

parallelCompute

Boolean identifying whether processing in parallel should occur.

Details

It is generally recommended that data is normalised prior to using this function. Note that the
default behaviour of mmgmos is to normalise data so this shouldn’t generally be an issue. See the
function pumaNormalize for more details on normalisation.

The maxOflterations is used to control the maximum number of the iterations in the EM algorithm.
You can change the number of maxOflterations, but the best value of the maxOflterations is from
200 to 1000, and should be set 200 at least. The default value is 200.

Value

The result is an ExpressionSet object.

pumaDE 69

Author(s)
Li Zhang, Xuejun Liu

References

Gelman,A., Carlin,J.B., Stern,H.S., Rubin,D.B., Bayesian data analysis. London: Chapman & Hall,
1995.

Zhang,L. and Liu,X. (2009) An improved probabilistic model for finding differential gene expres-
sion, technical report available request. the 2nd BMEI 17-19 oct. 2009. Tianjin. China.

Liu,X., Milo,M., Lawrence,N.D. and Rattray,M. (2006) Probe-level variances improve accuracy in
detecting differential gene expression, Bioinformatics, 22(17):2107-13.

See Also

Related methods pumaNormalize, hcomb, mmgmos and pumaDE

Examples

Next 4 lines commented out to save time in package checks, and saved version used
if (require(affydata)) {

data(Dilution)

eset_mmgmos <- mmgmos(Dilution)

3

data(eset_mmgmos)

Next line shows that eset_mmgmos has 4 arrays, each of which is a different
condition (the experimental design is a 2x2 factorial, with both liver and
scanner factors)
pData(eset_mmgmos)

Next line shows expression levels of first 3 probe sets
exprs(eset_mmgmos)[1:3,]

Next line used so eset_mmgmos only has information about the liver factor
The scanner factor will thus be ignored, and the two arrays of each level
of the liver factor will be treated as replicates

pData(eset_mmgmos) <- pData(eset_mmgmos)[,1,drop=FALSE]

To save time we'll just use 100 probe sets for the example
eset_mmgmos_100 <- eset_mmgmos[1:100,]
eset_combimproved <- pumaCombImproved(eset_mmgmos_100)

We can see that the resulting ExpressionSet object has just two conditions
and 1 expression level for each condition

pData(eset_combimproved)

exprs(eset_combimproved)[1:3,]

pumaDE Calculate differential expression between conditions

Description

The function generates lists of genes ranked by probability of differential expression (DE). This
uses the PPLR method.

70 pumaDE

Usage

pumaDE (

eset

, design.matrix = createDesignMatrix(eset)

, contrast.matrix = createContrastMatrix(eset)

)

Arguments

eset An object of class ExpressionSet.

design.matrix A design matrix
contrast.matrix
A contrast matrix

Details

A separate list of genes will be created for each contrast of interest.

Note that this class returns a DEResult-class object. This object contains information on both the
PPLR statistic values (which should generally be used to rank genes for differential expression),
as well as fold change values (which are generally not recommended for ranking genes, but which
might be useful, for example, to use as a filter). To understand more about the object returned
see DEResult-class, noting that when created a DEResult object with the pumaDE function, the
statistic method should be used to return PPLR values. Also note that the pLikeValues method
can be used on the returned object to create values which can more readily be compared with p-
values returned by other methods such as variants of t-tests (limma, etc.).

While it is possible to run this function on data from individual arrays, it is generally recommended
that this function is run on the output of the function pumaComb (which combines information from
replicates).

Value

An object of class DEResult-class.

Author(s)
Richard D. Pearson

See Also

Related methods calculatelLimma, calculateFC, calculateTtest, pumaComb, pumaCombImproved,
mmgmos, pplr, createDesignMatrix and createContrastMatrix

Examples

Next 4 lines commented out to save time in package checks, and saved version used
if (require(affydata)) {

data(Dilution)

eset_mmgmos <- mmgmos(Dilution)

3

data(eset_mmgmos)

Next line shows that eset_mmgmos has 4 arrays, each of which is a different
condition (the experimental design is a 2x2 factorial, with both liver and

pumaDEUnsorted 71

scanner factors)
pData(eset_mmgmos)

Next line shows expression levels of first 3 probe sets
exprs(eset_mmgmos)[1:3,]

Next line used so eset_mmgmos only has information about the liver factor
The scanner factor will thus be ignored, and the two arrays of each level
of the liver factor will be treated as replicates

pData(eset_mmgmos) <- pData(eset_mmgmos)[,1,drop=FALSE]

To save time we'll just use 100 probe sets for the example
eset_mmgmos_100 <- eset_mmgmos[1:100,]
eset_comb <- pumaComb(eset_mmgmos_100)

eset_combimproved <- pumaCombImproved(eset_mmgmos_100)

pumaDEResults <- pumaDE (eset_comb)
pumaDEResults_improved <- pumaDE(eset_combimproved)

topGeneIDs(pumaDEResults,6) # Gives probeset identifiers
topGenelIDs (pumaDEResults_improved,6)
topGenes(pumaDEResults,6) # Gives row numbers

topGenes (pumaDEResults_improved, 6)
statistic(pumaDEResults)[topGenes(pumaDEResults,6),] # PPLR scores of top six genes
statistic(pumaDEResults_improved)[topGenes(pumaDEResults_improved,6),]
FC(pumaDEResults)[topGenes(pumaDEResults,6),] # Fold-change of top six genes
FC(pumaDEResults_improved)[topGenes(pumaDEResults_improved,6),]

pumaDEUnsorted Return an unsorted matrix of PPLR values

Description
Returns the output from pumaDE as an unsorted matrix (i.e. sorted according to the original sorting
in the ExpressionSet)

Usage
pumaDEUnsorted(pp)

Arguments

pp A list as output by pumaDE.

Value

A matrix of PPLR values

Author(s)
Richard D. Pearson

See Also

Related method pumaDE

72 pumaFull

pumaFull Perform a full PUMA analysis

Description

Full analysis including pumaPCA and mmgmos/pumaDE vs rma/limma comparison

Usage

pumaFull (

ExpressionFeatureSet = NULL

, data_dir = getwd()

, load_ExpressionFeatureSet = FALSE
, calculate_eset = TRUE

, calculate_pumaPCAs = TRUE

, calculate_bcomb = TRUE

, mmgmosComparisons = FALSE

)
Arguments
ExpressionFeatureSet
An object of class FeatureSet.
data_dir A character string specifying where data files are stored.

load_ExpressionFeatureSet
Boolean. Load a pre-existing ExpressionFeatureSet object? Note that this has
to be named "ExpressionFeatureSet.rda" and be in the data_dir directory.
calculate_eset Boolean. Calculate ExpressionSet from ExpressionFeatureSet object? If

FALSE, files named "eset_mmgmos.rda" and "eset_rma.rda" must be available
in the data_dir directory.

calculate_pumaPCAs
Boolean. Calculate pumaPCA from eset_mmgmos object? If FALSE, a file
named "pumaPCA_results.rda" must be available in the data_dir directory.
calculate_bcomb

Boolean. Calculate pumaComb from eset_mmgmos object? If FALSE, files
named "eset_comb.rda" and "eset_normd_comb.rda" must be available in the
data_dir directory.

mmgmosComparisons
Boolean. If TRUE, will compare mmgmos with default settings, with mmgmos

used with background correction.
Value
No return values. Various objects are saved as .rda files during the execution of this function, and
various PDF files are created.
Author(s)

Richard D. Pearson

pumaNormalize 73

See Also

Related methods pumaDE, createDesignMatrix and createContrastMatrix

Examples

Code commented out to ensure checks run quickly
if (require(pumadata)) data(oligo.estrogen)
pumaFull (oligo.estrogen)

pumaNormalize Normalize an ExpressionSet

Description

This is used to apply a scaling normalization to set of arrays. This normalization can be at the array
scale (thus giving all arrays the same mean or median), or at the probeset scale (thus giving all
probesets the same mean or median).

It is generally recommended that the default option (median array scaling) is used after running
mmgmos and before running pumaComb and/or pumaDE. There are however, situations where this
might not be the recommended, for example in time series experiments where it is expected than
there will be general up-regulation or down-regulation in overall gene expression levels between
time points.

Usage
pumaNormalize(
eset
, arrayScale = c("median”, "none"”, "mean”, "meanlog")
, probesetScale = c(”"none”, "mean”, "median")

, probesetNormalisation = NULL
, replicates = list(1:dim(exprs(eset))[2])

)
Arguments
eset An object of class ExpressionSet.
arrayScale A method of scale normalisation at the array level.

probesetScale A method of scale normalisation at the probe set level.
probesetNormalisation

If not NULL normalises the expression levels to have zero mean and adjusts the
variance of the gene expression according to the zero-centered normalisation.

replicates List of integer vectors indicating which arrays are replicates.

Value

An object of class ExpressionSet holding the normalised data.

Author(s)
Richard D. Pearson

74

pumaPCA

See Also

Methods mmgmos, pumaComb and pumaDE

Examples

Next 4 lines commented out to save time in package checks, and saved version used
if (require(affydata)) {

data(Dilution)

eset_mmgmos <- mmgmos(Dilution)

3

data(eset_mmgmos)

apply(exprs(eset_mmgmos),2,median)

eset_mmgmos_normd <- pumaNormalize(eset_mmgmos)

apply(exprs(eset_mmgmos_normd),2,median)

pumaPCA

PUMA Principal Components Analysis

Description

This function carries out principal components analysis (PCA), taking into account not only the
expression levels of genes, but also the variability in these expression levels.

The various other pumaPCA... functions are called during the execution of pumaPCA

Usage
pumaPCA (
eset

, latentDim = if(dim(exprs(eset))[2] <= 3)

dim(exprs(eset))[[2]1]-1
else

3

s sampleSize = if(dim(exprs(eset))[1] <= 1000)

dim(exprs(eset))[[1]]

else

1000 ## Set to integer or FALSE for all

initPCA = TRUE ## Initialise parameters with PCA
randomOrder = FALSE ## Update parameters in random order
optimMethod = "BFGS" ## ?optim for details of methods
stoppingCriterion = "deltaW"## can also be "deltal”

tol = le-3 ## Stop when delta update < this
stepChecks = FALSE ## Check likelihood after each update?
iterationNumbers = TRUE ## Show iteration numbers?

showUpdates = FALSE ## Show values after each update?
showTimings = FALSE ## Show timings after each update?
showPlot = FALSE ## Show projection plot after each update?
maxIters = 500 ## Number of EM iterations.
transposeData = FALSE ## Transpose eset matrices?
returnExpectations = FALSE

returnData = FALSE

returnFeedback = FALSE

pumaPCA 75
, pumaNormalize = TRUE
)
Arguments

eset An object of class ExpressionSet.

latentDim An integer specifying the number of latent dimensions (kind of like the number
of principal components).

sampleSize An integer specifying the number of probesets to sample (default is 1000), or
FALSE, meaning use all the data.

initPCA A boolean indicating whether to initialise using standard PCA (the default, and
generally quicker and recommended).

randomOrder A boolean indicating whether the parameters should be updated in a random
order (this is generally not recommended, and the default is FALSE).

optimMethod See ?optim for details of methods.

stoppingCriterion
If set to "deltaW" will stop when W changes by less than tol. If "deltal." will
stop when L (lambda) changes by less than tol.

tol Tolerance value for stoppingCriterion.

stepChecks Boolean. Check likelihood after each update?

iterationNumbers
Boolean. Show iteration numbers?

showUpdates Boolean. Show values after each update?

showTimings Boolean. Show timings after each update?

showPlot Boolean. Show projection plot after each update?

maxIters Integer. Maximum number of EM iterations.

transposeData Boolean. Transpose eset matrices?

returnExpectations
Boolean. Return expectation values?

returnData Boolean. Return expectation data?
returnFeedback Boolean. Return feedback on progress of optimisation?

pumaNormalize Boolean. Normalise data prior to running algorithm (recommended)?

Value

An object of class pumaPCARes

Author(s)

Richard D. Pearson

See Also

Related methods pumaDE, createDesignMatrix and createContrastMatrix

76 pumaPCAEXxpectations-class

Examples

Next 4 lines commented out to save time in package checks, and saved version used
if (require(affydata)) {

data(Dilution)

eset_mmgmos <- mmgmos(Dilution)

3

data(eset_mmgmos)

pumapca_mmgmos <- pumaPCA(eset_mmgmos)
plot(pumapca_mmgmos)

pumaPCAExpectations-class
Class pumaPCAExpectations

Description
This is a class representation for storing a set of expectations from a pumaPCA model. It is an

internal representation and shouldn’t normally be instantiated.

Objects from the Class

Objects can be created by calls of the form new("pumaPCAExpectations”, ...).

Slots

x: Object of class "matrix" representing x
xxT: Object of class "array" representing xxT

logDetCov: Object of class "numeric" representing logDetCov

Methods

This class has no methods defined

Author(s)

Richard D. Pearson

See Also

Related method pumaPCA and related class pumaPCARes.

pumaPCAModel-class 77

pumaPCAModel-class Class pumaPCAModel

Description

This is a class representation for storing a pumaPCA model. It is an internal representation and
shouldn’t normally be instantiated.

Objects from the Class

Objects can be created by calls of the form new("pumaPCAModel”, ...).

Slots

sigma: Object of class "numeric" representing sigma
m: Object of class "matrix" representing m

Cinv: Object of class "matrix" representing Cinv

W: Object of class "matrix" representing W

mu: Object of class "matrix" representing mu

Methods

This class has no methods defined

Author(s)

Richard D. Pearson

See Also

Related method pumaPCA and related class pumaPCARes.

pumaPCARes-class Class pumaPCARes

Description

This is a class representation for storing the outputs of the pumaPCA function. Objects of this class
should usually only be created through the pumaPCA function.

Objects from the Class

Objects can be created by calls of the form new("”pumaPCARes", ...).

78 removeUninformativeFactors

Slots

model: Object of class "pumaPCAModel" representing the model parameters

expectations: Object of class "pumaPCAExpectations" representing the model expectations
varY: Object of class "matrix" representing the variance in the expression levels

Y: Object of class "matrix" representing the expression levels

phenoData: Object of class "AnnotatedDataFrame" representing the phenotype information
timeToCompute: Object of class "numeric" representing the time it took pumaPCA to run

numberOfIterations: Object of class "numeric" representing the number of iterations it took
pumaPCA to converge

likelihoodHistory: Object of class "list" representing the history of likelihood values while
pumaPCA was running

timingHistory: Object of class "list" representing the history of how long each iteration took
while pumaPCA was running

modelHistory: Object of class "list" representing the history of how the model was changing while
pumaPCA was running

exitReason: Object of class "character”" representing the reason pumaPCA halted. Can take the
values "Update of Likelihood less than tolerance x", "Update of W less than tolerance x",

"Iterations exceeded", "User interrupt”, "unknown exit reason"

Methods

plot signature(x="pumaPCARes-class"): plots two principal components on a scatter plot.

write.reslts signature(x = "pumaPCARes-class”): writes the principal components for each ar-
ray to a file. It takes the same arguments as write.table. The argument "file" does not need
to set any extension. The file name and extension "csv" will be added automatically. The
default file name is "tmp".

Author(s)
Richard D. Pearson

See Also

Related method pumaPCA and related class pumaPCARes.

removeUninformativeFactors

Remove uninformative factors from the phenotype data of an Expres-
sionSet

Description

This is really an internal function used to remove uninformative factors from the phenotype data.
Uninformative factors here are defined as those which have the same value for all arrays in the
ExpressionSet.

Usage

removeUninformativeFactors(eset)

removeUninformativeFactors 79

Arguments

eset An object of class ExpressionSet.

Value

An ExpressionSet object with the same data as the input, except for a new phenoData slot.

Author(s)

Richard D. Pearson

See Also

Related methods createDesignMatrix and createContrastMatrix

Examples

eset_test <- new("ExpressionSet”, exprs=matrix(rnorm(400,8,2),100,4))

pData(eset_test) <- data.frame("informativeFactor”=c("A", "A", "B", "B"), "uninformativeFactor”=c("X","X","
eset_test2 <- removeUninformativeFactors(eset_test)

pData(eset_test)

pData(eset_test2)

Index

* aplot mgmos, 45
legend2, 41 mmgmos, 47

* classes normalisation.gs, 48
DEResult, 24 numFP, 49
exprReslt-class, 29 numOfFactorsToUse, 50
pumaPCAExpectations-class, 76 numTP, 51
pumaPCAModel-class, 77 orig_pplr, 52
pumaPCARes-class, 77 PMmmgmos, 59

* datasets pplr, 61
Clust.exampleE, 10 pplrUnsorted, 62
Clust.exampleStd, 11 pumaClust, 63
Clustii.examplekE, 13 pumaClustii, 64
Clustii.exampleStd, 14 pumaComb, 66
eset_mmgmos, 28 pumaCombImproved, 68
examplek, 28 pumaDE, 69
exampleStd, 29 pumaDEUnsorted, 71
hgu95aphis, 36 pumaFull, 72

* hplot pumaNormalize, 73
plot-methods, 53 removeUninformativeFactors, 78
plotErrorBars, 54 + math
plotHistTwoClasses, 56 erfc, 27
plotROC, 57 * methods
plotWhiskers, 58 plot-methods, 53

* manip * misc
bcomb, 4 license.puma, 44
calcAUC, 6 * models
calculateFC, 7 bcomb, 4
calculatelLimma, 8 hcomb, 35
calculateTtest, 9 orig_pplr, 52
clusterApplyLBDots, 11 pplr, 61
clusterNormE, 12 pumaClust, 63
clusterNormvar, 12 pumaClustii, 64
comparelL immapumaDE, 14 pumaComb, 66
create_eset_r, 23 pumaCombImproved, 68
createContrastMatrix, 16 * multivariate
createDesignMatrix, 20 pumaPCA, 74
gmhta, 31 * package
gmoExon, 33 puma-package, 3
hcomb, 35
igmoExon, 36 AnnotatedDataFrame, 17, 20, 39, 40
justmgMOos, 38 as.graphicsAnnot, 41, 42
justmmgMOS, 40
matrixDistance, 44 bcomb, 4, 24, 49, 53, 62, 67

80

INDEX

calcAUC, 6, 50, 51, 58
calculateFC, 7,9, 10, 25, 26, 70
calculatelLimma, 8, 8, 10, 15, 16, 25, 26, 70
calculateTtest, 8, 9,9, 25, 26, 70
class:DEResult (DEResult), 24
class:exprReslt (exprReslt-class), 29
class:pumaPCARes (pumaPCARes-class), 77
Clust.exampleE, 10, /1
Clust.exampleStd, /10, 11
clusterApplylB, 11
clusterApplylLBDots, 11
clusterNormE, 12
clusterNormVar, 12
Clustii.examplek, 13, 14
Clustii.exampleStd, 13, 14
comparelLimmapumaDE, 14
create_eset_r, 23
createContrastMatrix, 810, 16, 21, 50, 70,
73,75,79
createDesignMatrix, 8-10, 18, 20, 50, 70,
73,75,79

DEMethod (DEResult), 24
DEMethod,DEResult-method (DEResult), 24
DEMethod<- (DEResult), 24
DEMethod<-,DEResult,character-method
(DEResult), 24
DEResult, 6-10, 24,49, 51
DEResult-class (DEResult), 24
Dilution, 28

erfc, 27

eset_mmgmos, 28

exampleE, 28, 29

exampleStd, 28, 29

expression, 41

ExpressionSet, 5, 7-9, 15-17, 20, 24, 28, 29,
31, 50, 55, 59, 63, 66-68, 70, 73, 75,
78, 79

exprReslt, 31, 33, 38, 40, 45, 47, 59

exprReslt (exprReslt-class), 29

exprReslt-class, 29

FC (DEResult), 24

FC,DEResult-method (DEResult), 24

FC<- (DEResult), 24

FC<-,DEResult,matrix-method (DEResult),
24

FeatureSet, 31, 33,3941, 45,47, 59, 60, 72

gmhta, 31
gmoExon, 33, 37

hcomb, 24, 35, 49, 62, 69

81

hgu95aphis, 36
igmoExon, 36, 37

just.mgmos (justmgMOS), 38
just.mmgmos (justmmgMOS), 40
justmgMOs, 38

justmmgMOS, 40

legend, 43, 56
legend2, 41
license.puma, 44

makeCluster, 66, 68

matrixDistance, 44

mgmos, 15, 39, 40, 45, 48, 61

MIAME, 39, 40

mmgmos, 6, 13-15, 17, 20, 31, 36, 41, 46, 47,
64, 65, 67,69, 70,73, 74

newtonStep (pumaPCA), 74
normalisation.gs, 48
numberOfContrasts (DEResult), 24
numberOfContrasts,DEResult-method
(DEResult), 24
numberOfGenes (DEResult), 24
numberOfGenes,DEResult-method
(DEResult), 24
numberOfProbesets (DEResult), 24
numberOfProbesets,DEResult-method
(DEResult), 24
numfP, 6,49, 51
numOfFactorsToUse, 50
numTP, 51

orig_pplr, 52

par, 56

performance, 58

pLikeValues (DEResult), 24

pLikeValues,DEResult-method (DEResult),
24

plot, 55

plot,pumaPCARes,missing-method
(plot-methods), 53

plot,pumaPCARes-method (plot-methods),
53

plot-methods, 53

plot.default, 59

plot.performance, 58

plot.pumaPCARes (plot-methods), 53

plotErrorBars, 54

plotHistTwoClasses, 56

plotmath, 42

82 INDEX

plotROC, 6, 50, 51, 57 (pumaPCAExpectations-class), 76
plotWhiskers, 58 pumaPCAExpectations-class, 76
PMmmgmos, 59 pumaPCALikelihoodBound (pumaPCA), 74
points, 42 pumaPCALikelihoodCheck (pumaPCA), 74
pplr, 6, 36, 52, 61, 62, 63, 70 pumaPCAModel (pumaPCAModel-class), 77
pplrUnsorted, 62 pumaPCAModel-class, 77
prcfifty (exprReslt-class), 29 pumaPCANewtonUpdatelLogSigma (pumaPCA),
prcfifty,exprReslt-method 74

(exprReslt-class), 29 pumaPCARemoveRedundancy (pumaPCA), 74

prcfifty<- (exprReslt-class), 29 pumaPCARes, 75-78

prcfifty<-,exprReslt-method
(exprReslt-class), 29

prcfive (exprReslt-class), 29

prcfive,exprReslt-method

pumaPCARes (pumaPCARes-class), 77
pumaPCARes-class, 77
pumaPCASigmaGradient (pumaPCA), 74
pumaPCASigmaObjective (pumaPCA), 74

pumaPCAUpdateCinv (pumaPCA), 74
pumaPCAUpdateM (pumaPCA), 74
pumaPCAUpdateMu (pumaPCA), 74
pumaPCAUpdateW (pumaPCA), 74

(exprReslt-class), 29
prcfive<- (exprReslt-class), 29
prcfive<-,exprReslt-method

(exprReslt-class), 29
prcninfive (exprReslt-class), 29
prcninfive,exprReslt-method

(exprReslt-class), 29
prcninfive<- (exprReslt-class), 29
prcninfive<-,exprReslt-method

(exprReslt-class), 29
prcsevfive (exprReslt-class), 29
prcsevfive,exprReslt-method

(exprReslt-class), 29
prcsevfive<- (exprReslt-class), 29
prcsevfive<-,exprReslt-method

(exprReslt-class), 29
prctwfive (exprReslt-class), 29
prctwfive,exprReslt-method

(exprReslt-class), 29
prctwfive<- (exprReslt-class), 29
prctwfive<-,exprReslt-method statistic<- (DEResult), 24

(exprReslt-class), 29 statistic<-,DEResult,matrix-method
puma (puma-package), 3 (DEResult), 24
puma-package, 3 statisticDescription (DEResult), 24
pumaClust, 72, 13, 63 statisticDescription,DEResult-method
pumaclust, 65 (DEResult), 24
pumaClustii, 12, 13, 64, 64 statisticDescription<- (DEResult), 24
pumaComb, 5, 6, 15, 17, 20, 21, 24, 55, 66, 70, statisticDescription<-,DEResult,character-method

73, 74 (DEResult), 24
pumaCombImproved, 21, 24, 36, 55, 68, 70 strwidth. 42

pumaDE, 7-10, 14-16, 18, 21, 25, 26, 56, 59,
61, 62,67,69,69,71,73-75 topGenelIDs (DEResult), 24

pumaDEUnsorted, 71 topGenelIDs,DEResult-method (DEResult),

pumaFull, 72 24

pumaNormalize, 48, 67-69, 73 topGenes (DEResult), 24

pumaPCA, 44, 45,74, 76-78 topGenes,DEResult-method (DEResult), 24

pumaPCAEstep (pumaPCA), 74

pumaPCAExpectations

qgnorm, 27

removeUninformativeFactors, 78
rma, 15

se.exprs (exprReslt-class), 29
se.exprs,exprReslt-method
(exprReslt-class), 29
se.exprs<- (exprReslt-class), 29
se.exprs<-,exprReslt-method
(exprReslt-class), 29
show,DEResult-method (DEResult), 24
show, exprReslt-method
(exprReslt-class), 29
statistic (DEResult), 24
statistic,DEResult-method (DEResult), 24

write.reslts (exprReslt-class), 29

INDEX

write.reslts,DEResult-method
(DEResult), 24
write.reslts,ExpressionSet-method
(exprReslt-class), 29
write.reslts,exprReslt-method
(exprReslt-class), 29
write.reslts,pumaPCARes-method
(pumaPCARes-class), 77
write.table, 26, 30, 78

Xy.coords, 41,43

83

	puma-package
	bcomb
	calcAUC
	calculateFC
	calculateLimma
	calculateTtest
	Clust.exampleE
	Clust.exampleStd
	clusterApplyLBDots
	clusterNormE
	clusterNormVar
	Clustii.exampleE
	Clustii.exampleStd
	compareLimmapumaDE
	createContrastMatrix
	createDesignMatrix
	create_eset_r
	DEResult
	erfc
	eset_mmgmos
	exampleE
	exampleStd
	exprReslt-class
	gmhta
	gmoExon
	hcomb
	hgu95aphis
	igmoExon
	justmgMOS
	justmmgMOS
	legend2
	license.puma
	matrixDistance
	mgmos
	mmgmos
	normalisation.gs
	numFP
	numOfFactorsToUse
	numTP
	orig_pplr
	plot-methods
	plotErrorBars
	plotHistTwoClasses
	plotROC
	plotWhiskers
	PMmmgmos
	pplr
	pplrUnsorted
	pumaClust
	pumaClustii
	pumaComb
	pumaCombImproved
	pumaDE
	pumaDEUnsorted
	pumaFull
	pumaNormalize
	pumaPCA
	pumaPCAExpectations-class
	pumaPCAModel-class
	pumaPCARes-class
	removeUninformativeFactors
	Index

