Package ‘DMRcaller’

December 29, 2025

Type Package

Title Differentially Methylated Regions Caller
Version 1.42.0

Date 2019-01-18

Encoding UTF-8

Author Nicolae Radu Zabet <r.zabet@gmul.ac.uk>, Jonathan
Michael Foonlan Tsang <jmft2@cam.ac.uk>, Alessandro
Pio Greco <apgrec@essex.ac.uk>, Ryan Merritt <rmerri@essex.ac.uk> and
Young Jun Kim <qc25039@gmul.ac.uk>

Maintainer Nicolae Radu Zabet <r.zabet@gmul.ac.uk>

Description Uses Bisulfite sequencing data in two conditions and
identifies differentially methylated regions between the
conditions in CG and non-CG context. The input is the CX report
files produced by Bismark and the output is a list of DMRs
stored as GRanges objects.

License GPL-3
LazyLoad yes

Imports parallel, Rcpp, ReppRoll, betareg, grDevices, graphics,
methods, stats, utils, Rsamtools, GenomicRanges,
GenomicAlignments, Biostrings, BSgenome, BiocManager,
S4Vectors, IRanges, InteractionSet, stringr, inflection,
BiocParallel, Seqinfo, GenomelnfoDb

Depends R (>=3.5), GenomicRanges, [Ranges, S4Vectors

Suggests knitr, RUnit, BiocGenerics, rmarkdown, bookdown, BiocStyle,
betareg, rtracklayer, BSgenome.Hsapiens.UCSC.hg38

biocViews DifferentialMethylation, DNAMethylation, Software,
Sequencing, Coverage

VignetteBuilder knitr

NeedsCompilation no

RoxygenNote 7.3.3

git_url https://git.bioconductor.org/packages/DMRcaller
git_branch RELEASE_3_22

git_last_commit ba466d4

git_last_commit_date 2025-10-29

2 Contents

Repository Bioconductor 3.22
Date/Publication 2025-12-29

Contents
analyseReadsInsideRegionsForCondition 3
analyseReadsInsideRegionsForConditionPMD 4
computeCoMethylatedPositions 5
computeCoMethylatedRegions 8
computeDMRS 10
computeDMRsReplicates 13
computeMethylationDataCoverage 15
computeMethylationDataSpatialCorrelation 16
computeMethylationProfile 18
computeOverlapProfile 19
computePMDs 20
computeVMDs 23
DMRecaller e 25
DMRsNoiseFilterCG e 33
extractGC 34
filterDMRs 35
filterPMDs e 36
filterVMDs e 38
filterVMRSONT e 40
GEs . . . 42
GEs_hg38 e 43
getWholeChromosomes e 43
joinReplicates L. e e e 44
mergeDMRslteratively L L 45
mergePMDslteratively oL 47
methylationDatalist L 49
ontSampleGRangesList 50
ont_gr GM18870_chrl_PMD_bins_1k 50
ont_gr GM18870_chrl_sorted_bins_1k 51
plotLocalMethylationProfile 51
plotMethylationDataCoverage e 53
plotMethylationDataSpatialCorrelation 55
plotMethylationProfile 57
plotMethylationProfileFromData 0oL, 59
plotOverlapProfile L 61
PMDsBIinsCG e 62
PMDsNoiseFilterCG e 63
poolMethylationDatasets 63
poolTwoMethylationDatasets 64
readBismark L Lo 65
readBismarkPoolo 65
readONTbam e 66
saveBismark L L 68
scanBamChrlRandomS 69
selectCytosine e 69

syntheticDataReplicates 71

analyseReadsInsideRegionsForCondition 3

Index 72

analyseReadsInsideRegionsForCondition
Analyse reads inside regions for condition

Description

This function extracts from the methylation data the total number of reads, the number of methylated
reads and the number of cytosines in the specific context from a region (e.g. DMRs)

Usage

analyseReadsInsideRegionsForCondition(
regions,
methylationData,
context,
label = "",
parallel = FALSE,
BPPARAM = NULL,

cores = NULL
)
Arguments
regions a GRanges object with a list of regions on the genome; e.g. could be a list of
DMRs
methylationData
the methylation data in one condition (see methylationDatalist).
context the context in which to extract the reads ("CG", "CHG" or "CHH").
label a string to be added to the columns to identify the condition
parallel Logical; run in parallel if TRUE.
BPPARAM A BiocParallelParam object controlling parallel execution. This value will
automatically set when parallel is TRUE, also able to set as manually.
cores Integer number of workers (must not exceed BPPARAM$workers). This value
will automatically set as the maximum number of system workers, also able to
set as manually.
Value

a GRanges object with additional four metadata columns

sumReadsM the number of methylated reads
sumReadsN the total number of reads
proportion the proportion methylated reads

cytosinesCount the number of cytosines in the regions

Author(s)
Nicolae Radu Zabet

4 analyseReadsInsideRegionsForConditionPMD

See Also
readONTbam, filterDMRs, computeDMRs, DMRsNoiseFilterCG, and mergeDMRsIteratively

Examples

load the methylation data
data(methylationDatalList)

#load the DMRs in CG context. These DMRs were computed with minGap = 200.
data(DMRsNoiseFilterCG)

#retrive the number of reads in CHH context in WT

DMRsNoiseFilterCGreadsCHH <- analyseReadsInsideRegionsForCondition(
DMRsNoiseFilterCG[1:10],
methylationDatalList[["WT"]], context = "CHH",
label = "WT")

analyseReadsInsideRegionsForConditionPMD
Analyse reads inside regions for condition

Description

This function extracts from the methylation data the total number of reads, the number of methylated
reads and the number of cytosines in the specific context from a region (e.g. PMDs)

Usage

analyseReadsInsideRegionsForConditionPMD(
regions,
methylationData,
context,
label = "",
parallel = FALSE,
BPPARAM = NULL,

cores = NULL
)
Arguments

regions a GRanges object with a list of regions on the genome; e.g. could be a list of
PMDs

methylationData
the methylation data in one condition (see ontSampleGRangesList).

context the context in which to extract the reads ("CG", "CHG" or "CHH").

label a string to be added to the columns to identify the condition

parallel Logical; run in parallel if TRUE.

BPPARAM A BiocParallelParam object controlling parallel execution. This value will

automatically set when parallel is TRUE, also able to set as manually.

computeCoMethylatedPositions 5

cores Integer number of workers (must not exceed BPPARAMS$workers). This value
will automatically set as the maximum number of system workers, also able to
set as manually.

Value
a GRanges object with additional four metadata columns
sumReadsM the number of methylated reads
sumReadsN the total number of reads

proportion the proportion methylated reads

cytosinesCount the number of cytosines in the regions

Author(s)

Nicolae Radu Zabet and Young Jun Kim

See Also

filterPMDs, computePMDs, PMDsNoiseFilterCG, and mergePMDsIteratively

Examples

load the ONT methylation data
data(ontSampleGRangeslList)

#load the PMDs in CG context. These PMDs were computed with minGap = 200.
data(PMDsNoiseFilterCG)

#retrive the number of reads in CG context in GM18501

PMDsNoiseFilterCGreadsCG <- analyseReadsInsideRegionsForConditionPMD(
PMDsNoiseFilterCG[1:10],
ontSampleGRangesList[["GM18501"]], context = "CG",
label = "GM18501")

computeCoMethylatedPositions
Compute pairwise co-methylation statistics for cytosine sites within
regions

Description

computeCoMethylatedPositions() calculates pairwise co-methylation between all cytosine sites
within each given region, using ONT methylation calls annotated to each site. For each pair of
cytosines within the same strand and PMD, it builds a 2x2 contingency table reflecting the overlap
state of reads (both methylated, only one methylated, or neither), performs a statistical test (Fisher’s
exact by default), and reports FDR-adjusted p-values.

computeCoMethylatedPositions

Usage
computeCoMethylatedPositions(

methylationData,
regions,
minDistance = 150,
maxDistance = 1000,
minCoverage = 4,
pValueThreshold = 0.01,
alternative = "two.sided”,
test = "fisher”,

parallel = FALSE,
BPPARAM = NULL,

cores = NULL
)

Arguments
methylationData
regions
minDistance
maxDistance
minCoverage
pValueThreshold
alternative
test
parallel
BPPARAM
cores

Details

A GRanges object containing cytosine sites, annotated with per-site ONT methy-
lation calls (columns ONT_Cm, ONT_C, readsN, etc).

A GRanges object with list including genomic context such as gene and/or trans-
posable elements coordinates which possibly have DMRs, VMRs or PMDs.

Minimum distance (in bp) between two cytosines to consider for co-methylation
(default: 150).

Maximum distance (in bp) between two cytosines to consider (default: 1000).

Minimum read coverage required for both cytosines in a pair (default: 4).

FDR-adjusted p-value threshold for reporting significant co-methylation (de-
fault: 0.01).

indicates the alternative hypothesis and must be one of "two.sided", "greater”
or "less”. You can specify just the initial letter. Only used in the 2 by 2 case.
This is used only for Fisher’s test.

Statistical test to use for co-methylation ("fisher"” for Fisher’s exact [default],
or "permutation” for chi-squared). NOTE: highly recommended to do parallel
when use permutation test.

Logical; run in parallel if TRUE.

A BiocParallelParam object controlling parallel execution. This value will
automatically set when parallel is TRUE, also able to set as manually.

Integer number of workers (must not exceed BPPARAMS$workers). This value
will automatically set as the maximum number of system workers, also able to
set as manually.

Compute Co-Methylation Positions within Regions (CMPs)

Pairwise tests are performed separately for each strand (+ and -) within each region. FDR correction
is performed for all pairs within each region and strand.

computeCoMethylatedPositions 7

Value

A list of length equal to regions, where each entry is a GInteractions object of significant cyto-
sine pairs (by strand), annotated with:

C1_C2 number of reads methylated at both cytosines

C1_only number methylated at only first cytosine

C2_only number methylated at only second cytosine

neither number methylated at neither cytosines

strand The DNA strand ("+" or "-") on which the two CpGs reside.

genomic_position The original region (from regions) containing this cytosines pair, formatted in
UCSC or IGV style, e.g. "chr1:1522971-1523970".

p.value FDR-adjusted p-value for co-methylation association

Author(s)

Nicolae Radu Zabet and Young Jun Kim

See Also

readONTbam, computePMDs, ontSampleGRangesList

Examples

Not run:

load the ONT methylation data and PMD data
data(ont_gr_GM18870_chr1_PMD_bins_1k)
data(ont_gr_GM18870_chril_sorted_bins_1k)

compute the co-methylations with Fisher's exact test
coMetylationFisher <- computeCoMethylatedPositions(
ont_gr_GM18870_chri1_sorted_bins_1k,
regions = ont_gr_GM18870_chr1_PMD_bins_1k[1:4],
minDistance = 150,
maxDistance 1000,
minCoverage = 4,
pValueThreshold = 0.01,
test = "fisher”,
parallel = FALSE)

compute the co-methylations with Permuation test
coMetylationPermutation <- computeCoMethylatedPositions(
ont_gr_GM18870_chri1_sorted_bins_1k,
regions = ont_gr_GM18870_chr1_PMD_bins_1k[1:4],
minDistance = 150,
maxDistance = 1000,
minCoverage = 4,
pValueThreshold = 0.01,
test = "permutation”,
parallel = FALSE) # highly recommended to set as TRUE

End(Not run)

8 computeCoMethylatedRegions

computeCoMethylatedRegions
Compute pairwise co-methylation statistics between regions

Description

computeCoMethylatedRegions() calculates pairwise correlation statistics for methylation levels
across defined genomic regions (e.g., PMDs, Enhancer binding sites). For each region pair within
the specified distance range, the function computes per-read methylation proportions and performs
correlation testing (Pearson, Spearman, or Kendall). Pairs with strong correlations (beyond user-
defined thresholds) and significant p-values (FDR-adjusted) are returned.

Usage

computeCoMethylatedRegions(
methylationData,
regions,
minDistance
maxDistance = 50000,
minCoverage = 4,
pValueThreshold = 9.05,
correlation_test = "pearson”,
minCorrelation = -0.5,
maxCorrelation = 0.5,
parallel = FALSE,
BPPARAM = NULL,

500,

cores = NULL
)
Arguments

methylationData
A GRanges object containing cytosine sites, annotated with ONT methylation
metadata (columns ONT_Cm, ONT_C, etc.).

regions A GRanges object defining genomic regions (e.g., PMDs, Enhancer binding
sites) to evaluate for CMRs.

minDistance Minimum genomic distance (in base pairs) between two regions to be considered
(default: 500).

maxDistance Maximum genomic distance (in base pairs) between two regions (default: 50,000).

minCoverage Minimum number of shared reads (per region pair) required to compute corre-
lation (default: 4).

pValueThreshold

Significance threshold for FDR-adjusted p-values (default: 0.05).
correlation_test

Statistical method to compute correlation; must be one of "pearson”, "spearman”,

or "kendall” (default: "pearson”).

minCorrelation Minimum allowed correlation value for a significant result (must be in between
-1 and 0; default: -0.5).

computeCoMethylatedRegions 9

maxCorrelation Maximum allowed correlation value for a significant result (must be in between
0 and 1; default: 0.5).

parallel Logical; run in parallel if TRUE.

BPPARAM A BiocParallelParam object controlling parallel execution. This value will
automatically set when parallel is TRUE, also able to set as manually.

cores Integer number of workers (must not exceed BPPARAMS$workers). This value
will automatically set as the maximum number of system workers, also able to
set as manually.

Details
Compute Co-Methylated Regions (CMRs)

The function first identifies all region pairs within the user-defined distance range. For each pair, it
calculates methylation proportions per read across both regions, extracts common reads, and tests
correlation using the selected method. FDR correction is applied globally across all region pairs.

Value

A GInteractions object, where each row represents a significantly correlated pair of genomic
regions from the input regions. The anchors of each interaction correspond to original regions,
and their genomic coordinates are retained in the anchor1 and anchor?2 slots.

Additionally, a genomic_position meta-column is included to indicate the original coordinate
ranges (in UCSC/IGV format) for each interaction, aiding downstream interpretation or visualisa-
tion.

Each interaction is annotated with:

correlation Correlation coefficient between the two regions
coverage Number of shared reads used for correlation

p-value FDR-adjusted p-value for the correlation test

Author(s)

Nicolae Radu Zabet and Young Jun Kim

See Also

readONTbam, computePMDs, ontSampleGRangesList

Examples

Load methylation data and PMD regions
data("ont_gr_GM18870_chri1_sorted_bins_1k")
data("ont_gr_GM18870_chr1_PMD_bins_1k")

Compute highly correlated regions (Pearson)
coMethylationRegion_pearson <- computeCoMethylatedRegions(ont_gr_GM1887@_chri1_sorted_bins_1k,
ont_gr_GM18870_chr1_PMD_bins_1k[1:5],

minDistance = 500,
maxDistance = 50000,
minCoverage = 4,
pValueThreshold = 0.05,
correlation_test = "pearson”,

10

computeDMRs

minCorrelation = -0.5,
maxCorrelation = 0.5,
parallel = FALSE,
BPPARAM = NULL)

computeDMRs

Compute DMRs

Description

This function computes the differentially methylated regions between two conditions.

Usage

computeDMRs (

methylationDatal,
methylationDataz2,

regions

NULL,

context = "CG",
method = "noise_filter”,

windowSize

100,

kernelFunction = "triangular”,

lambda
binSize

100,

test = "fisher”,
pValueThreshold = 0.01,
minCytosinesCount = 4,
minProportionDifference = 0.4,

minGap = 200,
minSize

minReadsPerCytosine = 4,
parallel = FALSE,
BPPARAM = NULL,

cores
)
Arguments
methylationDatal
the methylation data in condition 1 (see methylationDatalList).
methylationData2
the methylation data in condition 2 (see methylationDatalList).
regions a GRanges object with the regions where to compute the DMRs. If NULL, the
DMRs are computed genome-wide.
context the context in which the DMRs are computed ("CG", "CHG" or "CHH").
method the method used to compute the DMRs ("noise_filter"”, "neighbourhood”

or "bins"). The "noise_filter"” method uses a triangular kernel to smooth the
number of reads and then performs a statistical test to determine which regions
dispay different levels of methylation in the two conditions. The "neighbourhood”

computeDMRs 11

method computates differentially methylated cytosines. Finally, the "bins”
method partiones the genome into equal sized tilling bins and performs the sta-
tistical test between the two conditions in each bin. For all three methods, the
cytosines or bins are then merged into DMRs without affecting the inital pa-
rameters used when calling the differentiall methylated cytosines/bins (p-value,
difference in methylation levels, minimum number of reads per cytosine).

windowSize the size of the triangle base measured in nucleotides. This parameter is required
only if the selected method is "noise_filter".
kernelFunction acharacter indicating which kernel function to be used. Can be one of "uniform”,

"triangular”, "gaussian” or "epanechnicov”. This is required only if the
selected method is "noise_filter"”.

lambda numeric value required for the Gaussian filter (K(x) = exp(-lambda*x*2)). This
is required only if the selected method is "noise_filter" and the selected ker-
nel function is "gaussian”.

binSize the size of the tiling bins in nucleotides. This parameter is required only if the
selected method is "bins”.

test the statistical test used to call DMRs (" fisher" for Fisher’s exact test or "score”
for Score test).

pValueThreshold

DMRs with p-values (when performing the statistical test; see test) higher or
equal than pValueThreshold are discarded. Note that we adjust the p-values
using the Benjamini and Hochberg’s method to control the false discovery rate.
minCytosinesCount
DMRs with less cytosines in the specified context than minCytosinesCount
will be discarded.
minProportionDifference
DMRs where the difference in methylation proportion between the two condi-
tions is lower than minProportionDifference are discarded.

minGap DMRs separated by a gap of at least minGap are not merged. Note that only
DMRs where the change in methylation is in the same direction are joined.

minSize DMRs with a size smaller than minSize are discarded.

minReadsPerCytosine
DMRs with the average number of reads lower than minReadsPerCytosine are
discarded.

parallel Logical; run in parallel if TRUE.

BPPARAM A BiocParallelParam object controlling parallel execution. This value will

automatically set when parallel is TRUE, also able to set as manually.

cores Integer number of workers (must not exceed BPPARAM$workers). This value
will automatically set as the maximum number of system workers, also able to
set as manually.

Value

the DMRs stored as a GRanges object with the following metadata columns:

direction a number indicating whether the region lost (-1) or gain (+1) methylation in condition 2
compared to condition 1.

context the context in which the DMRs was computed ("CG", "CHG" or "CHH").

sumReadsM1 the number of methylated reads in condition 1.

12 computeDMRs

sumReadsN1 the total number of reads in condition 1.
proportionl the proportion methylated reads in condition 1.
sumReadsM2 the number of methylated reads in condition 2.
sumReadsN2 the total number reads in condition 2.
proportion2 the proportion methylated reads in condition 2.
cytosinesCount the number of cytosines in the DMR.

regionType a string indicating whether the region lost ("1oss") or gained ("gain") methylation in
condition 2 compared to condition 1.

pValue the p-value (adjusted to control the false discovery rate with the Benjamini and Hochberg’s
method) of the statistical test when the DMR was called.

Author(s)

Nicolae Radu Zabet and Jonathan Michael Foonlan Tsang

See Also

filterDMRs, mergeDMRsIteratively, analyseReadsInsideRegionsForCondition and DMRsNoiseFilterCG

Examples

load the methylation data
data(methylationDatalList)

the regions where to compute the DMRs
regions <- GRanges(segnames = Rle(”"Chr3"), ranges = IRanges(1,1E5))

compute the DMRs in CG context with noise_filter method
DMRsNoiseFilterCG <- computeDMRs(methylationDatalList[["WT"]11,
methylationDatalList[["met1-3"]1], regions = regions,
context = "CG", method = "noise_filter”,
windowSize = 100, kernelFunction = "triangular”,
test = "score”, pValueThreshold = 0.01,
minCytosinesCount = 4, minProportionDifference = 0.4,
minGap = 200, minSize = 50, minReadsPerCytosine = 4,
cores = 1)

Not run:

compute the DMRs in CG context with neighbourhood method

DMRsNeighbourhoodCG <- computeDMRs(methylationDatalList[["WT"]11],
methylationDataList[["met1-3"]], regions = regions,
context = "CG", method = "neighbourhood”,
test = "score”, pValueThreshold = 0.01,
minCytosinesCount = 4, minProportionDifference = 0.4,
minGap = 200, minSize = 50, minReadsPerCytosine = 4,
cores = 1)

compute the DMRs in CG context with bins method

DMRsBinsCG <- computeDMRs(methylationDatalList[["WT"]1],
methylationDataList[["met1-3"]1], regions = regions,
context = "CG", method = "bins”, binSize = 100,
test = "score”, pValueThreshold = .01, minCytosinesCount = 4,
minProportionDifference = 0.4, minGap = 200, minSize = 50,
minReadsPerCytosine = 4, cores = 1)

computeDMRsReplicates 13

End(Not run)

computeDMRsReplicates Compute DMRs

Description

This function computes the differentially methylated regions between replicates with two condi-

tions.

Usage

computeDMRsReplicates(
methylationData,

condition =

NULL,

regions = NULL,

context = "CG",

method = "neighbourhood”,
binSize = 100,

test = "betareg”,

pseudocountM = 1,

pseudocountN = 2,
pValueThreshold = 0.01,
minCytosinesCount = 4,
minProportionDifference = 0.4,

minGap = 200,
minSize = 50,

minReadsPerCytosine = 4,
parallel = FALSE,
BPPARAM = NULL,

cores = NULL

Arguments

methylationData

condition

regions

context
method

the methylation data containing all the conditions for all the replicates.

a vector of strings indicating the conditions for each sample in methylationData.
Two different values are allowed (for the two conditions).

a GRanges object with the regions where to compute the DMRs. If NULL, the
DMRs are computed genome-wide.

the context in which the DMRs are computed ("CG", "CHG" or "CHH").

the method used to compute the DMRs "neighbourhood” or "bins"). The
"neighbourhood” method computates differentially methylated cytosines. Fi-
nally, the "bins” method partiones the genome into equal sized tilling bins and
performs the statistical test between the two conditions in each bin. For all three
methods, the cytosines or bins are then merged into DMRs without affecting the
inital parameters used when calling the differentiall methylated cytosines/bins
(p-value, difference in methylation levels, minimum number of reads per cyto-
sine).

14 computeDMRsReplicates

binSize the size of the tiling bins in nucleotides. This parameter is required only if the
selected method is "bins”.

test the statistical test used to call DMRs ("betareg” for Beta regression).

pseudocountM numerical value to be added to the methylated reads before modelling beta re-
gression.

pseudocountN numerical value to be added to the total reads before modelling beta regression.
pValueThreshold
DMRs with p-values (when performing the statistical test; see test) higher or
equal than pValueThreshold are discarded. Note that we adjust the p-values
using the Benjamini and Hochberg’s method to control the false discovery rate.
minCytosinesCount
DMRs with less cytosines in the specified context than minCytosinesCount
will be discarded.
minProportionDifference
DMRs where the difference in methylation proportion between the two condi-
tions is lower than minProportionDifference are discarded.

minGap DMRs separated by a gap of at least minGap are not merged. Note that only
DMRs where the change in methylation is in the same direction are joined.

minSize DMRs with a size smaller than minSize are discarded.

minReadsPerCytosine
DMRs with the average number of reads lower than minReadsPerCytosine are
discarded.

parallel Logical; run in parallel if TRUE.

BPPARAM A BiocParallelParam object controlling parallel execution. This value will

automatically set when parallel is TRUE, also able to set as manually.

cores Integer number of workers (must not exceed BPPARAM$workers). This value
will automatically set as the maximum number of system workers, also able to
set as manually.

Value

the DMRs stored as a GRanges object with the following metadata columns:

direction a number indicating whether the region lost (-1) or gain (+1) methylation in condition 2
compared to condition 1.

context the context in which the DMRs was computed ("CG"”, "CHG" or "CHH").

sumReadsM1 the number of methylated reads in condition 1.

sumReadsN1 the total number of reads in condition 1.

proportionl the proportion methylated reads in condition 1.

sumReadsM?2 the number of methylated reads in condition 2.

sumReadsN2 the total number reads in condition 2.

proportion2 the proportion methylated reads in condition 2.

cytosinesCount the number of cytosines in the DMR.

regionType a string indicating whether the region lost ("1oss") or gained ("gain") methylation in
condition 2 compared to condition 1.

pValue the p-value (adjusted to control the false discovery rate with the Benjamini and Hochberg’s
method) of the statistical test when the DMR was called.

computeMethylationDataCoverage 15

Author(s)

Alessandro Pio Greco and Nicolae Radu Zabet

Examples

Not run:
starting with data joined using joinReplicates
data("syntheticDataReplicates”)

compute the DMRs in CG context with neighbourhood method

creating condition vector
condition <- c("a", "a", "b", "b")

computing DMRs using the neighbourhood method

DMRsReplicatesNeighbourhood <- computeDMRsReplicates(methylationData = syntheticDataReplicates,
condition = condition,
regions = NULL,
context = "CHH",
method = "neighbourhood”,
test = "betareg”,
pseudocountM = 1,
pseudocountN = 2,
pValueThreshold = 0.01,
minCytosinesCount = 4,
minProportionDifference = 0.4,
minGap = 200,
minSize = 50,
minReadsPerCytosine = 4,
cores = 1)

End(Not run)

computeMethylationDataCoverage
Compute methylation data coverage

Description

This function computes the coverage for bisulfite sequencing data. It returns a vector with the
proportion (or raw count) of cytosines that have the number of reads higher or equal than a vector
of specified thresholds.

Usage

computeMethylationDataCoverage(
methylationData,
regions = NULL,
context = "CG",
breaks = NULL,
proportion = TRUE

16 computeMethylationDataSpatialCorrelation

Arguments
methylationData
the methylation data stored as a GRanges object with four metadata columns
(see methylationDatalist).
regions a GRanges object with the regions where to compute the coverage. If NULL, the
coverage is computed genome-wide.
context the context in which the DMRs are computed ("CG", "CHG" or "CHH").
breaks a numeric vector specifing the different values for the thresholds when comput-
ing the coverage.
proportion a logical value indicating whether to compute the proportion (TRUE) or raw
counts (FALSE).
Value

a vector with the proportion (or raw count) of cytosines that have the number of reads higher or
equal than the threshold values specified in the breaks vector.

Author(s)

Nicolae Radu Zabet and Jonathan Michael Foonlan Tsang

See Also

plotMethylationDataCoverage, methylationDatalist

Examples

load the methylation data
data(methylationDatalist)

compute coverage in CG context

breaks <- ¢(1,5,10,15)

coverage_CG_wt <- computeMethylationDataCoverage(methylationDatalList[["WT"]],
context="CG", breaks=breaks)

computeMethylationDataSpatialCorrelation
Compute methylation data spatial correlation

Description

This function computes the correlation of the methylation levels as a function of the distances
between the Cytosines. The function returns a vector with the correlation of methylation levels at
distance equal to a vector of specified thresholds.

computeMethylationDataSpatialCorrelation 17

Usage

computeMethylationDataSpatialCorrelation(
methylationData,
regions = NULL,
context = "CG",
distances = NULL

)
Arguments
methylationData
the methylation data stored as a GRanges object with four metadata columns
(see methylationDatalist).
regions a GRanges object with the regions where to compute the correlation. If NULL,
the correlation is computed genome-wide.
context the context in which the correlation is computed ("CG", "CHG" or "CHH").
distances a numeric vector specifing the different values for the distances when comput-
ing the correlation.
Value

a vector with the correlation of the methylation levels for Cytosines located at distances specified
in the distances vector.

Author(s)

Nicolae Radu Zabet

See Also

plotMethylationDataSpatialCorrelation, methylationDatalist

Examples

load the methylation data
data(methylationDatalList)

compute spatial correlation in CG context

distances <- ¢(1,5,10,15)

correlation_CG_wt <- computeMethylationDataSpatialCorrelation(methylationDatalist[["WT"]],
context="CG", distances=distances)

18 computeMethylationProfile

computeMethylationProfile
Compute methylation profile

Description

This function computes the low resolution profiles for the bisulfite sequencing data.

Usage

computeMethylationProfile(
methylationData,
region,
windowSize = floor(width(region)/500),
context = "CG"

)
Arguments
methylationData
the methylation data stored as a GRanges object with four metadata columns
(see methylationDatalList).
region a GRanges object with the regions where to compute the DMRs.
windowSize a numeric value indicating the size of the window in which methylation is av-
eraged.
context the context in which the DMRs are computed ("CG", "CHG" or "CHH").
Value

a GRanges object with equal sized tiles of the region. The object consists of the following metadata

sumReadsM the number of methylated reads.
sumReadsN the total number of reads.

Proportion the proportion of methylated reads.
cytosinesCount the number of cytosines in the regions

context the context ("CG", "CHG" or "CHH").

Author(s)

Nicolae Radu Zabet and Jonathan Michael Foonlan Tsang

See Also

plotMethylationProfileFromData, plotMethylationProfile, methylationDatalList

computeOverlapProfile 19

Examples

load the methylation data
data(methylationDatalList)

the region where to compute the profile
region <- GRanges(segnames = Rle("Chr3"), ranges = IRanges(1,1E6))

compute low resolution profile in 20 Kb windows
lowResProfileWTCHH <- computeMethylationProfile(methylationDatalList[["WT"]],
region, windowSize = 20000, context = "CHH")

Not run:

compute low resolution profile in 10 Kb windows

lowResProfileWTCG <- computeMethylationProfile(methylationDatalList[["WT"]],
region, windowSize = 10000, context = "CG")

lowResProfileMet13CG <- computeMethylationProfile(
methylationDataList[["met1-3"1], region,
windowSize = 10000, context = "CG")

End(Not run)

computeOverlapProfile Compute Overlaps Profile

Description

This function computes the distribution of a subset of regions (GRanges object) over a large region
(GRanges object)

Usage

computeOverlapProfile(
subRegions,
largeRegion,
windowSize = floor(width(largeRegion)/500),
binary = TRUE,

cores = 1
)
Arguments
subRegions a GRanges object with the sub regions; e.g. can be the DMRs.
largeRegion a GRanges object with the region where to compute the overlaps; e.g. a chromo-
some
windowSize The largeRegion is partitioned into equal sized tiles of width windowSize.
binary a value indicating whether to count 1 for each overlap or to compute the width

of the overlap

cores the number of cores used to compute the DMRs.

20 computePMDs

Value

a GRanges object with equal sized tiles of the regions. The object has one metadata file score which
represents: the number of subRegions overlapping with the tile, in the case of binary = TRUE, and
the width of the subRegions overlapping with the tile , in the case of binary = FALSE.

Author(s)
Nicolae Radu Zabet

See Also

plotOverlapProfile, filterDMRs, computeDMRs and mergeDMRsIteratively

Examples

load the methylation data
data(methylationDatalList)

load the DMRs in CG context
data(DMRsNoiseFilterCG)

the coordinates of the area to be plotted
largeRegion <- GRanges(seqgnames = Rle("Chr3"), ranges = IRanges(1,1E5))

compute overlaps distribution
hotspots <- computeOverlapProfile(DMRsNoiseFilterCG, largeRegion,
windowSize = 10000, binary = FALSE)

computePMDs Compute PMDs

Description

This function computes the partially methylated domains between pre-set min and max proportion
values.

Usage

computePMDs (
methylationData,
regions = NULL,
context = "CG",

method = "noise_filter"”,
windowSize = 100,
kernelFunction = "triangular”,
lambda = 0.5,

binSize = 100,
minCytosinesCount = 4,
minMethylation
maxMethylation
minGap = 200,
minSize = 50,

0.4,
0.6

’

computePMDs 21

minReadsPerCytosine = 4,
parallel = FALSE,
BPPARAM = NULL,

cores = NULL
)
Arguments

methylationData
the methylation data in condition (see ontSampleGRangesList).

regions a GRanges object with the regions where to compute the PMDs. If NULL, the
PMDs are computed genome-wide.

context the context in which the PMDs are computed ("CG", "CHG" or "CHH").

method Character string specifying the algorithm for PMD detection. If "noise_filter”,
a sliding window of size windowSize is applied with the specified kernelFunction
(and lambda for a Gaussian kernel) to smooth methylation counts before calling
and merging PMDs. If "neighbourhood”, individual partially methylated cy-
tosines are identified first and then merged into PMDs. If "bins”, the genome
is partitioned into fixed bins of size binSize, partially methylation is sorted per
bin, and significant bins are merged.

windowSize the size of the triangle base measured in nucleotides. This parameter is required

only if the selected method is "noise_filter".

kernelFunction acharacter indicating which kernel function to be used. Can be one of "uniform”,

"triangular”, "gaussian” or "epanechnicov”. This is required only if the
selected method is "noise_filter”.

lambda numeric value required for the Gaussian filter (K(x) = exp(-lambda*x*2)). This
is required only if the selected method is "noise_filter"” and the selected ker-
nel function is "gaussian”.

binSize the size of the tiling bins in nucleotides. This parameter is required only if the
selected method is "bins".

minCytosinesCount
PMDs with less cytosines in the specified context than minCytosinesCount will
be discarded.

minMethylation Numeric [0,1]; minimum mean methylation proportion.

maxMethylation Numeric [0,1]; maximum mean methylation proportion.

minGap PMDs separated by a gap of at least minGap are not merged. Note that only
PMDs where the change in methylation is in the same direction are joined.

minSize PMDs with a size smaller than minSize are discarded.

minReadsPerCytosine
PMDs with the average number of reads lower than minReadsPerCytosine are
discarded.

parallel Logical; run in parallel if TRUE.

BPPARAM A BiocParallelParam object controlling parallel execution. This value will

automatically set when parallel is TRUE, also able to set as manually.

cores Integer number of workers (must not exceed BPPARAMS$workers). This value
will automatically set as the maximum number of system workers, also able to
set as manually.

22 computePMDs

Value
the PMDs stored as a GRanges object with the following metadata columns:
context the context in which the PMDs was computed ("CG", "CHG" or "CHH").
sumReadsM the number of methylated reads.
sumReadsN the total number of reads.
proportion the proportion methylated reads filtered between minMethylation and maxMethylation.

cytosinesCount the number of cytosines in the PMDs.

Author(s)

Nicolae Radu Zabet, Jonathan Michael Foonlan Tsang and Young Jun Kim

See Also

readONTbam, filterPMDs, mergePMDsIteratively, analyseReadsInsideRegionsForConditionPMD
and PMDsNoiseFilterCG

Examples

load the ONT methylation data
data(ontSampleGRangesList)

the regions where to compute the PMDs
chri_ranges <- GRanges(segnames = Rle("chr1"), ranges = IRanges(1E6+5E5,2E6))

compute the PMDs in CG context with noise_filter method
PMDsNoiseFilterCG <- computePMDs(ontSampleGRangesList[["GM18501"]],
regions = chrl_ranges,
context = "CG",
windowSize = 100,

method = "noise_filter”,
kernelFunction = "triangular”,
lambda = 0.5,

minCytosinesCount = 4,
minMethylation = 0.4,
maxMethylation = 0.6
minGap = 200,

minSize = 50,
minReadsPerCytosine = 4,
cores = 1,

parallel = FALSE)

’

Not run:

compute the PMDs in CG context with neighbourhood method

PMDsNeighbourhoodCG <- computePMDs(ontSampleGRangesList[["GM18501"]1],
regions = chril_ranges,
context = "CG",
method = "neighbourhood”
minCytosinesCount = 4,
minMethylation = 0.4,
maxMethylation = 0.6
minGap = 200,
minSize = 50,
minReadsPerCytosine = 4,

’

compute VMDs 23

cores = 1,
parallel = FALSE)

compute the PMDs in CG context with bins method
PMDsBinsCG <- computePMDs(ontSampleGRangesList[["GM18501"]],
regions = chrl_ranges,
context = "CG",
method = "bins”,
binSize = 100,
minCytosinesCount = 4,
minMethylation = 0.4,
maxMethylation = 0.6
minGap = 200,
minSize = 50,
minReadsPerCytosine = 4,
cores = 1,
parallel = FALSE)

’

End(Not run)

computeVMDs Compute VMDs

Description

This function computes the variance methylated domains between pre-set min and max proportion
values.

Usage

computeVMDs (
methylationData,
regions = NULL,
context = "CG",
binSize = 100,
minCytosinesCount = 4,
sdCutoffMethod = "per.high”,
percentage = 0.05,
minGap = 200,
minSize = 50,
minReadsPerCytosine = 4,
parallel = FALSE,
BPPARAM = NULL,

cores = NULL
)
Arguments
methylationData
the methylation data in condition (see ontSampleGRangesList).
regions a GRanges object with the regions where to compute the VMDs. If NULL, the

VMDs are computed genome-wide.

24

compute VMDs
context the context in which the VMDs are computed ("CG"”, "CHG" or "CHH").
binSize the size of the tiling bins in nucleotides. This parameter is required only if the
selected method is "bins”.
minCytosinesCount
VMDs with less cytosines in the specified context than minCytosinesCount
will be discarded.

sdCutoffMethod Character string specifying how to determine the cutoff for filtering VMDs
based on their methylation variance (standard deviation). Available options are:

"per.high"” Selects the top percentage of regions with the highest variance
(standard deviation).

"per.low” Selects the bottom percentage of regions with the lowest variance.

"EDE.high" Uses the elbow point (inflection/knee) from the descendingly sorted
variance values to determine a data-driven high-variance cutoff. Retains re-
gions with SD above this elbow point.

"EDE.low"” Uses the elbow point from the ascendingly sorted variance values
to define a low-variance cutoff. Retains regions with SD below this point.

This allows either quantile-based filtering or automatic detection of variance
thresholds based on distribution shape.

percentage Numeric cutoff used when sdCutoffMethodis set to "per.high" or "per.low".
Represents the quantile threshold: for example, percentage = @.05 keeps the
top 5% or bottom 5% of bins based on standard deviation, depending on the
selected method.

minGap VMDs separated by a gap of at least minGap are not merged. Note that only
VMDs where the change in methylation is in the same direction are joined.

minSize VMDs with a size smaller than minSize are discarded.

minReadsPerCytosine
VMDs with the average number of reads lower than minReadsPerCytosine are
discarded.

parallel Logical; run in parallel if TRUE.

BPPARAM A BiocParallelParam object controlling parallel execution. This value will

automatically set when parallel is TRUE, also able to set as manually.

cores Integer number of workers (must not exceed BPPARAMS$workers). This value
will automatically set as the maximum number of system workers, also able to
set as manually.

Value

the VMDs stored as a GRanges object with the following metadata columns:

context the context in which the VMDs was computed ("CG", "CHG" or "CHH").
sumReadsM the number of methylated reads.

sumReadsN the total number of reads.

proportion the proportion from total methylated reads.

cytosinesCount the number of cytosines in the VMDs.

mean mean value comparing per-read proportions

sd standard deviation comparing per-read proportions

w_mean weighted mean value comparing per-read proportions

w_sd weighted standard deviation comparing per-read proportions

DMRcaller 25

Author(s)

Nicolae Radu Zabet, Jonathan Michael Foonlan Tsang and Young Jun Kim

See Also

readONTbam, filterVMDs and analyseReadsInsideRegionsForCondition

Examples

Not run:
load the ONT methylation data
data(ontSampleGRangesList)

the regions where to compute the VMDs
chri_ranges <- GRanges(segnames = Rle(”chr1"), ranges = IRanges(1E6+5E5,1E6+6E5))

compute the VMDs in CG context with bins method
VMDsBinsCG <- computeVMDs(ontSampleGRangesList[["GM18501"]1],
regions = NULL,
context "CG",
binSize = 100,
minCytosinesCount = 4,
sdCutoffMethod = "EDE.high",
percentage = 0.05,
minGap = 200,
minSize = 50,
minReadsPerCytosine = 4,
parallel = FALSE,
BPPARAM = NULL,
cores = 1)

End(Not run)

DMRcaller Call Differentially Methylated Regions (DMRs) between two samples

Description

Supports both Bisulfite Sequencing (Bismark CX reports) and Oxford Nanopore Sequencing (MM/ML
tags) for per-site methylation calling. Identifies differentially methylated regions between two sam-
ples in CG and non-CG contexts.

Details

For bisulfite data, the input is Bismark CX report files and the output is a list of DMRs stored as a
GRanges object.

* readsM — count of modified reads per site

* readsN — total same-strand coverage per site

For Nanopore data, the input is an indexed ONT BAM with calling readONTbam function in this
package and the output is a GRanges augmented with metadata columns:

e ONT_Cm — comma-delimited read-indices called “modified”

26

DMRcaller

* ONT_C — comma-delimited read-indices covering but not modified
* readsM — count of modified reads per site

* readsN — total same-strand coverage per site
The most important functions in the DMRcaller are:

readBismark reads the Bismark CX report files in a GRanges object.
readBismarkPool Reads multiple CX report files and pools them together.
saveBismark saves the methylation data stored in a GRanges object into a Bismark CX report file.

selectCytosine Enumerates cytosine positions in a BSgenome reference, optionally filtering by
methylation context (CG/CHG/CHH), chromosome and genomic region.

readONTbam Loads an Oxford Nanopore BAM (with MM/ML tags), decodes per-C modification
probabilities and counts modified vs. unmodified reads per site.

poolMethylationDatasets pools together multiple methylation datasets.
poolTwoMethylationDatasets pools together two methylation datasets.
computeMethylationDataCoverage Computes the coverage for the bisulfite sequencing data.
plotMethylationDataCoverage Plots the coverage for the bisulfite sequencing data.

computeMethylationDataSpatialCorrelation Computes the correlation between methylation
levels as a function of the distances between the Cytosines.

plotMethylationDataSpatialCorrelation Plots the correlation of methylation levels for Cy-
tosines located at a certain distance apart.

computeMethylationProfile Computes the low resolution profiles for the bisulfite sequencing
data at certain locations.

plotMethylationProfile Plots the low resolution profiles for the bisulfite sequencing data at
certain locations.

plotMethylationProfileFromData Plots the low resolution profiles for the loaded bisulfite se-
quencing data.

computeDMRs Computes the differentially methylated regions between two conditions.
filterDMRs Filters a list of (potential) differentially methylated regions.
mergeDMRsIteratively Merge DMRs iteratively.
analyseReadsInsideRegionsForCondition Analyse reads inside regions for condition.

plotLocalMethylationProfile Plots the methylation profile at one locus for the bisulfite se-
quencing data.

computeOverlapProfile Computes the distribution of a set of subregions on a large region.
plotOverlapProfile Plots the distribution of a set of subregions on a large region.

getWholeChromosomes Computes the GRanges objects with each chromosome as an element from
the methylationData.

joinReplicates Merges two GRanges objects with single reads columns. It is necessary to start
the analysis of DMRs with biological replicates.

computeDMRsReplicates Computes the differentially methylated regions between two conditions
with multiple biological replicates.

selectCytosine Enumerates cytosine positions in a BSgenome reference.

readONTbam Loads an ONT BAM (MM/ML tags), decodes per-C modification probabilities, and
counts modified vs. unmodified reads per site.

DMRcaller 27

computePMDs Partitions the genome into PMDs via three methods ("noise_filter", "neighbour-
hood", "bins").

filterPMDs Filters a set of PMDs by methylation level and read depth.

mergePMDsIteratively Merge PMDs while preserving statistical significance.

analyseReadsInsideRegionsForConditionPMD Counts reads in each PMD for one condition.

computeVMDs Computes the variance methylated domains between pre-set min and max proportion
values

filterVMRsONT Filters VMRs with ONT-specific variance tests and CI filters

computeCoMethylatedPositions Computes pairwise co-methylation between Cytosine sites within
regions.

computeCoMethylatedRegions Computes pairwise co-methylation statistics between regions.

Author(s)

Nicolae Radu Zabet <r.zabet@gmul.ac.uk>, Jonathan Michael Foonlan Tsang <jmft2@cam. ac.uk>,
Alessandro Pio Greco <apgrec@essex.ac.uk>, Young Jun Kim <qc25039@gmul.ac.uk>

Maintainer: Nicolae Radu Zabet <r.zabet@gmul. ac.uk>

See Also

See vignette("rd", package = "DMRcaller") for an overview of the package.

Examples

Not run:

load the methylation data
data(methylationDatalList)
library(BSgenome.Hsapiens.UCSC.hg38)

All cytosines in hg38:
gr_all <- selectCytosine()

Only CpG sites on chrl and chr2:
gr_chr1_2 <- selectCytosine(context="CG", chr=c("chri1”,"chr2"))

CHH sites in a specific region on chr3:
my_region <- GRanges("chr3”, IRanges(le6, 1e6 + 1e5))
gr_region <- selectCytosine(context="CHH", chr="chr3", region=my_region)

set the bam file directory
bam_path <- system.file("extdata”, "scanBamChriRandom5.bam", package="DMRcaller")

read ONTbam file (chromosome 1 only) in CG context with BSgenome.Hsapiens.UCSC.hg38
ONTSampleGRanges <- readONTbam(bamfile = bam_path, ref_gr = NULL, modif = "C+m?",
prob_thresh = 0.50,genome = BSgenome.Hsapiens.UCSC.hg38,
context = "CG", chr = "chr1”, region = NULL,
synonymous = FALSE, parallel = FALSE, BPPARAM = NULL)

plot the low resolution profile at 5 Kb resolution

par(mar=c(4, 4, 3, 1)+0.1)

plotMethylationProfileFromData(methylationDataList[["WT"1],
methylationDatalList[["met1-3"1],
conditionsNames=c("WT", "met1-3"),

windowSize = 5000, autoscale = TRUE,
context = c("CG", "CHG", "CHH"),
labels = LETTERS)

compute low resolution profile in 10 Kb windows in CG context
lowResProfileWTCG <- computeMethylationProfile(methylationDatalList[["WT"1],
region, windowSize = 10000, context = "CG")

lowResProfileMet13CG <- computeMethylationProfile(
methylationDataList[["met1-3"]1], region,
windowSize = 10000, context = "CG")

lowResProfileCG <- GRangesList("WT" = lowResProfileWTCG,
"met1-3" = lowResProfileMet13CG)

compute low resolution profile in 10 Kb windows in CHG context
lowResProfileWTCHG <- computeMethylationProfile(methylationDataList[["WT"]1],
region, windowSize = 10000, context = "CHG")

lowResProfileMet13CHG <- computeMethylationProfile(
methylationDataList[["met1-3"1], region,
windowSize = 10000, context = "CHG")

lowResProfileCHG <- GRangesList("WT" = lowResProfileWTCHG,
"met1-3" = lowResProfileMet13CHG)

plot the low resolution profile

par(mar=c(4, 4, 3, 1)+0.1)

par(mfrow=c(2,1))

plotMethylationProfile(lowResProfileCG, autoscale = FALSE,
labels = LETTERS[1],
title="CG methylation on Chromosome 3",
col=c("#D55E00", "#E69F00"), pch = c(1,0),
1ty = c(4,1))

plotMethylationProfile(lowResProfileCHG, autoscale = FALSE,
labels = LETTERS[2],
title="CHG methylation on Chromosome 3",
col=c("#0072B2", "#56B4E9"), pch = c(16,2),
1ty = c(3,2))

plot the coverage in all three contexts
plotMethylationDataCoverage(methylationDataList[["WT"]1],
methylationDatalList[["met1-3"1],
breaks = 1:15, regions = NULL,
conditionsNames = c("WT","met1-3"),
context = c("CG", "CHG", "CHH"),
proportion = TRUE, labels = LETTERS, col = NULL,
pch = ¢(1,0,16,2,15,17), 1ty = c(4,1,3,2,6,5),
contextPerRow = FALSE)

plot the correlation of methylation levels as a function of distance
plotMethylationDataSpatialCorrelation(methylationDatalList[["WT"]],
distances = ¢(1,5,10,15), regions = NULL,
conditionsNames = c("WT","met1-3"),
context = c("CG"),
labels = LETTERS, col = NULL,
pch = ¢(1,0,16,2,15,17), 1ty = c(4,1,3,2,6,5),

DMRcaller

DMRcaller

contextPerRow = FALSE)

the regions where to compute the DMRs
regions <- GRanges(segnames = Rle(”"Chr3"), ranges = IRanges(1,1E6))

compute the DMRs in CG context with noise_filter method
DMRsNoiseFilterCG <- computeDMRs(methylationDatalList[["WT"]1],
methylationDataList[["met1-3"]1], regions = regions,
context = "CG", method = "noise_filter"”,
windowSize = 100, kernelFunction = "triangular”,
test = "score”, pValueThreshold = 0.01,
minCytosinesCount = 4, minProportionDifference = 0.4,
minGap = 200, minSize = 50, minReadsPerCytosine = 4,
cores = 1)

compute the DMRs in CG context with neighbourhood method

DMRsNeighbourhoodCG <- computeDMRs(methylationDatalList[["WT"]1],
methylationDatalList[["met1-3"]], regions = regions,
context = "CG", method = "neighbourhood”,
test = "score”, pValueThreshold = 0.01,
minCytosinesCount = 4, minProportionDifference = 0.4,
minGap = 200, minSize = 50, minReadsPerCytosine = 4,
cores = 1)

compute the DMRs in CG context with bins method

DMRsBinsCG <- computeDMRs(methylationDatalList[["WT"]1],
methylationDataList[["met1-3"]1], regions = regions,
context = "CG", method = "bins”, binSize = 100,
test = "score”, pValueThreshold = .01, minCytosinesCount = 4,
minProportionDifference = 0.4, minGap = 200, minSize = 50,
minReadsPerCytosine = 4, cores = 1)

load the gene annotation data
data(GEs)

select the genes
genes <- GEs[which(GEs$type == "gene")]

the regions where to compute the DMRs
genes <- genes[overlapsAny(genes, regions)]

filter genes that are differntially methylated in the two conditions

DMRsGenesCG <- filterDMRs(methylationDatalist[["WT"]1],
methylationDatalList[["met1-3"]1], potentialDMRs = genes,
context = "CG", test = "score”, pValueThreshold = 0.01,
minCytosinesCount = 4, minProportionDifference = 0.4,
minReadsPerCytosine = 3, cores = 1)

merge the DMRs

DMRsNoiseFilterCGLarger <- mergeDMRsIteratively(DMRsNoiseFilterCG,
minGap = 500, respectSigns = TRUE,
methylationDatalList[["WT"]],
methylationDataList[["met1-3"1],
context = "CG"”, minProportionDifference=0.4,
minReadsPerCytosine = 1, pValueThreshold=0.01,
test="score"”,alternative = "two.sided")

29

30

DMRcaller

select the genes
genes <- GEs[which(GEs$type == "gene")]

the coordinates of the area to be plotted
chr3Reg <- GRanges(seqnames = Rle("Chr3"), ranges = IRanges(510000,530000))

load the DMRs in CG context
data(DMRsNoiseFilterCG)

DMRsCGlist <- list("noise filter"=DMRsNoiseFilterCG,
"neighbourhood"”=DMRsNeighbourhoodCgG,
"bins"=DMRsBinsCG,
"genes"=DMRsGenesCG)

plot the CG methylation

par(mar=c(4, 4, 3, 1)+0.1)

par(mfrow=c(1,1))

plotLocalMethylationProfile(methylationDataList[["WT"]],
methylationDataList[["met1-3"1], chr3Reg,
DMRsCGlist, c("WT", "met1-3"), GEs,
windowSize=100, main="CG methylation")

hotspotsHypo <- computeOverlapProfile(
DMRsNoiseFilterCG[(DMRsNoiseFilterCG$regionType == "loss")],
region, windowSize=2000, binary=TRUE, cores=1)

hotspotsHyper <- computeOverlapProfile(
DMRsNoiseFilterCG[(DMRsNoiseFilterCG$regionType == "gain")],
region, windowSize=2000, binary=TRUE, cores=1)

plotOverlapProfile(GRangesList("Chr3"=hotspotsHypo),
GRangesList("Chr3"=hotspotsHyper),
names=c("loss"”, "gain"), title="CG methylation")

loading synthetic data

data("syntheticDataReplicates”)

creating condition vector
condition <- C(”a"’ "a“’ ”b“, ubn)

computing DMRs using the neighbourhood method

DMRsReplicatesNeighbourhood <- computeDMRsReplicates(methylationData = methylationData,
condition = condition,
regions = NULL,
context = "CHH",
method = "neighbourhood”,
test = "betareg”,
pseudocountM = 1,
pseudocountN = 2,
pValueThreshold = 9.01,
minCytosinesCount = 4,
minProportionDifference = 0.4,
minGap = 200,
minSize = 50,
minReadsPerCytosine = 4,
cores = 1)

DMRcaller

load the ONT methylation data
data(ontSampleGRangesList)

the regions where to compute the PMDs
chri_ranges <- GRanges(segnames = Rle("chr1"), ranges = IRanges(1E6+5E5,2E6))

compute the PMDs in CG context with noise_filter method
PMDsNoiseFilterCG <- computePMDs(ontSampleGRangesList[["GM18501"]],
regions = chrl_ranges,
context = "CG",
windowSize = 100,

method = "noise_filter”,
kernelFunction = "triangular”,
lambda = 0.5,

minCytosinesCount = 4,
minMethylation = 9.4,
maxMethylation = 0.6
minGap = 200,

minSize = 50,
minReadsPerCytosine = 4,
cores = 1,

parallel = FALSE)

compute the PMDs in CG context with neighbourhood method
PMDsNeighbourhoodCG <- computePMDs(ontSampleGRangesList[["GM18501"]1],
regions = chri_ranges,
context = "CG",
method = "neighbourhood”
minCytosinesCount = 4,
minMethylation = 0.4,
maxMethylation = 0.6
minGap = 200,
minSize = 50,
minReadsPerCytosine = 4,
cores = 1,
parallel = FALSE)

’

compute the PMDs in CG context with bins method
PMDsBinsCG <- computePMDs(ontSampleGRangesList[["GM18501"1],
regions = chril_ranges,
context = "CG",
method = "bins”,
binSize = 100,
minCytosinesCount = 4,
minMethylation = 0.4,
maxMethylation = 0.6
minGap = 200,
minSize = 50,
minReadsPerCytosine = 4,
cores = 1,
parallel = FALSE)

’

load the gene annotation data
data(GEs_hg38)

select the transcript
transcript <- GEs_hg38[which(GEs_hg38%$type == "transcript”)]

31

32

DMRcaller

the regions where to compute the PMDs
regions <- GRanges(segnames = Rle("chri1"), ranges = IRanges(1E6+5E5,2E6))
transcript <- transcript[overlapsAny(transcript, regions)]

filter genes that are partially methylated in the two conditions
PMDsGenesCG <- filterPMDs(ontSampleGRangesList[["GM18501"]],
potentialPMDs = transcript,
context = "CG", minMethylation = 0.4, maxMethylation = 0.6,
minCytosinesCount = 4, minReadsPerCytosine = 3, cores = 1)

load the PMDs in CG context they were computed with minGap = 200
data(PMDsNoiseFilterCG)

merge the PMDs

PMDsNoiseFilterCGLarger <- mergePMDsIteratively(PMDsNoiseFilterCG[1:100],
minGap = 500, respectSigns = TRUE,
ontSampleGRangesList[["GM18501"]], context = "CG",
minReadsPerCytosine = 4, minMethylation = 0.4,
maxMethylation = 0.6, cores = 1)

set genomic coordinates where to compute PMDs
chri_ranges <- GRanges(segnames = Rle("chr1”), ranges = IRanges(1E6+5E5,2E6))

compute PMDs and remove gaps smaller than 200 bp
PMDsNoiseFilterCG200 <- computePMDs(ontSampleGRangesList[["GM18501"]],
regions = chrl_ranges, context = "CG", method = "noise_filter”,
windowSize = 100, kernelFunction = "triangular”,
minCytosinesCount = 1, minMethylation = 0.4,
maxMethylation = ©.6, minGap = @, minSize = 200,
minReadsPerCytosine = 1, cores = 1)
PMDsNoiseFilterCGo <- computePMDs(ontSampleGRangesList[["GM18501"1],
regions = chrl_ranges, context = "CG", method = "noise_filter”,
windowSize = 100, kernelFunction = "triangular”,
minCytosinesCount = 1, minMethylation = 0.4,
maxMethylation = 0.6, minGap = @, minSize = 0,
minReadsPerCytosine = 1, cores = 1)
PMDsNoiseFilterCGoMerged200 <- mergePMDsIteratively(PMDsNoiseFilterCGo,
minGap = 200, respectSigns = TRUE,
ontSampleGRangesList[["GM18501"]1], context = "CG",
minReadsPerCytosine = 4, minMethylation = 0.4,
maxMethylation = 0.6, cores = 1)

#check that all newley computed PMDs are identical
print(all(PMDsNoiseFilterCG20@ == PMDsNoiseFilterCGoMerged200))

#retrive the number of reads in CG context in GM185@1

PMDsNoiseFilterCGreadsCG <- analyseReadsInsideRegionsForConditionPMD(
PMDsNoiseFilterCG[1:10],
ontSampleGRangesList[["GM18501"]], context = "CG",
label = "GM18501")

load the PMD data
data(PMDsBinsCG)

compute the co-methylations with Fisher's exact test

DMRsNoiseFilterCG 33

coMetylationFisher <- computeCoMethylatedPositions(
ontSampleGRangesList[[1]],
regions = PMDsBinsCG,
minDistance = 150,
maxDistance 1000,
minCoverage = 4,
pValueThreshold = 9.01,
test = "fisher”,
parallel = FALSE)

compute the co-methylations with Permuation test
coMetylationPermutation <- computeCoMethylatedPositions(

ontSampleGRangesList[[1]],

regions = PMDsBinsCG,

minDistance = 150,

maxDistance = 1000,

minCoverage = 4,

pValueThreshold = 0.01,

test = "permutation”,

parallel = FALSE) # highly recommended to set as TRUE

select the transcript
transcript <- GEs_hg38[which(GEs_hg38%$type == "transcript”)]

the regions where to compute the PMDs
regions <- GRanges(segnames = Rle("chr1"), ranges = IRanges(1E6+5E5,2E6))
transcript <- transcriptl[overlapsAny(transcript, regions)]

filter genes that are differntially methylated in the two conditions
VMRsGenesCG <- filterVMRsONT(ontSampleGRangesList[["GM18501"]],
ontSampleGRangesList[["GM18876"]1], potentialVMRs = transcript,
context = "CG", pValueThreshold = 0.01,
minCytosinesCount = 4, minProportionDifference = 0.01,
minReadsPerCytosine = 3, ciExcludesOne = TRUE,
varRatioFc = NULL, parallel = TRUE) # parallel recommended

End(Not run)

DMRsNoiseFiltercCG The DMRs between WT and metl-3 in CG context

Description

A GRangesList object containing the DMRs between Wild Type (WT) and metl-3 mutant (metl-
3) in Arabidopsis thaliana (see methylationDatalList). The DMRs were computed on the first 1
Mbp from Chromosome 3 with noise filter method using a triangular kernel and a windowSize of
100 bp

Format

The GRanges element contain 11 metadata columns; see computeDMRs

34 extractGC

See Also

filterDMRs, computeDMRs, analyseReadsInsideRegionsForCondition and mergeDMRsIteratively

extractGC Extract GC

Description

This function extracts GC sites in the genome

Usage

extractGC(methylationData, genome, contexts = c("ALL", "CG", "CHG", "CHH"))

Arguments
methylationData
the methylation data stored as a GRanges object with four metadata columns
(see methylationDatalist).
genome a BSgenome with the DNA sequence of the organism
contexts the context in which the DMRs are computed ("ALL", "CG", "CHG" or "CHH").
Value

the a subset of methylationData consisting of all GC sites.

Author(s)

Ryan Merritt

Examples

Not run:

load the genome sequence

if(!require("BSgenome.Athaliana.TAIR.TAIR9", character.only = TRUE)){
if (!requireNamespace(”"BiocManager”, quietly=TRUE))
install.packages("BiocManager")
BiocManager::install(”"BSgenome.Athaliana.TAIR.TAIR9")

3

library(BSgenome.Athaliana.TAIR.TAIR9)

load the methylation data
data(methylationDatalList)

methylationDataWTGpCpG <- extractGC(methylationDataList[["WT"]],

BSgenome.Athaliana.TAIR.TAIR9,
IICGII)

End(Not run)

filterDMRs 35

filterDMRs Filter DMRs

Description

This function verifies whether a set of pottential DMRs (e.g. genes, transposons, CpG islands) are
differentially methylated or not.

Usage

filterDMRs(
methylationDatal,
methylationData2,
potentialDMRs,
context = "CG",
test = "fisher”,
pValueThreshold = 0.01,
minCytosinesCount = 4,
minProportionDifference = 0.4,
minReadsPerCytosine = 3,
parallel = FALSE,
BPPARAM = NULL,
cores = NULL

Arguments
methylationDatal
the methylation data in condition 1 (see methylationDatalList).
methylationData2
the methylation data in condition 2 (see methylationDatalList).

potentialDMRs a GRanges object with potential DMRs where to compute the DMRs. This can
be a a list of gene and/or transposable elements coordinates.

context the context in which the DMRs are computed ("CG", "CHG" or "CHH").

test the statistical test used to call DMRs (" fisher" for Fisher’s exact test or "score”
for Score test).

pValueThreshold

DMRs with p-values (when performing the statistical test; see test) higher or
equal than pValueThreshold are discarded. Note that we adjust the p-values
using the Benjamini and Hochberg’s method to control the false discovery rate.
minCytosinesCount
DMRs with less cytosines in the specified context than minCytosinesCount
will be discarded.
minProportionDifference
DMRs where the difference in methylation proportion between the two condi-
tions is lower than minProportionDifference are discarded.
minReadsPerCytosine
DMRs with the average number of reads lower than minReadsPerCytosine are
discarded.

36 filterPMDs

parallel Logical; run in parallel if TRUE.

BPPARAM A BiocParallelParam object controlling parallel execution. This value will
automatically set when parallel is TRUE, also able to set as manually.

cores Integer number of workers (must not exceed BPPARAM$workers). This value
will automatically set as the maximum number of system workers, also able to
set as manually.

Value

a GRanges object with 11 metadata columns that contain the DMRs; see computeDMRs.

Author(s)

Nicolae Radu Zabet

See Also

DMRsNoiseFilterCG, computeDMRs, analyseReadsInsideRegionsForCondition and mergeDMRsIteratively

Examples

load the methylation data
data(methylationDatalList)

load the gene annotation data
data(GEs)

#select the genes
genes <- GEs[which(GEs$type == "gene")]

the regions where to compute the DMRs
regions <- GRanges(segnames = Rle("Chr3"), ranges = IRanges(1,1E5))
genes <- genes[overlapsAny(genes, regions)]

filter genes that are differntially methylated in the two conditions

DMRsGenesCG <- filterDMRs(methylationDatalist[["WT"1],
methylationDataList[["met1-3"]1], potentialDMRs = genes,
context = "CG", test = "score”, pValueThreshold = 0.01,
minCytosinesCount = 4, minProportionDifference = 0.4,
minReadsPerCytosine = 3, cores = 1)

filterPMDs Filter PMDs

Description

This function verifies whether a set of potential PMDs (e.g. genes, transposons, CpG islands) are
partially methylated or not.

filterPMDs 37

Usage

filterPMDs(
methylationData,
potentialPMDs,
context = "CG",
minCytosinesCount = 4,
minMethylation = 0.4,
maxMethylation = 0.6,
minReadsPerCytosine = 3,
parallel = FALSE,
BPPARAM = NULL,

cores = NULL
)
Arguments
methylationData

the methylation data in condition (see ontSampleGRangesList).

potentialPMDs a GRanges object with potential PMDs where to compute the PMDs. This can
be a a list of gene and/or transposable elements coordinates.

context the context in which the PMDs are computed ("CG", "CHG" or "CHH").
minCytosinesCount
PMDs with less cytosines in the specified context than minCytosinesCount will
be discarded.

minMethylation Numeric [0,1]; minimum mean methylation proportion.

maxMethylation Numeric [0,1]; maximum mean methylation proportion.

minReadsPerCytosine
PMDs with the average number of reads lower than minReadsPerCytosine are
discarded.

parallel Logical; run in parallel if TRUE.

BPPARAM A BiocParallelParam object controlling parallel execution. This value will

automatically set when parallel is TRUE, also able to set as manually.

cores Integer number of workers (must not exceed BPPARAMS$workers). This value
will automatically set as the maximum number of system workers, also able to
set as manually.

Value

a GRanges object with 5 metadata columns that contain the PMDs; see computePMDs.

Author(s)

Nicolae Radu Zabet and Young Jun Kim

See Also

PMDsNoiseFilterCG, computePMDs, analyseReadsInsideRegionsForCondition and mergePMDsIteratively

Examples

load the ONT methylation data
data(ontSampleGRangeslList)

load the gene annotation data
data(GEs_hg38)

select the transcript
transcript <- GEs_hg38[which(GEs_hg38%$type == "transcript”)]

the regions where to compute the PMDs
regions <- GRanges(segnames = Rle("chri1"”), ranges = IRanges(1E6+5E5,2E6))
transcript <- transcript[overlapsAny(transcript, regions)]

filter genes that are partially methylated in the two conditions
PMDsGenesCG <- filterPMDs(ontSampleGRangesList[["GM18501"]],

filterVMDs

potentialPMDs = transcript,
context = "CG", minMethylation = 0.4, maxMethylation = 0.6,
minCytosinesCount = 4, minReadsPerCytosine = 3, cores = 1)

filterVMDs

Filter VMDs

Description

This function verifies whether a set of potential VMDs (e.g. genes, transposons, CpG islands) are
variance methylated or not.

Usage

filterVMDs(
methylationDa
potentialVMDs
context = "CG
minCytosinesC
minReadsPerCy
sdCutoffMetho
percentage =

ta,
ount = 4,
tosine = 3,

d = "per.high”,
0.05,

parallel = FALSE,

BPPARAM = NUL
cores = NULL

Arguments
methylationData

potentialVMDs

context

L,

the methylation data in condition (see ontSampleGRangesList).

a GRanges object with potential VMDs where to compute the VMDs. This can
be a a list of gene and/or transposable elements coordinates.

the context in which the VMDs are computed ("CG", "CHG" or "CHH").

filterVMDs

39

minCytosinesCount

VMDs with less cytosines in the specified context than minCytosinesCount
will be discarded.

minReadsPerCytosine

sdCutoffMethod

percentage

parallel
BPPARAM

cores

Value

VMDs with the average number of reads lower than minReadsPerCytosine are
discarded.

Character string specifying how to determine the cutoff for filtering VMDs
based on their methylation variance (weighted standard deviation). Available
options are:

"per.high" Selects the top percentage of regions with the highest variance
(standard deviation).

"per.low” Selects the bottom percentage of regions with the lowest variance.

"EDE.high" Uses the elbow point (inflection/knee) from the descendingly sorted
variance values to determine a data-driven high-variance cutoff. Retains re-
gions with SD above this elbow point.

"EDE.low" Uses the elbow point from the ascendingly sorted variance values
to define a low-variance cutoff. Retains regions with SD below this point.

This allows either quantile-based filtering or automatic detection of variance
thresholds based on distribution shape.

Numeric cutoff used when sdCutoffMethodis setto "per.high" or "per.low".
Represents the quantile threshold: for example, percentage = @.05 keeps the
top 5% or bottom 5% of bins based on weighted standard deviation, depending
on the selected method.

Logical; run in parallel if TRUE.

A BiocParallelParam object controlling parallel execution. This value will
automatically set when parallel is TRUE, also able to set as manually.

Integer number of workers (must not exceed BPPARAM$workers). This value
will automatically set as the maximum number of system workers, also able to
set as manually.

a GRanges object with 9 metadata columns that contain the VMDs; see computeVMDs.

Author(s)

Nicolae Radu Zabet and Young Jun Kim

See Also

computeVMDs and analyseReadsInsideRegionsForCondition

Examples

load the ONT methylation data
data(ontSampleGRangesList)
load the gene annotation data

data(GEs_hg38)

select the transcript
transcript <- GEs_hg38[which(GEs_hg38%type == "transcript”)]

40 filterVMRsONT

the regions where to compute the VMDs
regions <- GRanges(segnames = Rle("chr1"), ranges = IRanges(1E6+5E5,2E6))
transcript <- transcriptl[overlapsAny(transcript, regions)]

filter genes that are variance methylated in the two conditions

VMDsGenesCG <- filterVMDs(ontSampleGRangesList[["GM18501"]1],
potentialVMDs = transcript,
context = "CG", sdCutoffMethod = "per.high", percentage = 0.05,
minCytosinesCount = 4, minReadsPerCytosine = 3, cores = 1)

filterVMRsSONT Filter VMRs for ONT Data

Description

Filter VMRs with ONT-specific variance tests and CI filters

Usage

filterVMRsONT(
methylationDatal,
methylationData2,
potentialVMRs,
context = "CG",
pValueThreshold = 0.01,
minCytosinesCount = 4,
minProportionDifference = 0.4,
minReadsPerCytosine = 3,
ciExcludesOne = TRUE,
varRatioFc = NULL,
parallel = FALSE,
BPPARAM = NULL,
cores = NULL

Arguments

methylationDatal

A GRanges of methylation calls for condition 1 (see ontSampleGRangesList).
methylationData2

A GRanges of methylation calls for condition 2.

potentialVMRs A GRanges of candidate VMR regions (genes, TEs, CpG islands, etc.).

context Character string specifying cytosine context ("CG", "CHG", or "CHH").
pValueThreshold
Numeric p-value threshold (O<value<1) for both Wilcoxon and F-tests after FDR
adjustment.
minCytosinesCount

Integer minimum number of cytosines per region.
minProportionDifference
Numeric minimum methylation difference between conditions (O<value<1).

filterVMRsONT 41

minReadsPerCytosine
Integer minimum average coverage per cytosine.

ciExcludesOne Logical; if TRUE, filter out regions whose F-test 95% confidence interval spans
1 (i.e., no significant variance change).

varRatioFc Optional; numeric fold-change cutoff on variance ratio (e.g., 2 for twofold vari-
ance difference). Regions with variance ratio outside [1/varRatioFc, varRatioFc]
are kept when set.

parallel Logical; run in parallel if TRUE.

BPPARAM A BiocParallelParam object controlling parallel execution. This value will
automatically set when parallel is TRUE, also able to set as manually.

cores Integer number of workers (must not exceed BPPARAM$workers). This value
will automatically set as the maximum number of system workers, also able to
set as manually.

Details

This function verifies whether a set of potential VMRS (e.g., genes, transposons, CpG islands) are
differentially methylated or not in ONT data, adding per-read Wilcoxon and F-tests on per-site
proportions, confidence interval filtering, and optional variance-fold change cutoffs.

For each potential VMR, per-site methylation proportions are aggregated per read, then a two-
sample Wilcoxon rank-sum test compares means (wilcox_pvalue), and an F-test compares vari-
ances (f_pvalue). You may further filter by requiring the 95 apply a fold-change cutoff on the
variance ratio (varRatioFc).

Value
A GRanges with the same ranges as regions, plus these metadata:

sumReadsM1 total methylated reads in condition 1

sumReadsN1 total reads in condition 1

proportionl methylation proportion (sumReadsM1/sumReadsN1)
variancel variance of per-read methylation proportions in condition 1
sumReadsM2 total methylated reads in condition 2

sumReadsN2 total reads in condition 2

proportion2 methylation proportion (sumReadsM2/sumReadsN2)
variance2 variance of per-read methylation proportions in condition 2
cytosinesCount number of cytosines observed in each region

wilcox_pvalue FDR adjusted p-value from Wilcoxon rank-sum test comparing per-read propor-
tions

f pvalue FDR adjusted p-value from F-test comparing variances of per-read proportions
var_ratio Ratio of variances (variancel / variance?2)

wilcox_result Full htest object returned by wilcox. test

F_test_result Full htest object returned by var.test

direction a number indicating whether the region lost (-1) or gain (+1) methylation in condition 2
compared to condition 1.

regionType a string indicating whether the region lost ("1oss") or gained ("gain") methylation in
condition 2 compared to condition 1.

is_DMR logical; TRUE if region passed the wilcox.test
is_VMR logical; TRUE if region passed the var.test

42 GEs

Author(s)

Nicolae Radu Zabet and Young Jun Kim

See Also

readONTbam, computePMDs, computeCoMethylatedPositions, ontSampleGRangesList, GEs_hg38

Examples

Not run:

load the ONT methylation data
data(ontSampleGRangeslList)

load the gene annotation data
data(GEs_hg38)

select the transcript
transcript <- GEs_hg38[which(GEs_hg38%type == "transcript”)]

the regions where to compute the PMDs
regions <- GRanges(segnames = Rle("chr1"), ranges = IRanges(1E6+5E5,2E6))
transcript <- transcriptl[overlapsAny(transcript, regions)]

filter genes that are differntially methylated in the two conditions
VMRsGenesCG <- filterVMRsONT(ontSampleGRangesList[["GM18501"]],
ontSampleGRangesList[["GM18876"]1], potentialVMRs = transcript,
context = "CG", pValueThreshold = 0.01,
minCytosinesCount = 4, minProportionDifference = 0.01,
minReadsPerCytosine = 3, ciExcludesOne = TRUE,
varRatioFc = NULL, parallel = TRUE) # parallel recommended

End(Not run)

GEs The genetic elements data

Description

A GRanges object containing the annotation of the Arabidopsis thaliana

Format

A GRanges object

Source

The object was created by calling import.gff3 function from rtracklayer package for ftp://
ftp.arabidopsis.org/Maps/gbrowse_data/TAIR10/TAIR10_GFF3_genes_transposons.gff

ftp://ftp.arabidopsis.org/Maps/gbrowse_data/TAIR10/TAIR10_GFF3_genes_transposons.gff
ftp://ftp.arabidopsis.org/Maps/gbrowse_data/TAIR10/TAIR10_GFF3_genes_transposons.gff

GEs_hg38 43

GEs_hg38 The genetic elements data of GRCh38 Genome Reference

Description

A GRanges object containing the annotation of the Homo sapiens (hg38)

Format

A GRanges object

Source

The object was created by loading the gtf file from https://hgdownload.soe.ucsc.edu/goldenPath/
hg38/bigZips/genes/hg38.refGene.gtf.gz. and concatenated by range in 1.5 ~ 2 Mbp from
Chromosome 1

getWholeChromosomes Get whole chromosomes from methylation data

Description

Returns a GRanges object spanning from the first cytocine until the last one on each chromosome

Usage

getWholeChromosomes(methylationData)

Arguments
methylationData
the methylation data stored as a GRanges object with four metadata columns
(see methylationDatalist).
Value

a GRanges object will all chromosomes.

Author(s)
Nicolae Radu Zabet

Examples

load the methylation data
data(methylationDatalist)

get all chromosomes
chromosomes <- getWholeChromosomes(methylationDatalList[["WT"]])

https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/genes/hg38.refGene.gtf.gz
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/genes/hg38.refGene.gtf.gz

44 joinReplicates

joinReplicates Joins together two GRange objects in a single containing all the repli-
cates

Description

This function joins together data that come from biological replicates to perform analysis

Usage

joinReplicates(methylationDatal, methylationData2, usecomplete = FALSE)

Arguments
methylationDatal
the methylation data stored as a GRanges object with four metadata columns
(see methylationDatalist).
methylationData2
the methylation data stored as a GRanges object with four metadata columns
(see methylationDatalist).
usecomplete Boolean, determine wheter, when the two dataset differ for number of cytosines,
if the smaller dataset should be added with zero reads to match the bigger
dataset.
Value

returns a GRanges object containing multiple metadata columns with the reads from each object
passed as parameter

Author(s)

Alessandro Pio Greco and Nicolae Radu Zabet

Examples

load the methylation data
data(methylationDatalist)

Joins the wildtype and the mutant in a single object
joined_data <- joinReplicates(methylationDataList[["WT"]],
methylationDatalList[["met1-3"1], FALSE)

mergeDMRslteratively 45

mergeDMRsIteratively Merge DMRs iteratively

Description

This function takes a list of DMRs and attempts to merge DMRs while keeping the new DMRs
statistically significant.

Usage

mergeDMRsIteratively(
DMRs,
minGap,
respectSigns = TRUE,
methylationDatal,
methylationData2,
context = "CG",
minProportionDifference = 0.4,
minReadsPerCytosine = 4,
pValueThreshold = 9.01,
test = "fisher”,
alternative = "two.sided",
parallel = FALSE,
BPPARAM = NULL,

cores = NULL
)
Arguments
DMRs the list of DMRs as a GRanges object; e.g. see computeDMRs
minGap DMRs separated by a gap of at least minGap are not merged.
respectSigns logical value indicating whether to respect the sign when joining DMRs.
methylationDatal
the methylation data in condition 1 (see methylationDatalList).
methylationData2
the methylation data in condition 2 (see methylationDatalList).
context the context in which the DMRs are computed ("CG", "CHG" or "CHH").

minProportionDifference
two adjacent DMRs are merged only if the difference in methylation proportion
of the new DMR is higher than minProportionDifference.
minReadsPerCytosine
two adjacent DMRs are merged only if the number of reads per cytosine of the
new DMR is higher than minReadsPerCytosine.
pValueThreshold

two adjacent DMRs are merged only if the p-value of the new DMR (see test
below) is lower than pValueThreshold. Note that we adjust the p-values using
the Benjamini and Hochberg’s method to control the false discovery rate.

test the statistical test used to call DMRs (" fisher” for Fisher’s exact test or "score”
for Score test).

46 mergeDMRslteratively

alternative indicates the alternative hypothesis and must be one of "two.sided”, "greater”
or "less”.

parallel Logical; run in parallel if TRUE.

BPPARAM A BiocParallelParam object controlling parallel execution. This value will

automatically set when parallel is TRUE, also able to set as manually.

cores Integer number of workers (must not exceed BPPARAMS$workers). This value
will automatically set as the maximum number of system workers, also able to
set as manually.

Value

the reduced list of DMRs as a GRanges object; e.g. see computeDMRs

Author(s)
Nicolae Radu Zabet

See Also

filterDMRs, computeDMRs, analyseReadsInsideRegionsForCondition and DMRsNoiseFilterCG

Examples

load the methylation data
data(methylationDatalist)

#load the DMRs in CG context they were computed with minGap = 200
data(DMRsNoiseFilterCG)

#merge the DMRs

DMRsNoiseFilterCGLarger <- mergeDMRsIteratively(DMRsNoiseFilterCG[1:100],
minGap = 500, respectSigns = TRUE,
methylationDatalList[["WT"]],
methylationDataList[["met1-3"11,
context = "CG"”, minProportionDifference=0.4,
minReadsPerCytosine = 1, pValueThreshold=0.01,
test="score"”,alternative = "two.sided")

Not run:
#set genomic coordinates where to compute DMRs
regions <- GRanges(segnames = Rle("Chr3"), ranges = IRanges(1,1E5))

compute DMRs and remove gaps smaller than 200 bp

DMRsNoiseFilterCG200 <- computeDMRs(methylationDatalList[["WT"]1],
methylationDatalList[["met1-3"]], regions = regions,
context = "CG", method = "noise_filter”,
windowSize = 100, kernelFunction = "triangular”,
test = "score”, pValueThreshold = 0.01,
minCytosinesCount = 1, minProportionDifference = 0.4,
minGap = 200, minSize = @, minReadsPerCytosine = 1,
cores = 1)

DMRsNoiseFilterCG@O <- computeDMRs(methylationDatalList[["WT"1],

mergePMDslteratively

methylationDataList[["met1-3"]], regions = regions,

context = "CG", method = "noise_filter”,
windowSize = 100, kernelFunction = "triangular”,
test = "score”, pValueThreshold = 0.01,

minCytosinesCount = 1, minProportionDifference =
minGap = @, minSize = @, minReadsPerCytosine = 1,

cores
DMRsNoiseFilterCGoMerged20@ <- mergeDMRsIteratively(DMRsNoiseFilterCGo,

0.4,
:‘])

minGap = 200, respectSigns = TRUE,
methylationDataList[["WT"]],
methylationDataList[["met1-3"1],

context = "CG", minProportionDifference=0.4,
minReadsPerCytosine = 1, pValueThreshold=0.01,
test="score"”,alternative = "two.sided")

#check that all newley computed DMRs are identical
print(all(DMRsNoiseFilterCG20@ == DMRsNoiseFilterCGOMerged200))

End(Not run)

47

mergePMDsIteratively Merge PMDs iteratively

Description

This function takes a list of PMDs and attempts to merge PMDs while keeping the new PMDs

statistically significant.

Usage
mergePMDsIteratively(
PMDs,
minGap = 200,
respectSigns = TRUE,
methylationData,
context = "CG",
minReadsPerCytosine = 4,
minMethylation = 0.4,
maxMethylation = 0.6,
parallel = FALSE,
BPPARAM = NULL,
cores = NULL
)
Arguments
PMDs the list of PMDs as a GRanges object; e.g. see computePMDs
minGap PMDs separated by a gap of at least minGap are not merged.

respectSigns logical value indicating whether to respect the sign when joining PMDs.

48 mergePMDslteratively

methylationData

the methylation data in GRanges (see ontSampleGRangesList).
context the context in which the PMDs are computed ("CG"”, "CHG" or "CHH").
minReadsPerCytosine

two adjacent PMDs are merged only if the number of reads per cytosine of the
new DMR is higher than minReadsPerCytosine.

minMethylation Numeric [0,1]; minimum mean methylation proportion.
maxMethylation Numeric [0,1]; maximum mean methylation proportion.
parallel Logical; run in parallel if TRUE.

BPPARAM A BiocParallelParam object controlling parallel execution. This value will
automatically set when parallel is TRUE, also able to set as manually.

cores Integer number of workers (must not exceed BPPARAMS$workers). This value
will automatically set as the maximum number of system workers, also able to
set as manually.

Value

the reduced list of PMDs as a GRanges object; e.g. see computePMDs

Author(s)
Nicolae Radu Zabet and Young Jun Kim

See Also

filterPMDs, computePMDs, analyseReadsInsideRegionsForCondition and PMDsNoiseFilterCG

Examples

load the ONT methylation data
data(ontSampleGRangeslList)

load the PMDs in CG context they were computed with minGap = 200
data(PMDsNoiseFilterCG)

merge the PMDs

PMDsNoiseFilterCGLarger <- mergePMDsIteratively(PMDsNoiseFilterCG[1:100],
minGap = 500, respectSigns = TRUE,
ontSampleGRangesList[["GM18501"]], context = "CG",
minReadsPerCytosine = 4, minMethylation = 0.4,
maxMethylation = 0.6, cores = 1)

Not run:
set genomic coordinates where to compute PMDs
chri_ranges <- GRanges(segnames = Rle("chr1”), ranges = IRanges(1E6+5E5,2E6))

compute PMDs and remove gaps smaller than 200 bp

PMDsNoiseFilterCG200 <- computePMDs(ontSampleGRangesList[["GM18501"]],
regions = chrl_ranges, context = "CG", method = "noise_filter”,
windowSize = 100, kernelFunction = "triangular”,
minCytosinesCount = 1, minMethylation = 0.4,
maxMethylation = 0.6, minGap = @, minSize = 200,
minReadsPerCytosine = 1, cores = 1)

methylationDataList 49

PMDsNoiseFilterCGO <- computePMDs(ontSampleGRangesList[["GM18501"]],
regions = chrl_ranges, context = "CG", method = "noise_filter”,
windowSize = 100, kernelFunction = "triangular”,
minCytosinesCount = 1, minMethylation = 0.4,
maxMethylation = 0.6, minGap = @, minSize = 0,
minReadsPerCytosine = 1, cores = 1)
PMDsNoiseFilterCGoMerged200 <- mergePMDsIteratively(PMDsNoiseFilterCGo,
minGap = 200, respectSigns = TRUE,
ontSampleGRangesList[["GM18501"]1], context = "CG",
minReadsPerCytosine = 4, minMethylation = 0.4,
maxMethylation = 0.6, cores = 1)

#check that all newley computed PMDs are identical
print(all(PMDsNoiseFilterCG20@ == PMDsNoiseFilterCGOMerged200))

End(Not run)

methylationDatalist The methylation data list

Description

A GRangesList object containing the methylation data at each cytosine location in the genome in
Wild Type (WT) and metl-3 mutant (metl-3) in Arabidopsis thaliana. The data only contains the
first 1 Mbp from Chromosome 3.

Format

The GRanges elements contain four metadata columns

context the context in which the DMRs are computed ("CG", "CHG" or "CHH").
readsM the number of methylated reads.
readsN the total number of reads.

trinucleotide_context the specific context of the cytosine (H is replaced by the actual nucleotide).

Source

Each element was created by by calling readBismark function on the CX report files generated
by Bismark http://www.bioinformatics.babraham.ac.uk/projects/bismark/ for http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM980986 dataset in the case of Wild Type
(WT) and http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM981032 dataset in the
case of met1-3 mutant (met1-3).

http://www.bioinformatics.babraham.ac.uk/projects/bismark/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM980986
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM980986
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM981032

50 ont_gr GM18870_chrl_PMD_bins_1k

ontSampleGRangesList The ONT methylation data list

Description

A GRangesList object containing the methylation data at each cytosine location in the genome in
GM18501 and GM18876 B-Lymphocyte cell lines in Homo sapiens. The data only contains the 1.5
~ 2 Mbp from Chromosome 1.

Format
The GRanges elements contain six metadata columns

context the context in which the DMRs are computed "CG".

trinucleotide_context the specific context of the cytosine (H is replaced by the actual nucleotide).
ONT_Cm comma-delimited read-indices called modified

ONT_C comma-delimited read-indices covering but unmodified

readsM the number of methylated reads.

readsN the total number of reads.

Source

Each element was created by calling bam files with readONTbam function which in DMRcaller pack-
age. The sample pod5 files were from the nanopore dataset from 1000 genome project https://
pmc.ncbi.nlm.nih.gov/articles/PMC10942501/. https://s3.amazonaws.com/1000g-ont/
index.html?prefix=pod5_data/GM18501_R9/ .pod5 files in the case of GM 18501 and https://
s3.amazonaws.com/1000g-ont/index.html?prefix=pod5_data/GM18876_R9/ .pod5 files in the
case of GM18876 cell line. For base-calling and alignment, run dorado, ver.@.9.6 https:
//github.com/nanoporetech/dorado?tab=readme-ov-file#dna-models to generate the bam
files with dna_r10.4.1_e8.2_400bps_hac@v5. 2.0 as basecalling model.

ont_gr_GM18870_chr1_PMD_bins_1k
Partially Methilated Domains example

Description

Partially methylated domains called on chrl in GM 18870 cells called in 1Kb bins with computePMDs
function.

Format
The GRanges elements contain seven metadata columns:

context the context in which the PMDs was computed ("CG", "CHG" or "CHH").

sumReadsM the number of methylated reads.

sumReadsN the total number of reads.

proportion the proportion methylated reads filtered between minMethylation and maxMethylation.

cytosinesCount the number of cytosines in the PMDs.

https://pmc.ncbi.nlm.nih.gov/articles/PMC10942501/
https://pmc.ncbi.nlm.nih.gov/articles/PMC10942501/
https://s3.amazonaws.com/1000g-ont/index.html?prefix=pod5_data/GM18501_R9/
https://s3.amazonaws.com/1000g-ont/index.html?prefix=pod5_data/GM18501_R9/
https://s3.amazonaws.com/1000g-ont/index.html?prefix=pod5_data/GM18876_R9/
https://s3.amazonaws.com/1000g-ont/index.html?prefix=pod5_data/GM18876_R9/
https://github.com/nanoporetech/dorado?tab=readme-ov-file#dna-models
https://github.com/nanoporetech/dorado?tab=readme-ov-file#dna-models

ont_gr GM18870_chrl_sorted_bins_1k 51

Source

data from https://genome.cshlp.org/content/34/11/2061.

ont_gr_GM18870_chri1_sorted_bins_1k
The ONT methylation data example

Description

A GRanges object containing cytosine sites, annotated with per-site ONT methylation calls

Format

The GRanges elements contain four additional metadata columns:
ONT_Cm comma-delimited read-indices called modified
ONT_C comma-delimited read-indices covering but unmodified
readsM integer count of modified reads per site

readsN integer count of same-strand reads covering each site

Source

data from https://genome.cshlp.org/content/34/11/2061.

plotLocalMethylationProfile
Plot local methylation profile

Description

This function plots the methylation profile at one locus for the bisulfite sequencing data.The points
on the graph represent methylation proportion of individual cytosines, their colour which sample
they belong to and the intesity of the the colour how many reads that particular cytosine had. This
means that darker colors indicate stronger evidence that the corresponding cytosine has the corre-
sponding methylation proportion, while lighter colors indicate a weaker evidence. The solid lines
represent the smoothed profiles and the intensity of the line the coverage at the corresponding posi-
tion (darker colors indicate more reads while lighter ones less reads). The boxes on top represent the
DMRs, where a filled box will represent a DMR which gained methylation while a box with a pat-
tern represent a DMR that lost methylation. The DMRs need to have a metadafield "regionType”
which can be either "gain” (where there is more methylation in condition 2 compared to condition
1) or "loss" (where there is less methylation in condition 2 compared to condition 1). In case this
metadafield is missing all DMRs are drawn using a filled box. Finally, we also allow annotation of
the DNA sequence. We represent by a black boxes all the exons, which are joined by a horizontal
black line, thus, marking the full body of the gene. With grey boxes we mark the transposable
elements. Both for genes and transposable elements we plot them over a mid line if they are on the
positive strand and under the mid line if they are on the negative strand.

52

Usage

plotLocalMethylationProfile(

methylationDatal,
methylationData2,
region,

DMRs = NULL,

conditionsNames = NULL,

gff = NULL,
windowSize = 150,
context = "CG",
labels = NULL,

col = NULL,

main = "",
plotMeanLines = TRUE,
plotPoints = TRUE

Arguments

methylationDatal
the methylation data in condition 1 (see methylationDatalList).

methylationData2
the methylation data in condition 2 (see methylationDatalList).

region a GRanges object with the region where to plot the high resolution profile.

DMRs a GRangesList object or a list with the list of DMRs (see computeDMRs or
filterDMRs.

conditionsNames
the names of the two conditions. This will be used to plot the legend.

gff a GRanges object with all elements usually imported from a GFF3 file. The
off file needs to have an metafield "type"”. Only the elements of type "gene”,
"exon" and "transposable_element” are plotted. Genes are represented as
horizontal black lines, exons as a black rectangle and transposable elements as
a grey rectangle. The elements are plotted on the corresponding strand (+ or -).

windowSize the size of the triangle base used to smooth the average methylation profile.

context the context in which the DMRs are computed ("CG", "CHG" or "CHH").

labels a vector of character used to add a subfigure characters to the plot. If NULL
nothing is added.

col a character vector with the colors. It needs to contain a minimum of 4 1length(DMRs)
colors. If not or if NULL, the defalut colors will be used.

main a character with the title of the plot

plotLocalMethylationProfile

plotMeanLines a logical value indicating whether to plot the mean lines or not.

plotPoints a logical value indicating whether to plot the points or not.

Value

Invisibly returns NULL

Author(s)

Nicolae Radu Zabet

plotMethylationDataCoverage

Examples

load the methylation data
data(methylationDatalList)

load the gene annotation data
data(GEs)

#select the genes
genes <- GEs[which(GEs$type == "gene")]

the coordinates of the area to be plotted
chr3Reg <- GRanges(seqgnames = Rle("Chr3"), ranges = IRanges(510000,530000))

load the DMRs in CG context
data(DMRsNoiseFilterCG)

DMRsCGlist <- list("noise filter"”=DMRsNoiseFilterCG)

plot the CG methylation

par(mar=c(4, 4, 3, 1)+0.1)

par(mfrow=c(1,1))

plotLocalMethylationProfile(methylationDataList[["WT"]],
methylationDatalList[["met1-3"]], chr3Reg,
DMRsCGlist, c("WT", "met1-3"), GEs,
windowSize=100, main="CG methylation")

53

plotMethylationDataCoverage
Plot methylation data coverage

Description

This function plots the coverage for the bisulfite sequencing data.

Usage
plotMethylationDataCoverage(
methylationDatal,
methylationData2 = NULL,
breaks,

regions = NULL,
conditionsNames = NULL,
context = "CG",

proportion = TRUE,

labels = NULL,

col = NULL,

pch = c(1, 0, 16, 2, 15, 17),
1ty = c(4, 1, 3, 2, 6, 5),
contextPerRow = FALSE

54 plotMethylationDataCoverage
Arguments
methylationDatal
the methylation data in condition 1 (see methylationDatalList).
methylationData2
the methylation data in condition 2 (see methylationDatalList). This is op-
tional.
breaks a numeric vector specifing the different values for the thresholds when comput-
ing the coverage.
regions a GRanges object with the regions where to compute the coverage. If NULL, the
coverage is computed genome-wide.
conditionsNames
a vector of character with the names of the conditions for methylationData1l
and methylationData2.
context the context in which the DMRs are computed ("CG", "CHG" or "CHH").
proportion a logical value indicating whether proportion or counts will be plotted.
labels a vector of character used to add a subfigure character to the plot. If NULL
nothing is added.
col a character vector with the colors. It needs to contain a minimum of 2 colors
per condition. If not or if NULL, the defalut colors will be used.
pch the R symbols used to plot the data. It needs to contain a minimum of 2 symbols
per condition. If not or if NULL, the defalut symbols will be used.
1ty the line types used to plot the data. It needs to contain a minimum of 2 line types
per condition. If not or if NULL, the defalut line types will be used.
contextPerRow a logical value indicating if the each row represents an individual context. If
FALSE, each column will represent an individual context.
Details

This function plots the proportion of cytosines in a specific context that have at least a certain
number of reads (x-axis)

Value

Invisibly returns NULL

Author(s)

Nicolae Radu Zabet

See Also

computeMethylationDataCoverage, methylationDatalist

Examples

load the methylation data
data(methylationDatalist)

plot the coverage in CG context
par(mar=c(4, 4, 3, 1)+0.1)

plotMethylationDataSpatialCorrelation

plotMethylationDataCoverage(methylationDataList[["WT"]],

methylationDatalList[["met1-3"1],

breaks = ¢(1,5,10,15), regions

conditionsNames = c("WT","met1-3"),

context = c("CG"), proportion
labels = LETTERS, col = NULL,

pch = ¢(1,0,16,2,15,17), 1ty = c(4,1,3,2,6,5),

contextPerRow = FALSE)

Not run:
plot the coverage in all three contexts
plotMethylationDataCoverage(methylationDataList[["WT"1],

methylationDataList[["met1-3"1],
breaks = 1:15, regions = NULL,
conditionsNames = c("WT", "met1-3"),
context = c("CG", "CHG", "CHH"),

proportion = TRUE, labels = LETTERS, co
pch = c¢(1,0,16,2,15,17), 1ty = c(4,1,3,

contextPerRow = FALSE)

End(Not run)

55

plotMethylationDataSpatialCorrelation

Plot methylation data spatial correlation

Description

This function plots the correlation of methylation levels for Cytosines located at a certain distance

apart.
Usage
plotMethylationDataSpatialCorrelation(
methylationDatal,
methylationData2 = NULL,
distances,

regions = NULL,
conditionsNames = NULL,
context = "CG",

labels = NULL,

col = NULL,

pch = c(1, 0, 16, 2, 15, 17),
1ty = c(4, 1, 3, 2, 6, 5),
contextPerRow = FALSE,

log = ""

Arguments

methylationDatal

the methylation data in condition 1 (see methylationDatalList).

56

plotMethylationDataSpatialCorrelation

methylationData2

distances

regions

conditionsNames

context
labels

col

pch

1ty

contextPerRow

log

Details

the methylation data in condition 2 (see methylationDatalList). This is op-
tional.

a numeric vector specifing the different values for the distances when comput-
ing the correlation.

a GRanges object with the regions where to compute the correlation. If NULL,
the coverage is computed genome-wide.

a vector of character with the names of the conditions for methylationData1l
and methylationData2.

the context in which the DMRs are computed ("CG", "CHG" or "CHH").

a vector of character used to add a subfigure character to the plot. If NULL
nothing is added.

a character vector with the colors. It needs to contain a minimum of 2 colors
per condition. If not or if NULL, the defalut colors will be used.

the R symbols used to plot the data. It needs to contain a minimum of 2 symbols
per condition. If not or if NULL, the defalut symbols will be used.

the line types used to plot the data. It needs to contain a minimum of 2 line types
per condition. If not or if NULL, the defalut line types will be used.

a logical value indicating if the each row represents an individual context. If
FALSE, each column will represent an individual context.

a character indicating if any of the axes will be displayed on log scale. This
argument will be passed to plot function.

This function plots the proportion of cytosines in a specific context that have at least a certain
number of reads (x-axis)

Value

Invisibly returns NULL

Author(s)

Nicolae Radu Zabet

See Also

computeMethylationDataSpatialCorrelation, methylationDatalist

Examples

load the methylation data
data(methylationDatalist)

plot the spatial correlation in CG context
par(mar=c(4, 4, 3, 1)+0.1)
plotMethylationDataSpatialCorrelation(methylationDataList[["WT"]1],

methylationDatalList[["met1-3"1],
distances = c¢(1,5,10,15), regions = NULL,

plotMethylationProfile 57

conditionsNames = c("WT","met1-3"),
context = c("CG"),
labels = LETTERS, col = NULL,
pch = c¢(1,0,16,2,15,17), 1ty = c(4,1,3,2,6,5),
contextPerRow = FALSE)
Not run:
plot the spatial correlation in all three contexts
plotMethylationDataSpatialCorrelation(methylationDatalList[["WT"]],
methylationDataList[["met1-3"11,
distances = c¢(1,5,10,15,20,50,100,150,200,500,1000),
regions = NULL, conditionsNames = c("WT","met1-3"),
context = c("CG", "CHG", "CHH"),
labels = LETTERS, col = NULL,
pch = ¢(1,0,16,2,15,17), lty = c(4,1,3,2,6,5),
contextPerRow = FALSE, log="x")

End(Not run)

plotMethylationProfile
Plot Methylation Profile

Description

This function plots the low resolution profiles for the bisulfite sequencing data.

Usage

plotMethylationProfile(
methylationProfiles,
autoscale = FALSE,
labels = NULL,
title = "",
col = NULL,
pch = c(1, o, 16, 2, 15, 17),
1ty = c(4, 1, 3, 2, 6, 5)

)
Arguments

methylationProfiles
a GRangesList object. Each GRanges object in the list is generated by calling
the function computeMethylationProfile.

autoscale a logical value indicating whether the values are autoscalled for each context
or not.

labels a vector of character used to add a subfigure characters to the plot. If NULL
nothing is added.

title the plot title.

col a character vector with the colours. It needs to contain a minimum of 2 colours
per context. If not or if NULL, the defalut colours will be used.

pch the R symbols used to plot the data.

1ty the line types used to plot the data.

58 plotMethylationProfile

Value

Invisibly returns NULL

Author(s)
Nicolae Radu Zabet

See Also

plotMethylationProfileFromData, computeMethylationProfile and methylationDatalist
Examples

load the methylation data
data(methylationDatalList)

the region where to compute the profile
region <- GRanges(segnames = Rle("Chr3"), ranges = IRanges(1,1E6))

compute low resolution profile in 20 Kb windows
lowResProfileWTCG <- computeMethylationProfile(methylationDataList[["WT"]],
region, windowSize = 20000, context = "CG")

lowResProfilsCG <- GRangesList("WT" = lowResProfileWTCG)

#plot the low resolution profile

par(mar=c(4, 4, 3, 1)+0.1)

par(mfrow=c(1,1))

plotMethylationProfile(lowResProfilsCG, autoscale = FALSE,
title="CG methylation on Chromosome 3",
col=c("#D55E00", "#E69F00"), pch = c(1,0),
1ty = c(4,1))

Not run:

compute low resolution profile in 10 Kb windows in CG context

lowResProfileWTCG <- computeMethylationProfile(methylationDataList[["WT"]],
region, windowSize = 10000, context = "CG")

lowResProfileMet13CG <- computeMethylationProfile(
methylationDatalList[["met1-3"]1], region,
windowSize = 10000, context = "CG")

lowResProfileCG <- GRangesList("WT" = lowResProfileWTCG,
"met1-3" = lowResProfileMet13CG)

compute low resolution profile in 10 Kb windows in CHG context
lowResProfileWTCHG <- computeMethylationProfile(methylationDatalList[["WT"]1],
region, windowSize = 10000, context = "CHG")

lowResProfileMet13CHG <- computeMethylationProfile(
methylationDatalList[["met1-3"]1], region,
windowSize = 10000, context = "CHG")

lowResProfileCHG <- GRangesList("WT" = lowResProfileWTCHG,
"met1-3" = lowResProfileMet13CHG)

plotMethylationProfileFromData

plot the low resolution profile
par(mar=c(4, 4, 3, 1)+0.1)

par(mfrow=c(2,1))

plotMethylationProfile(lowResProfileCG, autoscale = FALSE,

labels = LETTERS[1],

title="CG methylation on Chromosome 3",
col=c("#D55E00", "#E69FQQ"), pch = c(1,0),
1ty = c(4,1))

plotMethylationProfile(lowResProfileCHG, autoscale = FALSE,

End(Not run)

labels = LETTERS[2],

title="CHG methylation on Chromosome 3",
col=c("#0072B2", "#56B4E9"), pch = c(16,2),
1ty = c(3,2))

59

plotMethylationProfileFromData

Plot methylation profile from data

Description

This function plots the low resolution profiles for all bisulfite sequencing data.

Usage

plotMethylationProfileFromData(
methylationDatal,
methylationData2 = NULL,
regions = NULL,
conditionsNames = NULL,
context = "CG",
windowSize = NULL,
autoscale = FALSE,

labels = NULL
col = NULL,

pch = c(1, 0o,
1ty = c(4, 1,
contextPerRow

Arguments

’

16, 2, 15, 17),
3, 2,6, 5),
= TRUE

methylationDatal

the methylation data in condition 1 (see methylationDatalList).

methylationData2
the methylation data in condition 2 (see methylationDatalList). This is op-

regions

tional.

a GRanges object with the regions where to plot the profiles.

60 plotMethylationProfileFromData

conditionsNames
the names of the two conditions. This will be used to plot the legend.

context a vector with all contexts in which the DMRs are computed ("CG", "CHG" or
"CHH").

windowSize a numeric value indicating the size of the window in which methylation is av-
eraged.

autoscale a logical value indicating whether the values are autoscalled for each context
or not.

labels a vector of character used to add a subfigure character to the plot. If NULL
nothing is added.

col a character vector with the colours. It needs to contain a minimum of 2 colours
per condition. If not or if NULL, the defalut colours will be used.

pch the R symbols used to plot the data It needs to contain a minimum of 2 symbols
per condition. If not or if NULL, the defalut symbols will be used.

1ty the line types used to plot the data. It needs to contain a minimum of 2 line types

per condition. If not or if NULL, the defalut line types will be used.

contextPerRow a logical value indicating if the each row represents an individual context. If
FALSE, each column will represent an individual context.

Value

Invisibly returns NULL

Author(s)
Nicolae Radu Zabet

See Also

plotMethylationProfile, computeMethylationProfile and methylationDatalist

Examples

load the methylation data
data(methylationDatalList)

#plot the low resolution profile at 10 Kb resolution

par(mar=c(4, 4, 3, 1)+0.1)

plotMethylationProfileFromData(methylationDatalList[["WT"]1],
methylationDatalList[["met1-3"]],
conditionsNames=c("WT", "met1-3"),
windowSize = 20000, autoscale = TRUE,
context = c("CHG"))

Not run:

#plot the low resolution profile at 5 Kb resolution

par(mar=c(4, 4, 3, 1)+0.1)

plotMethylationProfileFromData(methylationDatalist[["WT"]1],
methylationDatalList[["met1-3"1],
conditionsNames=c("WT", "met1-3"),
windowSize = 5000, autoscale = TRUE,
context = c("CG", "CHG", "CHH"),

plotOverlapProfile 61

labels = LETTERS)

End(Not run)

plotOverlapProfile Plot overlap profile

Description

This function plots the distribution of a set of subregions on a large region.

Usage

plotOverlapProfile(
overlapsProfilesT,
overlapsProfiles2 = NULL,
names = NULL,
labels = NULL,
col = NULL,
title = "",
logscale = FALSE,
maxValue = NULL

)
Arguments
overlapsProfilesl
a GRanges object with the overlaps profile; see computeOverlapProfile.
overlapsProfiles?2
a GRanges object with the overlaps profile; see computeOverlapProfile. This
is optional. For example, one can be use overlapsProfiles1 to display hy-
pomethylated regions and overlapsProfiles?2 the hypermethylated regions.
names a vector of character to add labels for the two overlapsProfiles. This is an
optinal parameter.
labels a vector of character used to add a subfigure character to the plot. If NULL
nothing is added.
col a character vector with the colours. It needs to contain 2 colours. If not or if
NULL, the defalut colours will be used.
title the title of the plot.
logscale a logical value indicating if the colours are on logscale or not.
maxValue a maximum value in a region. Used for the colour scheme.
Value

Invisibly returns NULL.

Author(s)
Nicolae Radu Zabet

62 PMDsBinsCG

See Also

computeOverlapProfile, filterDMRs, computeDMRs and mergeDMRsIteratively

Examples

load the methylation data
data(methylationDatalist)

load the DMRs in CG context
data(DMRsNoiseFilterCG)

the coordinates of the area to be plotted
largeRegion <- GRanges(seqgnames = Rle("Chr3"), ranges = IRanges(1,1E5))

compute overlaps distribution
hotspotsHypo <- computeOverlapProfile(DMRsNoiseFilterCG, largeRegion,
windowSize = 10000, binary = FALSE)

plotOverlapProfile(GRangesList("Chr3"=hotspotsHypo),
names = c("hypomethylated”), title = "CG methylation")

Not run:

largeRegion <- GRanges(seqgnames = Rle("Chr3"), ranges = IRanges(1,1E6))

hotspotsHypo <- computeOverlapProfile(
DMRsNoiseFilterCG[(DMRsNoiseFilterCG$regionType == "loss")],
largeRegion, windowSize=2000, binary=TRUE, cores=1)

hotspotsHyper <- computeOverlapProfile(
DMRsNoiseFilterCG[(DMRsNoiseFilterCG$regionType == "gain")],
largeRegion, windowSize=2000, binary=TRUE, cores=1)

plotOverlapProfile(GRangesList("Chr3"=hotspotsHypo),
GRangesList("Chr3"=hotspotsHyper),

names=c("loss"”, "gain"), title="CG methylation")

End(Not run)

PMDsBinsCG The PMDs between GM 18501 and GM 18876 using Bins method

Description

A GRangesList object containing the PMDs between GM 18501 and GM 18876 B-Lymphocyte cell
lines in Homo sapiens (see ontSampleGRangesList). The PMDs were computed on the 1.5 ~ 2
Mbp from Chromosome 1 with bins method using binSize of 1 kbp

Format

The GRanges element contain 5 metadata columns; see computePMDs

PMDsNoiseFilterCG 63

See Also

filterPMDs, computePMDs, analyseReadsInsideRegionsForConditionPMD and mergePMDsIteratively

PMDsNoiseFilterCG The PMDs between GMI18501 and GMI18876 using Noise_filter
method

Description

A GRangesList object containing the PMDs between GM 18501 and GM 18876 B-Lymphocyte cell
lines in Homo sapiens (see ontSampleGRangesList). The PMDs were computed on the 1.5 ~ 2
Mbp from Chromosome 1 with noise filter method using a triangular kernel and a windowSize of
100 bp

Format

The GRanges element contain 5 metadata columns; see computePMDs

See Also

filterPMDs, computePMDs, analyseReadsInsideRegionsForConditionPMD and mergePMDsIteratively

poolMethylationDatasets
Pool methylation data

Description

This function pools together multiple methylation datasets.

Usage

poolMethylationDatasets(methylationDatalist)

Arguments
methylationDatalist
a GRangesList object where each element of the list is a GRanges object with
the methylation data in the corresponding condition (see methylationDatalist).
Value

the methylation data stored as a GRanges object with four metadata columns (see methylationDatalist).
If the Granges are from ONT datasets, its have six metedata columns include as ONT_Cm and
ONT_C (see readONTbam).

Author(s)

Nicolae Radu Zabet updated by Young Jun Kim

64 poolTwoMethylationDatasets

Examples

load methylation data object
data(methylationDatalList)

pools the two datasets together
pooledMethylationData <- poolMethylationDatasets(methylationDatalList)

poolTwoMethylationDatasets
Pool two methylation datasets

Description

This function pools together two methylation datasets.

Usage

poolTwoMethylationDatasets(
methylationDatal,
methylationData2,
samplel_name = NULL,
sample2_name = NULL

Arguments

methylationDatal

a GRanges object with the methylation data (see methylationDatalList).
methylationData?2

a GRanges object with the methylation data (see methylationDatalList).
samplel_name the label used for sample 1.
sample2_name the label used for sample 2.

Value

the methylation data stored as a GRanges object with four metadata columns (see methylationDatalist).
If the Granges are from ONT datasets, its have six metedata columns include as ONT_Cm and
ONT_C (see readONTbam).

Author(s)

Nicolae Radu Zabet updated by Young Jun Kim

Examples

load methylation data object
data(methylationDatalist)

save the two datasets together
pooledMethylationData <- poolTwoMethylationDatasets(methylationDataList[[1]],
methylationDatalList[[2]])

readBismark 65

readBismark Read Bismark

Description

This function takes as input a CX report file produced by Bismark and returns a GRanges object
with four metadata columns The file represents the bisulfite sequencing methylation data.

Usage
readBismark(file)
Arguments
file The filename (including path) of the methylation (CX report generated by Bis-
mark) to be read.
Value

the methylation data stored as a GRanges object with four metadata columns (see methylationDatalist).

Author(s)

Nicolae Radu Zabet and Jonathan Michael Foonlan Tsang

Examples

load methylation data object
data(methylationDatalist)

save the one datasets into a file
saveBismark(methylationDatalList[["WT"]], "chr3test_a_thaliana_wt.CX_report")

load the data
methylationDataWT <- readBismark("chr3test_a_thaliana_wt.CX_report”)

#check that the loading worked
all(methylationDataWT == methylationDatalList[["WT"]])

readBismarkPool Read Bismark pool

Description

This function takes as input a vector of CX report file produced by Bismark and returns a GRanges
object with four metadata columns (see methylationDatalList). The file represents the pooled
bisulfite sequencing data.

Usage

readBismarkPool (files)

66 readONTbam

Arguments
files The filenames (including path) of the methylation (CX report generated with
Bismark) to be read
Value

the methylation data stored as a GRanges object with four metadata columns (see methylationDatalList).

Author(s)

Nicolae Radu Zabet and Jonathan Michael Foonlan Tsang

Examples

load methylation data object
data(methylationDatalList)

save the two datasets

saveBismark(methylationDatalList[["WT"]],
"chr3test_a_thaliana_wt.CX_report”)

saveBismark(methylationDataList[["met1-3"11],
"chr3test_a_thaliana_met13.CX_report")

reload the two datasets and pool them

filenames <- c("chr3test_a_thaliana_wt.CX_report”,
"chr3test_a_thaliana_met13.CX_report")

methylationDataPool <- readBismarkPool(filenames)

readONTbam Load ONT BAM, decode MM/ML, and count modified vs. unmodified
reads

Description

readONTbam() takes an indexed Nanopore BAM file with MM/ML tags, decodes each read’s per-C
modification probabilities, and overlays them on a GRanges of candidate cytosine sites. It returns a
copy of ref_gr augmented with:

¢ ONT_Cm — comma-delimited read-indices called “modified”

* ONT_C — comma-delimited read-indices covering but _not_ modified

¢ readsM — count of modified reads at each site

* readsN — total same-strand coverage at each site

You can either supply your own ref_gr (e.g.\ from selectCytosine()) or leave it NULL and pass
context, chr, region to build ref_gr on the fly.

readONTbam

Usage

readONTbam(
bamfile,
ref_gr =

67

NULL,

modif = "C+m?",

prob_thresh = 0.5,

genome = BSgenome.Hsapiens.UCSC.hg38,
context = "CG",

chr = NULL,
NULL,

region =

synonymous = FALSE,
parallel = FALSE,
BPPARAM = NULL,

cores = NULL

Arguments

bamfile
ref_gr

modif

prob_thresh

genome

context
chr
region

synonymous

parallel

BPPARAM

cores

Details

Path to an indexed ONT BAM with MM/ML tags.

A GRanges of genomic cytosine positions to annotate. If NULL, will be created
via selectCytosine() using context, chr, region.

Character vector of MM codes to treat as “modified” (e.g. "C+m?", "C+h?",
n C+m . H).

Numeric in \[0,1\] — minimum ML probability to call a read “modified.”

A BSgenome object such as BSgenome.Hsapiens.UCSC.hg38. This is used to
extract sequence context and must be loaded in advance. Note: When running
on an HPC system, please ensure that the required BSgenome package is already
installed and loaded in advance.

Sequence context for selectCytosine() (e.g. "CG", "CHG", "CHH").
Chromosome names to restrict selectCytosine().
A GRanges to further subset selectCytosine().

Logical (default: FALSE). If TRUE, include modified calls that match the spec-
ified context sequence (e.g. CGG), even if the site was previously excluded due
to deletion or mismatch. For example, if a deletion occurs at position 234523,
but the surrounding context still forms CGG, then the modified C at 234523 will
be retained (Nmod=1).

Logical. If TRUE, automatically detect your system condition and decoding
will use parallel threads via BiocParallel::. If FALSE (default), decoding is done
serially.

A BiocParallelParam object controlling parallel execution. This value will
automatically set when parallel is TRUE, also able to set as manually.

Integer number of workers (must not exceed BPPARAMS$workers). This value
will automatically set as the maximum number of system workers, also able to
set as manually.

This function read and annotate ONT MM/ML tags against a cytosine reference

68 saveBismark

Value
A GRanges of the same length as ref_gr, with four additional metadata columns:

ONT_Cm comma-delimited read-indices called modified
ONT_C comma-delimited read-indices covering but unmodified
readsM integer count of modified reads per site

readsN integer count of same-strand reads covering each site

Author(s)
Nicolae Radu Zabet and Young Jun Kim

See Also

selectCytosine, computeDMRs, computePMDs, computeCoMethylatedPositions, computeCoMethylatedRegions,
filterVMRsONT, ontSampleGRangesList, scanBamChr1Random5

Examples

Not run:
library(DMRcaller)
library(BSgenome.Hsapiens.UCSC.hg38)

set the bam file directory
bam_path <- system.file("”extdata”, "scanBamChriRandom5.bam", package="DMRcaller")

read ONTbam file (chromosome 1 only) in CG context with BSgenome.Hsapiens.UCSC.hg38
ONTSampleGRanges <- readONTbam(bamfile = bam_path, ref_gr = NULL, modif = "C+m?",
prob_thresh = 0.50,genome = BSgenome.Hsapiens.UCSC.hg38,
context = "CG", chr = "chr1”, region = NULL,
synonymous = FALSE, parallel = FALSE, BPPARAM = NULL)

End(Not run)

saveBismark Save Bismark

Description

This function takes as input a GRanges object generated with readBismark and saves the output to
a file using Bismark CX report format.

Usage

saveBismark(methylationData, filename)

Arguments

methylationData
the methylation data stored as a GRanges object with four metadata columns
(see methylationDatalList).

filename the filename where the data will be saved.

scanBamChr1Random5 69

Value

Invisibly returns NULL

Author(s)

Nicolae Radu Zabet

Examples

load methylation data object
data(methylationDatalList)

save one dataset to a file
saveBismark(methylationDatalList[["WT"]1], "chr3test_a_thaliana_wt.CX_report”)

scanBamChr1Random5 The bam file from ONT nanopore .pod) files

Description

A .bam file containing the basecalling result of 5 sequences containing with the MM, ML tag from
dorado.

Format

A .bam object

Source

The object was created by base-calling and alignment by dorado, ver.0.9.6 https://github.
com/nanoporetech/dorado?tab=readme-ov-file#dna-models to generate the bam files with
dna_r10.4.1_e8.2_400bps_hac@v5. 2.0 as basecalling model from GM 18501 cell line https://
s3.amazonaws.com/1000g-ont/index.html?prefix=pod5_data/GM18501_R9/. To subset, call
the bam file by scanBam function from Rsamtools package and randomly select the 5 sequences.
and repackaging the subsetted 1ist to the bam file for test running.

selectCytosine Select Cytosine Positions

Description

Constructs a GRanges of all cytosine positions in the specified BSgenome (or BSgenome package
name), optionally filtering by methylation context ("CG"”, "CHG", "CHH"), by chromosome, and by
genomic region.

https://github.com/nanoporetech/dorado?tab=readme-ov-file#dna-models
https://github.com/nanoporetech/dorado?tab=readme-ov-file#dna-models
https://s3.amazonaws.com/1000g-ont/index.html?prefix=pod5_data/GM18501_R9/
https://s3.amazonaws.com/1000g-ont/index.html?prefix=pod5_data/GM18501_R9/

70

Usage

selectCytosine(

selectCytosine

genome = BSgenome.Hsapiens.UCSC.hg38,
context = c("CG", "CHG", "CHH"),

chr =

region

Arguments

genome

context

chr

region

Details

A BSgenome object or the name (character) of a BSgenome package to use as the
reference genome. If a package name is given, it will be loaded automatically
(default: BSgenome.Hsapiens.UCSC.hg38). Note: When running on an HPC
system, please ensure that the required BSgenome package is already installed
and loaded in advance.

A character vector of one or more methylation contexts to include: "CG", "CHG",
and/or "CHH". Defaults to all three.

An optional character vector of chromosome names to restrict the enumeration.
If NULL, all sequences in genome are used.

An optional GRanges object specifying subregions to keep. Requires chr to be
non-NULL.

This function enumerate cytosine positions in a BSgenome reference

Value

A GRanges object with one 1-bp range per cytosine, and two metadata columns:

context A factor indicating the context ("CG"”, "CHG", or "CHH").

trinucleotide_context Character or factor giving the surrounding trinucleotide sequence (or NA for

HCGH)‘

Author(s)

Nicolae Radu Zabet and Young Jun Kim

See Also

readONTbam, ontSampleGRangesList

Examples

Not run:

library(BSgenome.Hsapiens.UCSC.hg38)

Only CpG sites on chrl and chr2:
gr_chr1_2 <- selectCytosine(context="CG", chr=c("chri1”,"chr2"))

CHH sites in a specific region on chr3:
my_region <- GRanges("chr3”, IRanges(le6, 1e6 + 1e5))
gr_region <- selectCytosine(context="CHH", chr="chr3", region=my_region)

syntheticDataReplicates 71

End(Not run)

syntheticDataReplicates
Simulated data for biological replicates

Description
A GRanges object containing simulated date for methylation in four samples. The conditions assci-
ated witch each sample are a, a, b and b.

Format
A GRanges object containing multiple metadata columns with the reads from each object passed as
parameter

Source

The object was created by calling joinReplicates function.

Index

analyseReadsInsideRegionsForCondition,
3,12, 25, 26, 34, 36, 37, 39, 46, 48

analyseReadsInsideRegionsForConditionPMD
4,22,27,63

computeCoMethylatedPositions, 5, 27, 42,
68
computeCoMethylatedRegions, 8, 27, 68
computeDMRs, 4, 10, 20, 26, 33, 34, 36, 45, 46,
52,62, 68
computeDMRsReplicates, 13, 26
computeMethylationDataCoverage, 15, 26,
54
computeMethylationDataSpatialCorrelation
16, 26, 56
computeMethylationProfile, 18, 26, 57, 58,
60
computeOverlapProfile, 19, 26, 61, 62
computePMDs, 5, 7, 9, 20, 27, 37,42, 47, 48,
62, 63,68
computeVMDs, 23, 27, 39

DMRcaller, 25, 50
DMRcaller-package (DMRcaller), 25
DMRsNoiseFilterCG, 4, 12, 33, 36, 46

extractGC, 34

filterDMRs, 4, 12, 20, 26, 34, 35, 46, 52, 62
filterPMDs, 5, 22, 27, 36, 48, 63
filterVMDs, 25, 38
filterVMRsONT, 27, 40, 68

GEs, 42

GEs_hg38, 42,43

getWholeChromosomes, 26, 43

GRanges, 3-5, 10, 11, 13, 14, 16-24, 26,
33-39,43-48, 52, 54, 56, 57, 59,
61-66, 68-71

GRangeslList, 52, 63

joinReplicates, 26,44, 71

mergeDMRsIteratively, 4, 12, 20, 26, 34, 36,
45, 62

72

mergePMDsIteratively, 5, 22, 27, 37,47, 63

methylationDatalist, 3, 10, 16-18, 33-35,
4345, 49, 52, 54-56, 58—60, 6366,
68

ont_gr_GM18870_chr1_PMD_bins_1k, 50

ont_gr_GM18870_chr1_sorted_bins_1k, 51

ontSampleGRangeslList, 4,7, 9, 21, 23, 37,
38, 40, 42, 48, 50, 62, 63, 68, 70

plot, 56
plotLocalMethylationProfile, 26, 51
plotMethylationDataCoverage, 16, 26, 53
plotMethylationDataSpatialCorrelation,
17,26, 55
plotMethylationProfile, I8, 26, 57, 60
plotMethylationProfileFromData, /8, 26,
58, 59
plotOverlapProfile, 20, 26, 61
PMDsBinsCG, 62
PMDsNoiseFilterCgG, 5, 22, 37, 48, 63
poolMethylationDatasets, 26, 63
poolTwoMethylationDatasets, 26, 64

readBismark, 26, 49, 65, 68

readBismarkPool, 26, 65

readONTbam, 4, 7, 9, 22, 25, 26, 42, 50, 63, 64,
66, 70

Rsamtools, 69

saveBismark, 26, 68
scanBam, 69
scanBamChr1Random5, 68, 69
selectCytosine, 26, 68, 69
syntheticDataReplicates, 71

	analyseReadsInsideRegionsForCondition
	analyseReadsInsideRegionsForConditionPMD
	computeCoMethylatedPositions
	computeCoMethylatedRegions
	computeDMRs
	computeDMRsReplicates
	computeMethylationDataCoverage
	computeMethylationDataSpatialCorrelation
	computeMethylationProfile
	computeOverlapProfile
	computePMDs
	computeVMDs
	DMRcaller
	DMRsNoiseFilterCG
	extractGC
	filterDMRs
	filterPMDs
	filterVMDs
	filterVMRsONT
	GEs
	GEs_hg38
	getWholeChromosomes
	joinReplicates
	mergeDMRsIteratively
	mergePMDsIteratively
	methylationDataList
	ontSampleGRangesList
	ont_gr_GM18870_chr1_PMD_bins_1k
	ont_gr_GM18870_chr1_sorted_bins_1k
	plotLocalMethylationProfile
	plotMethylationDataCoverage
	plotMethylationDataSpatialCorrelation
	plotMethylationProfile
	plotMethylationProfileFromData
	plotOverlapProfile
	PMDsBinsCG
	PMDsNoiseFilterCG
	poolMethylationDatasets
	poolTwoMethylationDatasets
	readBismark
	readBismarkPool
	readONTbam
	saveBismark
	scanBamChr1Random5
	selectCytosine
	syntheticDataReplicates
	Index

