Package ‘girafe’

October 15, 2025
Type Package

Title Genome Intervals and Read Alignments for Functional Exploration
Version 1.60.0
Date 2024-04-23

Depends R (>=2.10.0), methods, BiocGenerics (>= 0.13.8), S4Vectors
(>=0.17.25), Rsamtools (>= 1.31.2), intervals (>= 0.13.1),
ShortRead (>= 1.37.1), genomelntervals (>= 1.25.1), grid

Imports methods, Biobase, Biostrings (>= 2.47.6), pwalign, graphics,
grDevices, stats, utils, [Ranges (>=2.13.12)

Suggests MASS, org.Mm.eg.db, RColorBrewer
Enhances genomelntervals

Author Joern Toedling, with contributions from Constance Ciaudo,
Olivier Voinnet, Edith Heard, Emmanuel Barillot, and Wolfgang
Huber

Maintainer J. Toedling <jtoedling@yahoo.de>

Description The package 'girafe' deals with the genome-level
representation of aligned reads from next-generation sequencing
data. It contains an object class for enabling a detailed
description of genome intervals with aligned reads and
functions for comparing, visualising, exporting and working
with such intervals and the aligned reads. As such, the package
interacts with and provides a link between the packages
ShortRead, IRanges and genomelntervals.

License Artistic-2.0

LazyLoad yes

biocViews Sequencing

PackageStatus Deprecated

git_url https://git.bioconductor.org/packages/girafe
git_branch RELEASE_3_21

git_last_commit 1e8bOed

Additional reduce-methods

git_last_commit_date 2025-04-15
Repository Bioconductor 3.21
Date/Publication 2025-10-15

Contents
Additional reduce-methods oL 2
addNBSignificance 3
agiFromBam L e 5
AlignedGenomelntervals-class 6
countReadsAnnotated L 10
fracOverlap e 11
getFeatureCounts L. 12
girafe-internal L L 13
intPhred 13
medianByPosition Lo 14
perWindow L 15
plotAligned 17
plotNegBinomFit L 19
plotReads e e 20
trimAdapter e 21
weightedConsensusMatrix Lo e 22
which_nearest-methods 23

Index 25

Additional reduce-methods

Auxiliary methods for Function reduce in Package ’girafe’

Description

This

methods were written to resurrect the functionality of the ‘reduce’ method of package 'IRanges’

for objects belonging to classes defined in 'IRanges’. This functions had been overwritten by the

later

import of package ’intervals’. See the corresponding help pages of package IRanges for more

details on these methods.

Methods

signature(x = "CompressedIRangesList") see help page in package ‘IRanges’

signature(x = "IRanges") see help page in package ‘IRanges’

signature(x = "IntegerRanges”) see help page in package ‘[Ranges’

signature(x = "IntegerRangesList") see help page in package ‘IRanges’

See Also

IntegerRangeslList-class, IntegerRanges-class, IRanges-class

addNBSignificance 3

addNBSignificance assess significance of sliding-window read counts

Description

This function can be used to assess the significance of sliding-window read counts. The background
distribution of read counts in windows is assumed to be a Negative-Binomial (NB) one. The two
parameters of the NB distribution, mean ‘mu’ and dispersion ‘size’, are estimated using any of the
methods described below (see details). The estimated NB distribution is used to assign a p-value to
each window based on the number of aligned reads in the window. The p-values can be corrected
for multiple testing using any of the correction methods implemented for p.adjust.

Usage
addNBSignificance(x, estimate="NB.@12", correct = "none"”, max.n=10L)
Arguments
X A data.frame of class slidingWindowSummary, as returned by the function
perWindow.
estimate string; which method to use to estimate the parameters of the NB background
distribution; see below for details
correct string; which method to use for p-value adjustment; can be any method that is
implemented for p.adjust including “none” if no correction is desired.
max.n integer; only relevant if estimate=="NB.ML"; in that case specifies that win-
dows with up to this number of aligned reads should be considered for estimat-
ing the background distribution.
Details

The two parameters of the Negative-Binomial (NB) distribution are: mean ‘A’ (or ‘mu’) and size
‘r’ (or ‘size’).

The function knows a number of methods to estimate the parameters of the NB distribution.

“NB.012” Solely the windows with only 0, 1, or 2 aligned reads are used for estimating A and ‘r’.
From the probability mass function g(k) = P(X = k) of the NB distribution, it follows that
the ratios

and
B g9(2) B A-(r+1)

o T2

The observed numbers of windows with 0-2 aligned reads are used to estimate

~ ny
q1 = —
no

addNBSignificance

and
~ UP)
q2 = —
ni

and from these estimates, one can obtain estimates for \ and 7.

“NB.ML” This estimation method uses the function fitdistr from package ‘MASS’. Windows
with up to n.max aligned reads are considered for this estimate.

“Poisson” This estimate also uses the windows the 0-2 aligned reads, but uses these numbers to
estimates the parameter A of a Poisson distribution. The parameter ‘r’ is set to a very large
number, such that the estimated NB distribution actually is a Poisson distribution with mean
and variance equal to \.

Value

A data. frame of class slidingWindowSummary, which is the the supplied argument x extended by
an additional column p.value which holds the p-value for each window. The attribute NBparams
of the result contains the list of the estimated parameters of the Negative-Binomial background
distribution.

Author(s)

Joern Toedling

References

Such an estimation of the Negative-Binomial parameters has also been described in the paper:
Ji et al.(2008) An integrated system CisGenome for analyzing ChIP-chip and ChIP-seq data. Nat
Biotechnol. 26(11):1293-1300.

See Also

perWindow, p.adjust

Examples

exDir <- system.file("extdata”, package="girafe")

exA <- readAligned(dirPath=exDir, type="Bowtie",
pattern="aravinSRNA_23_no_adapter_excerpt_mm9_unmasked.bwtmap")

exAl <- as(exA, "AlignedGenomeIntervals")

exPX <- perWindow(exAI, chr="chrX", winsize=1e5, step=0.5e5)

exPX <- addNBSignificance(exPX, correct="bonferroni")

str(exPX)

exPX[exPX$p.value <= 0.05,]

agiFromBam 5

agiFromBam Create AlignedGenomelntervals objects from BAM files.

Description

Function to create AlignedGenomeIntervals objects from BAM (binary alignment map format)
files. Uses functions from package Rsamtools to parse BAM files.

Usage
agiFromBam(bamfile, ...)
Arguments
bamfile File path of BAM file. BAM file should be sorted and have an index in the same
directory (see Details below).
further arguments passed on to function scanBam
Details

Note: the BAM files must be sorted and must also have an index file (*.bai) in the same directory.
These should be done when creating the BAM. However, the functions sortBam and indexBam can
be used for the same purpose, as can the respective modules of the “samtools” library (‘samtools
sort” and ‘samtools index’).

The BAM files are parsed chromosome by chromosome to limit the memory footprint of the func-
tion. Thus, this function aims to be a less-memory-consuming alternative to first reading in the
BAM file using the readAligned function and then converting the AlignedRead object into an
AlignedGenomeIntervals object.

Value

An object of class AlignedGenomeIntervals.

Author(s)

J Toedling

References

http://samtools.sourceforge.net

See Also

scanBam, AlignedGenomeIntervals-class

http://samtools.sourceforge.net

6 AlignedGenomelntervals-class

Examples

fl <- system.file("extdata”, "ex1.bam”, package="Rsamtools")
ExGi <- agiFromBam(f1l)
head(detail (ExGi))

AlignedGenomeIntervals-class
Class 'AlignedGenomelntervals’

Description

A class for representing reads from next-generation sequencing experiments that have been aligned
to genomic intervals.

Objects from the Class
Objects can be created either by:

1. calls of the form new(”AlignedGenomelntervals”, .Data, closed, ...).

2. using the auxiliary function AlignedGenomeIntervals and supplying separate vectors of
same length which hold the required information:
AlignedGenomelntervals(start, end, chromosome, strand, reads, matches, sequence)
If arguments reads or matches are not specified, they are assumed to be *1’ for all intervals.

3. or, probably the most common way, by coercing from objects of class AlignedRead.

Slots

.Data: two-column integer matrix, holding the start and end coordinates of the intervals on the
chromosomes

sequence: character; sequence of the read aligned to the interval
reads: integer; total number of reads that were aligned to this interval

matches: integer; the total number of genomic intervals that reads which were aligned to this
interval were aligned to. A value of ’1’ thus means that this read sequence matches uniquely
to this one genome interval only

organism: string; an identifier for the genome of which organism the intervals are related to. Func-
tions making use of this slot require a specific annotation package org.<organism>.eg.db.
For example if organism is "Hs’, the annotation package ’org.Hs.eg.db’ is utilised by these
functions. The annotation packages can be obtained from the Bioconductor repositories.

annotation: data.frame; see class genome_intervals for details
closed: matrix; see class genome_intervals for details

type: character; see class genome_intervals for details

score: numeric; optional score for each aligned genome interval
id: character; optional identifier for each aligned genome interval

chrlengths: integer; optional named integer vector of chromosome lengths for the respective
genome; if present it is used in place of the chromosome lengths retrieved from the anno-
tation package (see slot organism)

AlignedGenomelntervals-class 7

Extends

Class Genome_intervals-class, directly. Class Intervals_full, by class "Genome_intervals",
distance 2.

Methods

coerce Coercion method from objects of class AlignedRead, which is defined in package ShortRead,
to objects of class AlignedGenomeIntervals

coverage signature(”AlignedGenomeIntervals”): computes the read coverage over all chro-
mosomes. If the organism of the object is set correctly, the chromosome lengths are retrieved
from the appropriate annotation package, otherwise the maximum interval end is taken to be
the absolute length of that chromosome (strand).
The result of this method is a list and the individual list elements are of class Rle, a class for
encoding long repetitive vectors that is defined in package IRanges.
The additional argument byStrand governs whether the coverage is computed separately for
each strand. If byStrand=FALSE (default) only one result is returned per chromosome. If
byStrand=TRUE, there result is two separate R1e objects per chromosome with the strand ap-
pended to the chromosome name.

detail signature(”AlignedGenomeIntervals"”): a more detailed output of all the intervals than
provided by show; only advisable for objects containing few intervals

extend signature("AlignedGenomeIntervals") with additional arguments fiveprime=0L and
threeprime=0L. These must be integer numbers and greater than or equal to 0. They specify
how much is subtracted from the left border of the interval and added to the right side. Which
end is 5* and which one is 3’ are determined from the strand information of the object. Lastly,
if the object has an organism annotation, it is checked that the right ends of the intervals do
not exceed the respective chromosome lengths.

export export the aligned intervals as tab-delimited text files which can be uploaded to the UCSC
genome browser as ‘custom tracks’. Currently, there are methods for exporting the data into
‘bed’ format and ‘bedGraph’ format, either writing the intervals from both strands into one file
or into two separate files (formats ‘bedStrand’ and ‘bedGraphStrand’, respectively). Details
about these track formats can be found at the UCSC genome browser web pages.
The additional argument writeHeader can be set to FALSE to suppress writing of the track
definition header line to the file.
For Genome_intervals objects, only ‘bed’ format is supported at the moment and does not
need to be specified.

hist signature(”AlignedGenomelIntervals”): creates a histogram of the lengths of the reads
aligned to the intervals

organism Get or set the organism that the genome intervals in the object correspond to. Should be a
predefined code, such as "Mm’ for mouse and "Hs’ for human. The reason for this code, that, if
the organism is set, a corresponding annotation package that is called org.<organism>.eg.db
is used, for example for obtaining the chromosome lengths to be used in methods such as
coverage. These annotation packages can be obtained from the Bioconductor repository.

plot visualisation method; a second argument of class Genome_intervals_stranded can be pro-
vided for additional annotation to the plot. Please see below and in the vignette for examples.
Refer to the documentation of plotAligned for more details on the plotting function.

AlignedGenomelntervals-class

reduce collapse/reduce aligned genome intervals by combining intervals which are completely in-

cluded in each other, combining overlapping intervals AND combining immediately adjacent
intervals (if method="standard"). Intervals are only combined if they are on the same chro-
mosome, the same strand AND have the same match specificity of the aligned reads.

If you only want to combine intervals that have exactly the same start and stop position
(but may have reads of slightly different sequence aligned to them), then use the argument
method="exact".

If you only want to combine intervals that have exactly the same 5’ or 3’ end (but may differ
in the other end and in the aligned sequence), then use the argument method="same5" (same
5’ end) or method="same3" (same 3’ end).

Finally, it’s possible to only collapse/reduce aligned genome intervals that overlap each other
by at least a certain fraction using the argument min. frac. min. frac is a number between 0.0
and 1.0. For example, if you call reduce with argument min.frac=0.4, only intervals that
overlap each other by at least 40 percent are collapsed/merged.

sample draw a random sample of n (Argument size) of the aligned reads (without or with replace-

ment) and returns the AlignedGenomeIntervals object defined by these aligned reads.

score access or set a custom score for the object

sort

sorts the intervals by chromosome name, start and end coordinate in increasing order (unless
decreasing=TRUE is specified) and returns the sorted object

subset take a subset of reads, matrix-like subsetting via ’\[’ can also be used

Author(s)

Joern Toedling

See Also

Genome_intervals-class, AlignedRead-class, plotAligned

Examples

H#itHAHHAHE toy example:
A <- new("AlignedGenomeIntervals”,

.Data=cbind(c(1,3,4,5,8,10), c(5,5,6,8,9,11)),

annotation=data. frame(
seg_name=factor(rep(c("chr1”,"chr2","chr3"), each=2)),
strand=factor(c("-=","=","+" "+" "+" "+"y ‘levels=c("-","+")),
inter_base=rep(FALSE, 6)),

reads=rep(3L, 6), matches=rep(1L,6),

sequence=c("ACATT","ACA","CGT","GTAA", "AG","CT"))

show(A)
detail(A)

#it

alternative initiation of this object:

A <- AlignedGenomelIntervals(

start=c(1,3,4,5,8,10), end=c(5,5,6,8,9,11),
chromosome=rep(c("chr2"”,"chrX","chr1"), each=2),
Strandzc(“_”’"_“’”+","+","+”’"+“),
sequence=c("ACATT","ACA","CGT", "GGAA" ,"AG","CT"),

AlignedGenomelntervals-class

reads=c(1L, 5L, 2L, 7L, 3L, 3L))
detail(A)

custom identifiers can be assigned to the intervals
id(A) <- paste("gi”, 1:6, sep="")

subsetting and combining
detail(ALc(1:4)1)
detail(c(AL[1], A[41))

sorting: always useful
A <- sort(A)
detail(A)

the 'reduce' method provides a cleaned-up, compact set
detail(reduce(A))

with arguments specifying additional conditions for merging
detail(reduce(A, min.frac=0.8))

'sample' to draw a sample subset of reads and their intervals
detail(sample(A, 10))

biological example

exDir <- system.file("extdata”, package="girafe")

exA <- readAligned(dirPath=exDir, type="Bowtie",
pattern="aravinSRNA_23_no_adapter_excerpt_mm9_unmasked.bwtmap")

exAI <- as(exA, "AlignedGenomelntervals")

organism(exAI) <- "Mm"

show(exAI)

which chromosomes are the intervals on?

table(chromosome (exAI))

subset
exAI[is.element(chromosome(exAI), c("chr1”,"chr2"))]

compute coverage per chromosome:
coverage(exAI[is.element(chromosome(exAI), c("chr1”,"chr2"))1)

plotting:
load(file.path(exDir, "mgi_gi.RData"))
if (interactive())
plot(exAI, mgi.gi, chr="chrX"”, start=50400000, end=50410000)

overlap with annotated genome elements:

exOv <- interval_overlap(exAI, mgi.gi)

how many elements do read match positions generally overlap:
table(listLen(ex0v))

what are the 13 elements overlapped by a single match position:
mgi.gilexOv[[which.max(listLen(ex0v))]1]1]

what kinds of elements are overlapped

(tabOv <- table(as.character(mgi.gi$type)lunlist(ex0Ov)1))

#i## display those classes:

my.cols <- rainbow(length(tabOv))

10 countReadsAnnotated

if (interactive())
pie(tabOv, col=my.cols, radius=0.85)

countReadsAnnotated Sum up aligned reads per category of genome feature

Description

A function to sum up aligned reads per category of genome feature (i.e. gene, ncRNA, etc.).

Usage

countReadsAnnotated(GI, M, typeColumn="type", fractionGI=0.7,
mem. friendly=FALSE, showAllTypes=FALSE)

Arguments

GI object of class AlignedGenomeIntervals

M Annotation object of class Genome_intervals_stranded or Genome_intervals;
describes the genomic coordinates of annotated genome features, such as genes,
miRNAs, etc.

typeColumn string; which column of the annotation object M describes the type of the genome
feature

fractionGI which fraction of the intervals in object GI are required to ovelap with a feature

in M in order to be considered to correspond to that feature.

mem. friendly logical; should a version which requires less memory but takes a bit longer be
used

showAllTypes logical; should a table of genome feature types in M be displayed?

Details

The read counts are summed up over each type of genome feature, and the read counts are nor-
malised by their number of genomic matches. For example if a read has two matches in the genome,
but only one inside a miRNA, it would count 0.5 for miRNAs.

Value
A named numeric vector which gives the summed read counts for each supplied type of genome
feature.

Author(s)
J Toedling

fracOverlap 11

Examples

A <- AlignedGenomelIntervals(
start=c(1,8,14,20), end=c(5,15,19,25),
chromosome=rep(”chr1"”, each=4),
strand=c(”+","+" "+" "+ |
sequence=c("ACATT", "TATCGGAC", "TCGGACT", "GTAACG"),
reads=c(7L, 2L, 4L, 5L))
M2 <- new("Genome_intervals_stranded”,
rbind(c(2,6), c(1,15), c(20,30)),
closed = matrix(TRUE, ncol=2, nrow=3),
annotation = data.frame(
seq_name= factor(rep("chri1”, 3)),
inter_base= logical(3),
strand=factor(rep("+", 3), levels=c("+","-")),
alias=c("miRNA1","genel"”,"tRNA1"),
type=c("miRNA", "gene"”,"tRNA")))
if (interactive()){
grid.newpage()
plot(A, M2, chr="chr1", start=0, end=35,
nameColum="alias"”, show="plus")

}
countReadsAnnotated(A, M2, typeColumn="type")

fracOverlap Retrieve intervals overlapping by fraction of width

Description

Function to retrieve overlapping intervals that overlap at least by a specified fraction of their widths.

Usage

fracOverlap(I1, I2, min.frac=0.0, both=TRUE, mem.friendly=FALSE)

Arguments
I1 object that inherits from class Genome_intervals
12 object that inherits from class Genome_intervals
min.frac numeric; minimum required fraction of each of the two interval widths by which
two intervals should overlap in order to be marked as overlapping.
both logical; shall both overlap partners meet the minimum fraction min.frac re-

quirement? If FALSE, then overlaps with only partner involved to at least that
fraction are also reported.

mem. friendly logical; if set to TRUE an older but memory-friendlier version of interval_overlap
is used inside this function. Note that mem. friendly is only evaluated if I1 or
12 is of class AlignedGenomelIntervals.

12 getFeatureCounts

Value

An object of class data. frame with one row each for a pair of overlapping elements.

Index Index of interval in first interval list

Index2 Index of interval in second interval list

n number of bases that the two intervals overlap

fractionl fraction of interval 1’s width by which the two intervals overlap

fraction2 fraction of interval 2’s width by which the two intervals overlap
Author(s)

J. Toedling
See Also

interval_overlap

Examples

data("gen_ints"”, package="genomelntervals")
i[4,2] <- 13L
fracOverlap(i, i, 0.5)

getFeatureCounts get the read counts for a supplied set of genomic features

Description

get the read counts for a supplied set of genomic features

Usage

getFeatureCounts(AI, FG, nameColumn = "Name", fractionIncluded = 1,
returnType = "AlignedGenomelntervals”, mem.friendly = FALSE)

Arguments

AL AlignedGenomeIntervals object

FG Genome_intervals objects of genomic features

nameColumn character indicating which column of the object FG holds the identifiers of the
genomic features; is used to assess the number of genomic copies per feature

fractionIncluded
double; which fraction of an interval needs to be included in a feature in order
to count for the feature

returnType one of AlignedGenomeIntervals or integer

mem. friendly logical; passed on to fracOverlap function, determines if overlap should be
computed chromosome-wise, optionally distributed over several CPUs (with
package parallel)

girafe-internal 13

Value

depends on argument returnType: one of AlignedGenomeIntervals or a named integer

Author(s)

Joern Toedling

See Also

fracOverlap

girafe-internal Internal girafe functions

Description

Called internally by other girafe functions. Normally need not be called by the user.

Author(s)

Wolfgang Huber, Joern Toedling

See Also

AlignedGenomelIntervals-class

intPhred Extract integer Phred score values from FastQ data

Description

Function to extract integer Phred score values from FastQ data.

Usage

intPhred(x, method="Sanger"”, returnType="list")

Arguments
X object of class ShortReadQ; which contains read sequences and quality scores;
usually read in from a Fastq files.
method string; one of *Sanger’, *Solexa’ or ’previousSolexa’. See details below.
returnType string; in which format should the result be returned, either as a ’list’ or as a

’matrix’.

14 medianByPosition

Details

There are different standards for encoding read qualities in Fastq files. The ’Sanger’ format encodes
a Phred quality score from 0 to 93 using ASCII 33 to 126. The current ’Solexa’/llumina format (1.3
and higher) encodes a Phred quality score from 0 to 40 using ASCII 64 to 104. The ’previous
Solexa’/Illumina format (1.0) encodes a custom Solexa/Illumina quality score from -5 to 40 using
ASCII 59 to 104. This custom Solexa quality score is approximately equal to the Phred scores for
high qualities, but differs in the low quality range.

Value

If returnType is equal to ‘list’: A list of integer Phred quality values of the same length as the
number of reads in the object x.

If returnType is equal to ‘matrix’: A matrix of integer Phred quality values. The number of rows
is the number of reads in the object x. The number of columns is the maximum length (width) over
all reads in object x. The last entries for reads that are shorter than this maximum width are "NA’.

Author(s)

Joern Toedling

References

http://maq.sourceforge.net/fastq.shtml

See Also

ShortReadQ-class, readFastq

Examples

exDir <- system.file("extdata”, package="girafe")
ra <- readfFastq(dirPath=exDir, pattern=
"aravinSRNA_23_plus_adapter_excerpt.fastq")
ra.quals <- intPhred(ra, method="Sanger"”,
returnType="matrix")
ra.gmed <- apply(ra.quals, 2, median)
if (interactive())
plot(ra.gmed, type="h", ylim=c(0,42), xlab="Base postion”,
ylab="Median Phred Quality Score”, lwd=2, col="steelblue"”)

medianByPosition Compute median quality for each nucleotide position

Description

This function computes the median quality for each position in a read over all reads in a ShortReadQ
object.

http://maq.sourceforge.net/fastq.shtml

perWindow 15

Usage

medianByPosition(x, method = "Sanger”, batchSize = 100000L)

Arguments
X object of class ShortReadQ, such as the result of function readFastq
method string; passed on to function intPhred
batchSize number of rows to process in each iteration; directly influences RAM usage of
this function
Details

The quality values are computed for each batch of reads and stored as numeric R1e objects for each
postion. In each iteration, the Rle object of the current batch is merged with the previous one in
order to keep the RAM usage low.

Value
A numeric vector of the median values per nucleotide position in the reads. The length of this vector
corresponds to the length of the longest read in the data.

Author(s)

Joern Toedling

See Also

intPhred

Examples

exDir <- system.file("extdata”, package="girafe")

ra <- readfFastq(dirPath=exDir, pattern=
"aravinSRNA_23_plus_adapter_excerpt.fastq"”)

medianByPosition(ra, batchSize=200)

perWindow Investigate aligned reads in genome intervals with sliding windows

Description

Investigate aligned reads in genome intervals with sliding windows.

Usage

perWindow(object, chr, winsize, step, normaliseByMatches = TRUE,
mem.friendly = FALSE)

16 perWindow
Arguments
object object of class AlignedGenomeIntervals
chr string; which chromosome to investigate with sliding windows
winsize integer; size of the sliding window in base-pairs
step integer; offset between the start positions of two sliding windows
normaliseByMatches

mem. friendly

Details

logical; should the number of reads per AlignedGenomeInterval be normalised
by the number of genomic matches of the read sequence before summing them
up in each window? (i.e. derivation a weighted sum of read counts)

logical; argument passed on to function interval_overlap; if TRUE the less
RAM and, if the parallel package is attached, multiple processors are used for
computing the overlap, on the expense of time

The windows are constructed from the first base position onto which a read has been mapped until
the end of the chromosome.

Value

a data.frame with the following information for each sliding window on the chromosome

chr

start

end
n.overlap
n.reads
n.unique

max.reads

first
last

string; which chromosome the interval is on
integer; start coordinate of the windows on the chromosome
integer; end coordinate of the windows on the chromosome

integer; number of read match positions inside the window. Per match position
there can be one or more reads mapped, so this number always is smaller than
n.reads

numeric; number of reads which match positions inside this window; can be
floating-point numbers if argument normaliseByMatches=TRUE

integer; number of reads which each only have one match position in the genome
and for which this position is contained inside this window

integer; the maximal number of reads at any single one match position contained
inside this window

integer; coordinate of the first read alignment found inside the window

integer; coordinate of the last read alignment found inside the window

The result is of class data. frame and in addition of the (S3) class slidingWindowSummary, which
may be utilized by follow-up functions.

Author(s)

Joern Toedling

See Also

AlignedGenomelIntervals-class

plotAligned

Examples

17

exDir <- system.file("extdata”, package="girafe")

exA <- readAligned(dirPath=exDir, type="Bowtie",
pattern="aravinSRNA_23_no_adapter_excerpt_mm9_unmasked.bwtmap")

exAI <- as(exA, "AlignedGenomeIntervals")

exPX <- perWindow(exAI, chr="chrX", winsize=1e5, step=0.5e5)

head(exPX[order (exPX$n.overlap, decreasing=TRUE), 1)

plotAligned

Visualise reads aligned to genome intervals

Description

Visualise reads aligned to genome intervals

Usage

plotAligned(x,

y, chr, start, end, plus.col = "#00441b",

minus.col = "#283d78", gff, featurelLegend = FALSE,
gffChrColumn = "seq_name"”, gffTypeColumn="type",
gffNameColumn="1ID",

featureExclude = c("chromosome”, "nucleotide_match”, "insertion”),
showStrands="both", extraColors=NULL, ylim, highlight, main, ...)
Arguments
X Object of class AlignedGenomeIntervals
y This argument is only specified for compatibility with plot.default and not used
in the function.
chr string; on which chromosome is the region to plot
start integer; start coordinate of the chromosome region to plot
end integer; end coordinate of the chromosome region to plot
plus.col which colour to use for the reads on the Plus strand
minus.col which colour to use for the reads on the Plus strand
gff Data frame containing annotation for genomic feature to be used to further an-
notate the plot. Note that it must include a column called “type” that indicates
the type of each genomic feature (e.g. miRNA, gene etc.).
featureLegend logical; should a legend that describes the colour code for the annotated genome
features be appended at the bottom of the plot?
gffChrColumn string; which column of the gff data.frame holds the chromosome identifier of
each feature.
gffTypeColumn string; which column of the gff data.frame holds the type/class identifier of

each feature. Used for the colouring of features.

18 plotAligned

gffNameColumn what is the column of the gff data.frame called that holds the identifier of the
element that should be displayed in the plot; default: “name”

featureExclude character; which kinds of annotated genome features specified in the gff are to
be ignored for the plot

showStrands string; which strands to show in the plot; defaults to “both”, but users can specify
to show only the reads on “plus” or “minus” strand

extraColors named character vector which allows the user to specify custom colours for
feature types; colours must be specified in RGB format as hexadecimal strings
starting with “#”, e.g. “#addfff” for light-blue

ylim range of read numbers to plot (y-axis limits); if not specified they are computed
from the data in the specified region

highlight currently unused

main string; main title to use for the plot

further arguments passed on to the more primitive plotting functions used

Details

This function implements the plot method for objects of class AlignedGenomeIntervals.

Value

Returns NULL; this function is called for the side-effect of creating the plot.

Note

This function was inspired by and borrows source code from the function plotAlongChrom in
package tilingArray

Author(s)

Joern Toedling, Wolfgang Huber

See Also

AlignedGenomelIntervals-class

Examples

A <- AlignedGenomeIntervals(
start=c(1,8,10,20), end=c(5,15,16,25),
chromosome=rep(”"chr1”, each=4),
strand=c("+","+" "+" "+")
sequence=c("ACATT", "TATCGGAC", "TCGGACT", "GTAACG"),
reads=c(5L, 2L, 4L, 7L))

M2 <- new("Genome_intervals_stranded”,
rbind(c(2,6), c(1,15), c(20,30)),
closed = matrix(TRUE, ncol=2, nrow=3),
annotation = data.frame(

seq_name= factor(rep(“chr1”, 3)),

plotNegBinomFit

inter_base= logical(3),
strand=factor(rep("+", 3), levels=c("+","-")),
alias=c("miRNA1","genel"”,"tRNA1"),
type=c("miRNA","gene"”,"tRNA")))
if (interactive())
plot(A, M2, chr="chr1”, start=0, end=35,
nameColum="alias", showStrands="plus")

if (interactive())
use 'extraColors' to replace default colours (or to add new ones):
plot(A, M2, chr="chrl1"”, start=0, end=35, nameColum="alias"”,
showStrands="plus”, extraColors=c("”tRNA"="#6666DD"))

See also the examples in the vignette and on the manual page
of the class 'AlignedGenomelntervals'

19

plotNegBinomFit Plot Negative Binomial Fit

Description

Plot Negative Binomial Fit

Usage

plotNegBinomFit(x, breaks = c(-0.5:15.5, 1e+08), bar.col=rainbow(2),
addLegend=TRUE, legend.names=c("data","background”),

Arguments
X data.frame; slidingWindowSummary
breaks numeric vector of breakpoints
bar.col colours for the bars
addLegend logical; should a legend be added in the top-right corner of the plot

legend.names character; names for the legend
further arguments passed on to function barplot

Value

returns NULL; only called for its side-effect of producing the plot

Author(s)
J Toedling

See Also

barplot

20 plotReads
plotReads Function to plot aligned reads along the chromosome
Description
Function to plot aligned reads along the chromosome
Usage
plotReads(dat, ylim, strand = "plus”, vpr, sampleColor = NULL,
zeroLine = FALSE, main, pointSize = unit(1, "mm"),
cexAxislLabel = 1, cexAxis = 1, ylab, ...)
Arguments
dat a list with arguments
x.start integer; the genome start coordinates of the data to visualise
x.end integer; the genome end coordinates of the data to visualise
y numeric; the levels of the data to visualise
flag numeric; specifies the category of each value, e.g. marks which data values
belong to unique read alignments and which not
ylim y-axis limits of the plotting window
strand string; which of the two strands is plotted
vpr which viewport to use for this plot
sampleColor which colour to use for the data
zerolLine logical; should a line at y=0 be drawn?
main string; main title for the plot
pointSize width of each dot/bar
cexAxislLabel numeric; expansion factor for the axis labels
cexAxis numeric; expansion factor for the axis labels
ylab y-axis label
further arguments passed on to the more primitive plotting functions that are
used
Details
This function is used inside the plotting method for objects of class AlignedGenomeIntervals.
Value
returns Null; called for plotting single reads inside the function plotAligned
Author(s)

Joern Toedling

trimAdapter 21

trimAdapter Remove 3’ adapter contamination

Description

Function to remove 3’ adapter contamination from reads

Usage
trimAdapter(fq, adapter, match.score = 1, mismatch.score = -1,
score. threshold = 2)
Arguments
fq Object of class ShortReadQ; the reads with possible adapter contamination.
adapter object of class DNAString or class character; the sequence of the 3’ adapter
which could give rise to the 3’ contamination. If of class character, it is con-
verted to a DNAString inside the function.
match.score numeric; alignment score for matching bases

mismatch.score numeric; alignment score for mismatches

score.threshold
numeric; minimum total alignment score required for an overlap match between
the 3’ end of the read and the 5’ end of the adapter sequence.

Details

Performs an overlap alignment between the ends of the reads and the start of the adapter sequence.

Value

An object of class ShortReadQ containing the reads without the 3’ adapter contamination.

Note

The function trimLRPatterns from package ShortRead may be a faster alternative to this function.

Author(s)

J. Toedling

See Also

pairwiseAlignment, narrow, readFastq, writeFastq

22

weightedConsensusMatrix

Examples

exDir <- system.file("extdata”, package="girafe")

load reads containing adapter fragments at the end

ra23.wa <- readFastq(dirPath=exDir, pattern=
"aravinSRNA_23_plus_adapter_excerpt.fastq")

table(width(ra23.wa))

adapter sequence obtained from GEO page

accession number: GSE10364

#adapter <- DNAString("CTGTAGGCACCATCAAT")

adapter <- "CTGTAGGCACCATCAAT"

trim adapter
ra23.na <- trimAdapter(ra23.wa, adapter)
table(width(ra23.na))

weightedConsensusMatrix

compute weighted consensus matrix

Description

computes weighted consensus matrix

Usage

weightedConsensusMatrix(seqs, weights, shift = NULL,

baseLetter‘S - C(”A”, ”C”, HGH, ”T”, HNH))

Arguments
seqs character vector of read sequences
weights integer; weights (read counts)
shift integer; shift of each read sequence relative to the first column of the consensus

matrix, by default: 0

baselLetters alphabet

Value

A consensus matrix

Author(s)

J Toedling

See Also

consensusMatrix

which_nearest-methods 23

Examples

Align following sequences with weights:

ACATT 1
#H# CGTTA 10
#i# TTG 3
GACATT 4

dweights <- c(1L, 1oL, 3L, 4L)

d <= c("ACATT","CGTTA", "TTG", "GACATT")

dshifts <- c(oL, 1L, 2L, -1L)

W <- girafe:::weightedConsensusMatrix(d, dweights, shift=dshifts)
consensusString(W, ambiguityMap="N")

which_nearest-methods Methods for function 'which_nearest’ and genome intervals

Description

For each genome interval in one set, finds the nearest interval in a second set of genome intervals.

Value

a data.frame with a number of rows equal to the number of intervals in argument from. The
elements of the data.frame are:

distance_to_nearest
numeric; distance to nearest interval from object to. Is O if the current interval
in object from did overlap one or more intervals in object to

which_nearest list; each list element are the indices or the intervals in object to that have the
closest distance to the current interval in object from

which_overlap list; each list element are the indices or the intervals in object to that do overlap
with the current interval in object from

Methods

Currently, the package girafe contains method implementations for the first object (Argu-

ment: from) being of any of the classes “AlignedGenomelntervals”,“Genome_intervals” or
“Genome_intervals_stranded”. The second object (Argument: to) has be of class “Genome_intervals_stranded”
or “Genome_intervals”.

Note

If the supplied objects are stranded, as it is the case with objects of classes ‘AlignedGenomelnter-
vals’ and ‘Genome_intervals_stranded’, then the overlap and distance is solely computed between
intervals on the same strand.

For objects of class ‘Genome_intervals’, overlap and distances are computed regardless of strand
information.

24

Author(s)

Joern Toedling

See Also

which_nearest

Examples

#i## process aligned reads

exDir <- system.file("extdata”, package="girafe")

exA <- readAligned(dirPath=exDir, type="Bowtie",
pattern="aravinSRNA_23_no_adapter_excerpt_mm9_unmasked.bwtmap")

exAI <- as(exA, "AlignedGenomelntervals")

load annotated genome features
load(file.path(exDir, "mgi_gi.RData"))

subset for sake of speed:
A <- exAlI[is.element(segnames(exAIl), c("chrX","chrY"))]
G <- mgi.gi[is.element(segnames(mgi.gi), c("chrX",”"chrY"))]

find nearest annotated feature for each AlignedGenomeInterval
WN <- which_nearest(A, G)
dim(WN); tail(WN)

notice the difference to:

tail(which_nearest(as(A, "Genome_intervals"), G))

the last interval in A is located antisense to a gene,
but not overlapping anything on the same strand

which_nearest-methods

Index

* classes 6
AlignedGenomelIntervals-class, 6 AlignedGenomeIntervals-class, 6
* hplot alongChromTicks (girafe-internal), 13
plotAligned, 17
plotNegBinomFit, 19 barplot, 719
plotReads, 20
% internal c,AlignedGenomelntervals-method
Additional reduce-methods, 2 (AlignedGenomeIntervals-class),
getFeatureCounts, 12 6
girafe-internal, 13 c.AlignedGenomelIntervals
plotAligned, 17 (AlignedGenomeIntervals-class),
plotNegBinomFit, 19 6
plotReads, 20 chrlengths
weightedConsensusMatrix, 22 (AlignedGenomeIntervals-class),
* manip 6
addNBSignificance, 3 chrlengths,AlignedGenomelIntervals-method
agiFromBam, 5 (AlignedGenomeIntervals-class),
countReadsAnnotated, 10 6
fracOverlap, 11 chrlengths<-
getFeatureCounts, 12 (AlignedGenomeIntervals-class),
intPhred, 13 6
medianByPosition, 14 chrlengths<-,AlignedGenomeIntervals,numeric-method
perWindow, 15 (AlignedGenomeIntervals-class),
trimAdapter, 21 6
weightedConsensusMatrix, 22 chromosome,AlignedGenomelIntervals-method
+ methods (AlignedGenomeIntervals-class),
Additional reduce-methods, 2 6
which_nearest-methods, 23 chromosome, Genome_intervals-method
[,AlignedGenomeIntervals,ANY,ANY,ANY-method (AlignedGenomeIntervals-class),
(AlignedGenomeIntervals-class), 6
6 clusters,AlignedGenomeIntervals-method
[,AlignedGenomeIntervals,ANY,ANY-method (AlignedGenomeIntervals-class),
(AlignedGenomeIntervals-class), 6
6 clusters,Genome_intervals-method
(AlignedGenomeIntervals-class),
Additional reduce-methods, 2 6
addNBSignificance, 3 coerce,AlignedRead,AlignedGenomelIntervals-method
agiFromBam, 5 (AlignedGenomeIntervals-class),
AlignedGenomeIntervals 6
(AlignedGenomeIntervals-class), consensusMatrix, 22

25

26

countReadsAnnotated, 10

coverage,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
6

coverageOneStrand (girafe-internal), 13

detail,AlignedGenomelIntervals-method
(AlignedGenomeIntervals-class),
6

estimateNBParams (addNBSignificance), 3
export (AlignedGenomelntervals-class), 6

INDEX

interval_included,AlignedGenomelIntervals,AlignedGenomelnte
(AlignedGenomeIntervals-class),
6
interval_included,AlignedGenomelntervals,Genome_intervals_
(AlignedGenomeIntervals-class),
6
interval_included,Genome_intervals_stranded,AlignedGenomel
(AlignedGenomeIntervals-class),
6
interval_overlap, 12
interval_overlap,AlignedGenomeIntervals,AlignedGenomeInter
(AlignedGenomeIntervals-class),

export,AlignedGenomeIntervals,character,character—metﬁod

(AlignedGenomeIntervals-class),
6

export,Genome_intervals, character,ANY-method

(AlignedGenomeIntervals-class),
6

extend (AlignedGenomelntervals-class), 6

extend,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
6

extend, Genome_intervals-method
(AlignedGenomeIntervals-class),
6

extend, Genome_intervals_stranded-method
(AlignedGenomeIntervals-class),
6

featureColors (girafe-internal), 13
fracOverlap, 11, 13

getChromLengths (girafe-internal), 13
getFeatureCounts, 12

getReadPosDf (girafe-internal), 13
girafe-internal, 13

hist,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
6

id,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
6

id<- (AlignedGenomeIntervals-class), 6

interval_overlap,AlignedGenomeIntervals,Genome_intervals-m
(AlignedGenomeIntervals-class),
6
interval_overlap,AlignedGenomeIntervals,Genome_intervals_s
(AlignedGenomeIntervals-class),
6
interval_overlap,Genome_intervals,AlignedGenomeIntervals-m
(AlignedGenomeIntervals-class),
6
interval_overlap,Genome_intervals_stranded,AlignedGenomelIn
(AlignedGenomeIntervals-class),
6
Intervals_full, 7
intPhred, 13, 15

matches (AlignedGenomelIntervals-class),
6

matches,AlignedGenomelIntervals-method
(AlignedGenomeIntervals-class),
6

matches<-
(AlignedGenomeIntervals-class),
6

matches<-,AlignedGenomeIntervals, integer-method
(AlignedGenomeIntervals-class),
6

medianByPosition, 14

narrow, 2/

nchar,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
6

newVP (girafe-internal), 13

id<-,AlignedGenomeIntervals,character-method organism

(AlignedGenomeIntervals-class),
6

(AlignedGenomeIntervals-class),
6

INDEX 27

organism,AlignedGenomeIntervals-method reduce,CompressedIRangesList-method
(AlignedGenomeIntervals-class), (Additional reduce-methods), 2
6 reduce,Genome_intervals-method
organism<- (AlignedGenomeIntervals-class),
(AlignedGenomeIntervals-class), 6
6 reduce, IntegerRanges-method
organism<-,AlignedGenomeIntervals,character-method (Additional reduce-methods), 2
(AlignedGenomeIntervals-class), reduce, IntegerRangesList-method
6 (Additional reduce-methods), 2
organism<-,AlignedGenomeIntervals-method reduce, IRanges-method (Additional
(AlignedGenomeIntervals-class), reduce-methods), 2
6 reduce-methods (Additional
reduce-methods), 2
p.adjust, 4 reduceOneEnd (girafe-internal), 13
pairwiseAlignment, 27 reduceOneExact (girafe-internal), 13

perWindow, 3, 4, 15
plot,AlignedGenomeIntervals,ANY-method
(AlignedGenomeIntervals-class),
6
lot,AlignedGenomelntervals,Genome_intervals 2%?2%8 ?émet d
P ! ?AlignedGenomeInterJals—cl;;s) ‘score,g 1gne38enomelntervals—method
6 i (AlignedGenomeIntervals-class),

sample,AlignedGenomelIntervals-method
(AlignedGenomeIntervals-class),
6

. .. 6
plot,A11gne§GenomeIntervals,m1551ng method score<- (AlignedGenomeIntervals-class),
(AlignedGenomeIntervals-class), 6

6
plot,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
6
plotAligned, 7, 8, 17
plotAllChrom (girafe-internal), 13
plotAlongChromLegend (girafe-internal), seqnames
13 (AlignedGenomeIntervals-class),
plotNegBinomFit, 19 6
plotReads, 20

score<-,AlignedGenomeIntervals,numeric-method
(AlignedGenomeIntervals-class),
6
score<-,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
6

segnames,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),

readFastq, 14, 21 6

reads (AlignedGenomeIntervals-class), 6 show,AlignedGenomeIntervals-method

reads,AlignedGenomeIntervals-method (AlignedGenomelIntervals-class),
(AlignedGenomeIntervals-class), 6
6 sort,AlignedGenomelIntervals-method

reads<- (AlignedGenomeIntervals-class), (AlignedGenomeIntervals-class),
6 6

reads<-,AlignedGenomeIntervals,character-methstrand,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class), (AlignedGenomeIntervals-class),
6 6

reduce,AlignedGenomeIntervals-method strand<-,AlignedGenomeIntervals, factor-method
(AlignedGenomeIntervals-class), (AlignedGenomeIntervals-class),

6 6

28 INDEX

strand<-,AlignedGenomelIntervals,vector-method
(AlignedGenomeIntervals-class),
6

subset (AlignedGenomelIntervals-class), 6

subset,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
6

summary (AlignedGenomeIntervals-class),
6

summary,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
6

trimAdapter, 21

weightedConsensusMatrix, 22
which_nearest, 24
which_nearest (which_nearest-methods),
23
which_nearest,AlignedGenomelIntervals,Genome_intervals_stranded-method
(which_nearest-methods), 23
which_nearest,Genome_intervals,Genome_intervals-method
(which_nearest-methods), 23
which_nearest,Genome_intervals_stranded, Genome_intervals_stranded-method
(which_nearest-methods), 23
which_nearest-methods, 23
width,AlignedGenomeIntervals-method
(AlignedGenomeIntervals-class),
6
windowCountAndGC (girafe-internal), 13
writeExportData (girafe-internal), 13
writeFastq, 21

	Additional reduce-methods
	addNBSignificance
	agiFromBam
	AlignedGenomeIntervals-class
	countReadsAnnotated
	fracOverlap
	getFeatureCounts
	girafe-internal
	intPhred
	medianByPosition
	perWindow
	plotAligned
	plotNegBinomFit
	plotReads
	trimAdapter
	weightedConsensusMatrix
	which_nearest-methods
	Index

