Package 'crumblr'

October 15, 2025

Type Package

Title Count ratio uncertainty modeling base linear regression

Version 1.0.0 **Date** 2025-03-11

Description Crumblr enables analysis of count ratio data using precision weighted linear (mixed) models. It uses an asymptotic normal approximation of the variance following the centered log ration transform (CLR) that is widely used in compositional data analysis. Crumblr provides a fast, flexible alternative to GLMs and GLMM's while retaining high power and controlling the false positive rate.

VignetteBuilder knitr

License Artistic-2.0 **Encoding** UTF-8

URL https://DiseaseNeurogenomics.github.io/crumblr

BugReports https://github.com/DiseaseNeurogenomics/crumblr/issues

Suggests BiocStyle, RUnit, knitr, rmarkdown, dreamlet, muscat, ExperimentHub, scater, HMP, reshape2, glue, tidyverse, BiocGenerics, compositions

biocViews RNASeq, GeneExpression, DifferentialExpression, BatchEffect, QualityControl, SingleCell, Regression, Epigenetics, FunctionalGenomics, Transcriptomics, Normalization, Clustering, DimensionReduction, Preprocessing, Software

Depends R (>= 4.4.0), ggplot2, methods

Imports Rdpack, viridis, tidytree, variancePartition (>= 1.36.3), SingleCellExperiment, ggtree, dplyr, stats, MASS, Rfast

RoxygenNote 7.3.2 RdMacros Rdpack LazyData false NeedsCompilation no

git_url https://git.bioconductor.org/packages/crumblr

git_branch RELEASE_3_21

2 crumblr-package

Contents

	crumblr-package	2
	buildClusterTree	3
	elr	4
	clrInv	5
	crumblr	6
	diffTree	8
	dmn_mle	10
	IFNCellCounts	11
	logFrac	12
	meanSdPlot	13
	plotForest	15
	plotScatterDensity	16
	plotTreeTest	16
	plotTreeTestBeta	17
	standardize	19
	treeTest	20
Index		22
crumb	r-package <i>crumblr</i>	

Description

Crumblr enables analysis of count ratio data using precision weighted linear (mixed) models. It uses an asymptotic normal approximation of the variance following the centered log ration transform (CLR) that is widely used in compositional data analysis. Crumblr provides a fast, flexible alternative to GLMs and GLMM's while retaining high power and controlling the false positive rate.

Value

none

buildClusterTree 3

buildClusterTree Perform hierarchical clustering on reducedDim

Description

Perform hierarchical clustering dimension reduction from single cell expression data

Usage

```
buildClusterTree(
    sce,
    reduction,
    labelCol,
    method.dist = c("cosine", "euclidean", "maximum", "manhattan", "canberra", "binary",
        "minkowski"),
    method.hclust = c("complete", "ward.D", "ward.D2")
)
```

Arguments

```
sce SingleCellExperiment object
reduction field of reducedDims(sce) to use
labelCol column in SingleCellExperiment storing cell type annotations
method.dist method for dist(..,method=method.dist)
method.hclust method for hclust(..,method=method.hclust)
```

Value

hierarchical clustering computed by hclust()

```
library(muscat)
data(example_sce)
hcl_test = buildClusterTree(example_sce, "TSNE", "cluster_id")
```

4 clr

clr

Centered log ratio transform

Description

Compute the centered log ratio (CLR) transform of a count matrix.

Usage

```
clr(counts, pseudocount = 0.5)
```

Arguments

counts count data with samples as rows and variables are columns

pseudocount added to counts to avoid issues with zeros

Details

The CLR of a vector x of counts in D categories is defined as clr(x) = log(x) - mean(log(x)). For details see van den Boogaart and Tolosana-Delgado (2013).

Value

matrix of CLR transformed counts

References

Van den Boogaart, K. Gerald, and Raimon Tolosana-Delgado. Analyzing compositional data with R. Vol. 122. Berlin: Springer, 2013.

See Also

```
compositions::clr()
```

```
# set probability of each category
prob <- c(0.1, 0.2, 0.3, 0.5)

# number of total counts
countsTotal <- 300

# number of samples
n_samples <- 5

# simulate info for each sample
info <- data.frame(Age = rgamma(n_samples, 50, 1))
rownames(info) <- paste0("sample_", 1:n_samples)</pre>
```

clrInv 5

```
# simulate counts from multinomial
counts <- t(rmultinom(n_samples, size = countsTotal, prob = prob))
colnames(counts) <- paste0("cat_", 1:length(prob))
rownames(counts) <- paste0("sample_", 1:n_samples)
# centered log ratio
clr(counts)</pre>
```

clrInv

Inverse of Centered log ratio transform

Description

Compute the inverse centered log ratio (CLR) transform of a count matrix.

Usage

clrInv(x)

Arguments

X

CLR transform values

Details

Given the CLR transformed values, compute the original fractions

Value

matrix of fractions

References

Van den Boogaart, K. Gerald, and Raimon Tolosana-Delgado. Analyzing compositional data with R. Vol. 122. Berlin: Springer, 2013.

See Also

```
compositions::clrInv()
```

```
# set probability of each category
prob <- c(0.1, 0.2, 0.3, 0.5)
# number of total counts
countsTotal <- 300</pre>
```

6 crumblr

```
# number of samples
n_samples <- 5

# simulate info for each sample
info <- data.frame(Age = rgamma(n_samples, 50, 1))
rownames(info) <- paste0("sample_", 1:n_samples)

# simulate counts from multinomial
counts <- t(rmultinom(n_samples, size = countsTotal, prob = prob))
colnames(counts) <- paste0("cat_", 1:length(prob))
rownames(counts) <- paste0("sample_", 1:n_samples)

# Fractions
counts / rowSums(counts)

# centered log ratio, with zero pseudocount
clr(counts, 0)

# recover fractions from CLR transformed values
clrInv(clr(counts, 0))</pre>
```

crumblr

Count ratio uncertainty modeling based linear regression

Description

Count ratio uncertainty modeling based linear regression (crumblr) returns CLR-transformed counts and observation-level inverse-variance weights for use in weighted linear models.

Usage

```
crumblr(
  counts,
  pseudocount = 0.5,
 method = c("clr", "clr_2class"),
  tau = 1,
 max.ratio = 5,
  quant = 0.05
)
## S4 method for signature 'matrix'
crumblr(
  counts,
  pseudocount = 0.5,
 method = c("clr", "clr_2class"),
  tau = 1,
  max.ratio = 5,
  quant = 0.05
```

crumblr 7

```
## S4 method for signature 'data.frame'
crumblr(
  counts,
  pseudocount = 0.5,
  method = c("clr", "clr_2class"),
  tau = 1,
  max.ratio = 5,
  quant = 0.05
)
```

Arguments

counts count data with samples as rows and variables are columns

pseudocount added to counts to avoid issues with zeros

method "clr" computes standard centered log ratio and precision weights based on the

delta approximation. "clr_2class" computes the clr() transform for category i using 2 classes: 1) counts in category i, and 2) counts _not_ in category i.

tau overdispersion parameter for Dirichlet multinomial. If NULL, estimate from ob-

served counts.

max.ratio regularize estimates of the weights to have a maximum ratio of max.ratio be-

tween the maximum and quant quantile value

quantile value used for max.ratio

Details

Evaluate the centered log ratio (CLR) transform of the count matrix, and the asymptotic theoretical variances of each transformed observation. The asymptotic normal approximation is increasingly accurate for small overdispersion τ , large total counts C, and large proportions p, but shows good agreement with the empirical results in most situations. In practice, it is often reasonable to assume a sufficient number of counts before a variable is included in an analysis anyway. But the feasibility of this assumption is up to the user to determine.

Given the array p storing proportions for one sample across all categories, the delta approximation uses the term 1/p. This can be unstable for small values of p, and the estimated variances can be sensitive to small changes in the proportions. To address this, the "clr_2class" method computes the clr() transform for category i using 2 classes: 1) counts in category i, and 2) counts _not_ in category i. Since class (2) now sums counts across all other categories, the small proportions are avoided and the variance estimates are more stable.

For real data, the asymptotic variance formula can give weights that vary substantially across samples and give very high weights for a subset of samples. In order to address this, we regularize the weights to reduce the variation in the weights to have a maximum ratio of max.ratio between the maximum and quant quantile value.

Value

An EList object with the following components:

8 diffTree

E: numeric matrix of CLR transformed counts

weights: numeric matrix of observation-level inverse-variance weights

See Also

```
limma::voom(), variancePartition::dream()
```

Examples

```
# set probability of each category
prob <- c(0.1, 0.2, 0.3, 0.5)
# number of total counts
countsTotal <- 300
# number of samples
n_samples <- 100
# simulate info for each sample
info <- data.frame(Age = rgamma(n_samples, 50, 1))</pre>
rownames(info) <- paste0("sample_", 1:n_samples)</pre>
# simulate counts from multinomial
counts <- t(rmultinom(n_samples, size = countsTotal, prob = prob))</pre>
colnames(counts) <- paste0("cat_", 1:length(prob))</pre>
rownames(counts) <- paste0("sample_", 1:n_samples)</pre>
# run crumblr on counts
cobj <- crumblr(counts)</pre>
# run standard variancePartition analysis on crumblr results
library(variancePartition)
fit <- dream(cobj, ~Age, info)</pre>
fit <- eBayes(fit)</pre>
topTable(fit, coef = "Age", sort.by = "none")
```

diffTree

Compare difference in estimates between two trees

Description

Compare difference in coefficient estimates between two trees. For node i, the test evaluates tree1[i] - tree2[i] = 0.

Usage

```
diffTree(tree1, tree2)
```

diffTree 9

Arguments

Details

When a fixed effect test is performed at each node using treeTest() with method = "FE.empirical" or method = "FE", a coefficient estimate and standard error are estimated for each node based on the children. This function performs a two-sample z-test to test if a given coefficient from tree1 is significantly different from the corresponding coefficient in tree2.

Value

a comparison of the coefficient estimates at each node

```
library(variancePartition)
# Load cell counts, clustering and metadata
# from Kang, et al. (2018) https://doi.org/10.1038/nbt.4042
data(IFNCellCounts)
# Simulate a factor with 2 levels called DiseaseRand
set.seed(123)
info$DiseaseRand <- sample(LETTERS[seq(2)], nrow(info), replace = TRUE)</pre>
info$DiseaseRand <- factor(info$DiseaseRand, LETTERS[seq(2)])</pre>
# Apply crumblr transformation
cobj <- crumblr(df_cellCounts)</pre>
# Use dream workflow to analyze each cell separately
fit <- dream(cobj, ~ StimStatus + ind, info)</pre>
fit <- eBayes(fit)</pre>
# Perform multivariate test across the hierarchy
res1 <- treeTest(fit, cobj, hcl, coef = "StimStatusstim")</pre>
# Perform same test, but on DiseaseRand
fit2 <- dream(cobj, ~DiseaseRand, info)</pre>
fit2 <- eBayes(fit2)</pre>
res2 <- treeTest(fit2, cobj, hcl, coef = "DiseaseRandB")</pre>
# Compare the coefficient estimates at each node
# Test if res1 - res2 is significantly different from zero
resDiff <- diffTree(res1, res2)</pre>
resDiff
plotTreeTest(resDiff)
```

10 dmn_mle

```
plotTreeTestBeta(resDiff)
```

dmn_mle

MLE for Dirichlet Multinomial

Description

MLE for Dirichlet Multinomial

Usage

```
dmn_mle(counts, ...)
```

Arguments

counts matrix with rows as samples and columns as categories ... additional arguments passed to optim()

Details

Maximize Dirichlet Multinomial (DMN) log-likelihood with optim() using log likelihood function and its gradient. This method uses a second round of optimization to estimate the scale of α parameters, which is necessary for accurate estimation of overdispersion metric.

The covariance between counts in each category from DMN distributed data is $n(diag(p)-pp^T)(1+\rho^2(n-1))$ for n total counts, and vector of proportions p, where $\rho^2=1/(a_0+1)$ and $a_0=\sum_i\alpha_i$. The count data is overdispersed by a factor of $1+\rho^2(n-1)$ compared to a multinomial (MN) distribution. As a_0 increases, the DMN converges to the MN.

See https://en.wikipedia.org/wiki/Dirichlet-multinomial_distribution#Matrix_notation

Value

```
list storing alpha parameter estimates, logLik, and details about convergence alpha estimated alpha parameters overdispersion Overdispersion value 1+\rho^2(n-1) compared to multinomial logLik value of function scale scaling of \alpha parameters computed in a second optimization step evals number of function evaluations in step 1 convergence convergence details from step 1
```

See Also

Other functions also estimate DMN parameters. MGLM::MGLMfit() and dirmult::dirmult() give good parameter estimates but are slower. Rfast::dirimultinom.mle() often fails to converge

IFNCellCounts 11

Examples

```
library(HMP)
set.seed(1)
n_samples <- 1000
n_counts <- 5000
alpha <- c(500, 1000, 2000)
# Dirichlet.multinomial
counts <- Dirichlet.multinomial(rep(n_counts, n_samples), alpha)</pre>
fit <- dmn_mle(counts)</pre>
fit
# overdispersion: true value
a0 <- sum(alpha)
rhoSq <- 1 / (a0 + 1)
1 + \text{rhoSq} * (n\_\text{counts} - 1)
# multinomial, so overdispersion is 1
counts <- t(rmultinom(n_samples, n_counts, prob = alpha / sum(alpha)))</pre>
dmn_mle(counts)
```

IFNCellCounts

Cell counts following interferon treatment

Description

Counts are from single cell RNA-seq data from treated and untreated samples from Kang, et al (2018).

Usage

```
data(IFNCellCounts)
info
df_cellCounts
hcl
```

12 logFrac

Format

- info is metadata for each sample
- df_cellCounts data.frame of counts for each sample
- hcl cluster of cell types based on pseudobulk expression

An object of class data. frame with 16 rows and 4 columns.

An object of class matrix (inherits from array) with 16 rows and 8 columns.

An object of class helust of length 7.

References

Kang, Hyun Min, et al. "Multiplexed droplet single-cell RNA-sequencing using natural genetic variation." Nature Biotechnology 36.1 (2018): 89-94.

logFrac

Log fractions and precision weights

Description

Compute log fractions and precision weights from matrix of c ounts, where columns are variables and rows are samples

Usage

```
logFrac(counts, pseudocount = 0.5, max.ratio = 5, quant = 0.05)
```

Arguments

counts count data with samples as rows and variables are columns

pseudocount added to counts to avoid issues with zeros

max.ratio regularize estimates of the weights to have a maximum ratio of max.ratio be-

tween the maximum and quant quantile value

quantile value used for max.ratio

Details

For real data, the asymptotic variance formula can give weights that vary substantially across samples and give very high weights for a subset of samples. In order to address this, we regularize the weights to reduce the variation in the weights to have a maximum ratio of max.ratio between the maximum and quant quantile value.

Value

An EList object with the following components:

E: numeric matrix of log transformed counts

weights: numeric matrix of observation-level inverse-variance weights

meanSdPlot 13

See Also

```
limma::voom(), variancePartition::dream()
```

Examples

```
# set probability of each category
prob <- c(0.1, 0.2, 0.3, 0.5)
# number of total counts
countsTotal <- 300
# number of samples
n_samples <- 100
# simulate info for each sample
info <- data.frame(Age = rgamma(n_samples, 50, 1))</pre>
rownames(info) <- paste0("sample_", 1:n_samples)</pre>
# simulate counts from multinomial
counts <- t(rmultinom(n_samples, size = countsTotal, prob = prob))</pre>
colnames(counts) <- paste0("cat_", 1:length(prob))</pre>
rownames(counts) <- paste0("sample_", 1:n_samples)</pre>
# run logFrac on counts
cobj <- logFrac(counts)</pre>
# run standard variancePartition analysis on crumblr results
library(variancePartition)
fit <- dream(cobj, ~ Age, info)</pre>
fit <- eBayes(fit)</pre>
topTable(fit, coef = "Age", sort.by = "none")
```

meanSdPlot

Plot row standard deviations versus rank of row means

Description

Diagnositic plot for homoscedasticity across variables

Usage

```
meanSdPlot(x)
```

Arguments

Χ

data matrix

14 meanSdPlot

Details

Plot the sd versus rank mean of each row like vsn::meanSdPlot. Also show the coefficient of variation of the variances. A lower value indicates stronger variance stabilization

Value

```
ggplot2 object
```

See Also

```
vsn::meanSdPlot
```

```
# set probability of each category
prob <- runif(300)</pre>
# number of samples
n_samples <- 1000
# number of counts
nCounts <- 3000
# simulate counts from multinomial
counts <- t(rmultinom(n_samples, size = nCounts, prob = prob))</pre>
colnames(counts) <- paste0("cat_", 1:length(prob))</pre>
rownames(counts) <- paste0("sample_", 1:n_samples)</pre>
# keep categories with at least 5 counts in at least 10 samples
keep <- colSums(counts > 5) > 10
# run crumblr on counts
cobj <- crumblr(counts[, keep], max.ratio = 10)</pre>
# Plot for CLR
# For each sample, plot rank of mean vs sd
fig1 <- meanSdPlot(cobj$E) + ggtitle("CLR")</pre>
# run crumblr::standardize()
df_std <- standardize(cobj)</pre>
# Standardized crumblr
fig2 <- meanSdPlot(df_std) + ggtitle("Standardized crumblr")</pre>
# Standardizing the crumblr results better stabilizes
# the variances across variables
fig1 | fig2
```

plotForest 15

plotForest

Forest plot

Description

Forest plot

Forest plot of effect size estimates at the leaves of the tree

Usage

```
plotForest(x, ...)
## S4 method for signature 'treedata'
plotForest(x, ..., hide = FALSE)
```

Arguments

x result from treeTest()
... other arguments

hide hide rownames and legend

Value

ggplot2 object

```
library(variancePartition)

# Load cell counts, clustering and metadata
# from Kang, et al. (2018) https://doi.org/10.1038/nbt.4042
data(IFNCellCounts)

# Apply crumblr transformation
cobj <- crumblr(df_cellCounts)

# Use dream workflow to analyze each cell separately
fit <- dream(cobj, ~ StimStatus + ind, info)
fit <- eBayes(fit)

# Perform multivariate test across the hierarchy
res <- treeTest(fit, cobj, hcl, coef = "StimStatusstim")

# Plot log fold changes from coef
plotForest(res)</pre>
```

plotTreeTest

 ${\tt plotScatterDensity}$

Scatter plot with 2D density using viridis colors

Description

Scatter plot with 2D density using viridis colors

Usage

```
plotScatterDensity(x, y, size = 1)
```

Arguments

```
x the x-coordinates of points in the plot
y the y-coordinates of points in the plot
size size of point
```

Value

```
ggplot2 object
```

Examples

```
# simulate data
M <- Rfast::rmvnorm(1000, mu = c(0, 0), sigma = diag(1, 2))
# create 2D density plot
plotScatterDensity(M[, 1], M[, 2])</pre>
```

plotTreeTest

Plot tree with results from multivariate testing

Description

Plot tree with results from multivariate testing

Usage

```
plotTreeTest(
   tree,
   low = "grey90",
   mid = "red",
   high = "darkred",
   xmax.scale = 1.5
)
```

plotTreeTestBeta 17

Arguments

tree	phylo object storing tree
low	low color on gradient
mid	mid color on gradient
high	high color on gradient
xmax.scale	expand the x-axis by this factor so leaf labels fit in the plot

Value

ggplot2 object

Examples

```
library(variancePartition)

# Load cell counts, clustering and metadata
# from Kang, et al. (2018) https://doi.org/10.1038/nbt.4042
data(IFNCellCounts)

# Apply crumblr transformation
cobj <- crumblr(df_cellCounts)

# Use dream workflow to analyze each cell separately
fit <- dream(cobj, ~ StimStatus + ind, info)
fit <- eBayes(fit)

# Perform multivariate test across the hierarchy
res <- treeTest(fit, cobj, hcl, coef = "StimStatusstim")

# Plot hierarchy and testing results
plotTreeTest(res)

# Extract results for first 3 nodes
res[1:3, ]</pre>
```

plotTreeTestBeta

Plot tree coefficients from multivariate testing

Description

Plot tree coefficients from multivariate testing at each node. Only applicable top fixed effect tests

18 plotTreeTestBeta

Usage

```
plotTreeTestBeta(
   tree,
   low = "blue",
   mid = "white",
   high = "red",
   xmax.scale = 1.5
)
```

Arguments

tree phylo object storing tree
low low color on gradient
mid mid color on gradient
high high color on gradient
xmax.scale expand the x-axis by this factor so leaf labels fit in the plot

Value

ggplot2 object

```
library(variancePartition)

# Load cell counts, clustering and metadata
# from Kang, et al. (2018) https://doi.org/10.1038/nbt.4042
data(IFNCellCounts)

# Apply crumblr transformation
cobj <- crumblr(df_cellCounts)

# Use dream workflow to analyze each cell separately
fit <- dream(cobj, ~ StimStatus + ind, info)
fit <- eBayes(fit)

# Perform multivariate test across the hierarchy
res <- treeTest(fit, cobj, hcl, coef = "StimStatusstim")

# Plot hierarchy, no tests are significant
plotTreeTestBeta(res)</pre>
```

standardize 19

standardize

Standardize observations using precision weights

Description

Compute standardized observations by dividing the observed values by their standard deviations based on the precision weights

Usage

```
standardize(x, ...)
## S4 method for signature 'EList'
standardize(x, ...)
```

Arguments

x object storing data to be transformed... other arguments

Details

Weighted response by their standard deviation so that resulting values have approximately equal sample variance. This is a key property that improves downstream PCA and clustering analysis.

Value

matrix of standardized values

```
# set probability of each category
prob <- c(0.1, 0.2, 0.3, 0.5)

# number of total counts
countsTotal <- 300

# number of samples
n_samples <- 100

# simulate counts from multinomial
counts <- t(rmultinom(n_samples, size = countsTotal, prob = prob))
colnames(counts) <- paste0("cat_", 1:length(prob))
rownames(counts) <- paste0("sample_", 1:n_samples)

# run crumblr on counts
cobj <- crumblr(counts)

# Standardize crumblr responses</pre>
```

20 treeTest

```
df_std <- standardize(cobj)

# Perform PCA on student transformed data
pca <- prcomp(t(df_std))
df_pca <- as.data.frame(pca$x)

ggplot(df_pca, aes(PC1, PC2)) +
    geom_point() +
    theme_classic() +
    theme(aspect.ratio = 1)</pre>
```

treeTest

Perform multivariate testing along a hierarchy

Description

Perform multivariate testing using mvTest() along the nodes of tree

Usage

```
treeTest(
   fit,
   obj,
   hc,
   coef,
   method = c("FE.empirical", "FE", "RE2C", "tstat", "sidak", "fisher"),
   shrink.cov = TRUE
)
```

Arguments

fit MArrayLM object return by lmFit() or dream()

obj EList object returned by voom()

hc hierarchical clustering as an hclust object

coef name of coefficient to be extracted

method statistical method used to perform multivariate test. See details. 'FE' is a fixed

effect test that models the covariance between coefficients. 'FE.empirical' use compute empirical p-values by sampling from the null distribution and fitting with a gamma. 'RE2C' is a random effect test of heterogeneity of the estimated coefficients that models the covariance between coefficients, and also incorporates a fixed effects test too. 'tstat' combines the t-statistics and models the covariance between coefficients. 'sidak' returns the smallest p-value and accounting for the number of tests. 'fisher' combines the p-value using

Fisher's method assuming independent tests.

shrink.cov shrink the covariance matrix between coefficients using the Schafer-Strimmer

method

treeTest 21

Details

See package remaCor for details about the remaCor::RE2C() test, and see remaCor::LS() for details about the fixed effect test. When only 1 feature is selected, the original t-statistic and p-value are returned.

Value

object of type treedata storing results

See Also

```
variancePartition::mvTest()
```

```
library(variancePartition)

# Load cell counts, clustering and metadata
# from Kang, et al. (2018) https://doi.org/10.1038/nbt.4042
data(IFNCellCounts)

# Apply crumblr transformation
cobj <- crumblr(df_cellCounts)

# Use dream workflow to analyze each cell separately
fit <- dream(cobj, ~ StimStatus + ind, info)
fit <- eBayes(fit)

# Perform multivariate test across the hierarchy
res <- treeTest(fit, cobj, hcl, coef = "StimStatusstim")

# Plot hierarchy and testing results
plotTreeTest(res)

# Extract results for first 3 nodes
res[1:3, ]</pre>
```

Index

```
* datasets
    IFNCellCounts, 11
buildClusterTree, 3
clr,4
clrInv, 5
crumblr, 6
crumblr,data.frame-method(crumblr),6
crumblr, matrix-method (crumblr), 6
crumblr-package, 2
df_cellCounts(IFNCellCounts), 11
diffTree, 8
dmn_mle, 10
hcl (IFNCellCounts), 11
IFNCellCounts, 11
info(IFNCellCounts), 11
logFrac, 12
meanSdPlot, 13
plotForest, 15
plotForest, treedata-method
        (plotForest), 15
plotScatterDensity, 16
plotTreeTest, 16
{\tt plotTreeTestBeta}, {\tt 17}
standardize, 19
standardize,EList-method(standardize),
treeTest, 20
```