--- title: "Data Analyses" author: - Sean K. Maden - Reid F. Thompson - Kasper D. Hansen - Abhinav Nellore date: "`r format(Sys.time(), '%d %B, %Y')`" bibliography: bibliography.bib package: recountmethylation vignette: > %\VignetteIndexEntry{Data Analyses} %\VignetteDepends{RCurl} %\usepackage[UTF-8]{inputenc} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} output: BiocStyle::html_document: code_folding: show toc: yes tocfloat: yes BiocStyle::pdf_document: toc: yes toc_depth: 3 --- ```{r setup, echo = FALSE} suppressMessages(library(rhdf5)) suppressMessages(library(minfi)) suppressMessages(library(recountmethylation)) suppressMessages(library(knitr)) suppressMessages(library(ggplot2)) suppressMessages(library(gridExtra)) suppressMessages(library(GenomicRanges)) suppressMessages(library(limma)) suppressMessages(library(HDF5Array)) opts_chunk$set(eval = FALSE, echo = TRUE, warning = FALSE, message = FALSE) ``` # Overview This vignette walks through 3 analysis examples featured in the paper @maden_human_2021. These analyses use data accessed with the `recountmethylation` package. First, predicted and chronological ages are compared from the sample metadata. Then quality signals (methylated and unmethylated, log2 median scale) are compared between samples stored using either formalin fixed paraffin-embedding (FFPE) or freezing. Finally, tissue-specific probe sets with high DNA methylation (DNAm) fraction variances are identifed and analyzed using liver and adipose samples. Note that versions of these analyses also appear in the manuscript @maden_human_2020. ## Analysis script and limited chunk evaluation This vignette accompanies the "data_analyses.R" script. Note the script was written with extensibility to new and larger comparator groups in mind. While the script should run to completion without errors, it takes several hours in total to complete (excluding the time to download large database files). Due to this lengthy script run time, this vignette only evaluates code chunks utilizing final/resultant data objects produced by the script (e.g. for tables, tests, and figures). For completeness, remaining script steps and code are included but not evaluated. Load the file "data_analyses.RData" from the `recountmethylation` package files. This contains the resultant/final data objects produced by the script, which will be used in evaluated code chunks below. ```{r, eval = FALSE} sf <- system.file(file.path("extdata", "data_analyses"), package = "recountmethylation") load(file.path(sf, "data_analyses.RData")) ``` ## Datasets and data objects The analysis script uses sample metadata and 2 database files. Retrieve the provided sample metadata from the `recountmethylation` package files. ```{r, eval = FALSE} # get local metadata mdpath <- system.file("extdata", "gsm_metadata", "md_final_hm450k_0-0-1.rda", package = "recountmethylation") md <- get(load(mdpath)) ``` Also obtain 2 `HDF5-SummarizedExperiment` database files, the GenomicRanges and MethylSet files. Consult the `users_guide` vignette for details about the database file formats and download instructions. Once the datasets downloaded, they can be loaded into an R session as follows. ```{r} # load methylset gmdn <- "remethdb-h5se_gm_0-0-1_1590090412" gm <- loadHDF5SummarizedExperiment(gmdn) # load grset grdn <- "remethdb-h5se_gr_0-0-1_1590090412" gr <- loadHDF5SummarizedExperiment(grdn) ``` # Example 1: Comparing mined and predicted age This example uses sample metadata to compare mined and predicted ages from the `age` and `predage` variables, respectively. Values in `age` were mined from GEO record metadata and are included with available age units. Values in `predage` were calculated from noob-normalized (@triche_low-level_2013) DNAm Beta-values with `agep`, a function from the `wateRmelon` package that implements the Horvath biological age clock (@horvath_dna_2013). ## Make new variables and filter samples Get samples for which both `age` and `predage` age are available. From `age`, make a new numeric variable `chron.age`. ```{r, eval = FALSE} mdf <- md[!md$age == "valm:NA",] mdf$chron.age <- as.numeric(gsub(";.*", "", gsub("^valm:", "", mdf$age))) mdf$predage <- as.numeric(mdf$predage) mdf <- mdf[!is.na(mdf$chron.age),] mdf <- mdf[!is.na(mdf$predage),] ``` Next, make a new variable `stype` from `sampletype` and remove samples with missing values. ```{r, eval = FALSE} mdf$stype <- as.character(gsub(";.*", "", gsub("^msraptype:", "", mdf$sampletype))) mdf <- mdf[!is.na(mdf$stype),] ``` Now make a new variable `is.cx` from querying `cancer` in the `disease` term. This reflects whether a sample was likely from a cancer or a cancer patient. ```{r, eval = FALSE} mdf$is.cx <- ifelse(grepl(".*cancer.*", mdf$disease), TRUE, FALSE) ``` Next, store the study-wise age differences in the `xdif` variable using the mean absolute difference (a.k.a. "MAD") between `chron.age` and `predage` across samples from the same study. Also store study sizes in the `ngsm` term for plotting. ```{r, eval = FALSE} xdif <- ngsm <- c() for(g in unique(mdf$gseid)){ mdff <- mdf[mdf$gseid==g, ] xdif <- c(xdif, mean(abs(mdff$chron.age - as.numeric(mdff$predage)))) ngsm <- c(ngsm, nrow(mdff)) } names(xdif) <- names(ngsm) <- unique(mdf$gseid) ``` Make a new filtered `mdff` data frame using the new variables. Retain likely non-cancer samples from studies with MAD <= 10 years. Pre- and post-filter datasets (groups 1 and 2, respectively) are summarized below. ```{r, eval = FALSE} filt <- mdf$stype == "tissue" & !mdf$is.cx filt <- filt & !mdf$gseid %in% names(xdif[xdif > 10]) mdff <- mdf[filt, ] ``` ## Analyses and summary statistics Perform statistical analyses of `mdf` (group 1) and `mdff` (group 2). First, generate multiple regressions for each. ```{r, eval = FALSE} lm1 <- lm(mdf$predage ~ mdf$chron.age + mdf$gseid + mdf$stype + mdf$is.cx) lm2 <- lm(mdff$predage ~ mdff$chron.age + mdff$gseid) ``` Now perform analyses of variances (ANOVAs) on multiple regressions. Summarize variance percentages and p-values for covariates in each model. Columns "Vperc" and "Pval" are the percent variance and unadjusted p-value for covariates in each model. ```{r, eval = FALSE} # anovas av1 <- anova(lm1) av2 <- anova(lm2) # results summaries sperc1 <- round(100*av1$`Sum Sq`[1:4]/sum(av1$`Sum Sq`), 2) pval1 <- format(av1$`Pr(>F)`[1:4], scientific = TRUE, digits = 3) sperc2 <- round(100*av2$`Sum Sq`[1:2]/sum(av2$`Sum Sq`), 2) pval2 <- format(av2$`Pr(>F)`[1:2], scientific = TRUE, digits = 3) # summary table dan <- data.frame(Vperc1 = c(sperc1), Pval1 = c(pval1), Vperc2 = c(sperc2, "-", "-"), Pval2 = c(pval2, "-", "-"), stringsAsFactors = FALSE) rownames(dan) <- c("Chron.Age", "GSEID", "SampleType", "Cancer") knitr::kable(dan, align = "c") ``` Now calcualte the R-squared, Spearman correlation coefficient (Rho), and MAD for each model. ```{r, eval = FALSE} # rsquared rsq1 <- round(summary(lm1)$r.squared, 2) rsq2 <- round(summary(lm2)$r.squared, 2) # correlation coefficient rho1 <- round(cor.test(mdf$predage, mdf$chron.age, method = "spearman")$estimate, 2) rho2 <- round(cor.test(mdff$predage, mdff$chron.age, test = "spearman")$estimate, 2) # mean absolute difference mad1 <- round(mean(abs(mdf$chron.age - mdf$predage)), 2) mad2 <- round(mean(abs(mdff$chron.age - mdff$predage)), 2) ``` Finally, organize and display the results ```{r, eval = FALSE} dss <- data.frame(group = c("1", "2"), ngsm = c(nrow(mdf), nrow(mdff)), ngse = c(length(unique(mdf$gseid)), length(unique(mdff$gseid))), r.squared = c(rsq1, rsq2), rho = as.character(c(rho1, rho2)), mad = c(mad1, mad2), stringsAsFactors = FALSE) knitr::kable(dss, align = "c") ``` ## Scatter plots of study errors and sample ages Plot sample counts and MAD for each GSE record, with a vertical line at the 10-years MAD cutoff used for the group 2 filter. ```{r, dpi = 65, eval = FALSE, fig.width = 3.8, fig.height = 3.4} plot(xdif, ngsm, ylab = "Study Size (Num. GSM)", xlab = "Age Difference, MAD[Chron, Pred]") abline(v = 10, col = "red") ``` Finally, plot the chronological and predicted ages for group 2 samples. ```{r, dpi = 65, eval = FALSE, fig.width = 3.4, fig.height = 3.1} ggplot(mdff, aes(x = chron.age, y = predage)) + geom_point(size = 1.2, alpha = 0.2) + geom_smooth(method = "lm", size = 1.2) + theme_bw() + xlab("Chronological Age") + ylab("Epigenetic (DNAm) Age") ``` # Example 2: Signal comparison of FFPE and frozen samples This section compares methylated and unmethylated signal (log2 sample median scale) between samples stored with either FFPE or fresh freezing (FF). ## Get samples with storage type information Identify and summarize samples with the `storage` variable available. Use values in `storage` to inform a new `sgroup` variable. ```{r, eval = FALSE} mdf <- md[!md$storage == "NA",] mdf$sgroup <- ifelse(grepl("FFPE", mdf$storage), "ffpe", "frozen") ``` ```{r} # get summary table sst <- get_sst(sgroup.labs = c("ffpe", "frozen"), mdf) knitr::kable(sst, align = "c") # table display ``` ## Use blocking to calculate signal log2 medians Subset the `MethylSet` object and extract the full signal matrices with the `getMeth` and `getUnmeth` functions from the minfi package. ```{r} gmf <- gm[, gm$gsm %in% mdf$gsm] # filt h5se object mdf <- mdf[order(match(mdf$gsm, gmf$gsm)),] identical(gmf$gsm, mdf$gsm) gmf$storage <- mdf$storage # append storage info ``` ```{r} meth.all <- getMeth(gmf) unmeth.all <- getUnmeth(gmf) ``` Next, prepare to calculate log2 median signals. To manage data in active memory, process it in smaller units or blocks. Using the `get_blocks` helper function, assign sample indices to blocks of size 1,000 using the `bsize` argument. ```{r} blocks <- getblocks(slength = ncol(gmf), bsize = 1000) ``` Now calculate log2 of sample median signals for each block. Vectorize calculations within blocks with `apply`. Store results in the data.frame `ds`. ```{r} ms <- matrix(nrow = 0, ncol = 2) l2meth <- l2unmeth <- c() for(i in 1:length(blocks)){ b <- blocks[[i]] gmff <- gmf[, b] methb <- as.matrix(meth.all[, b]) unmethb <- as.matrix(unmeth.all[, b]) l2meth <- c(l2meth, apply(methb, 2, function(x){ log2(median(as.numeric(x))) })) l2unmeth <- c(l2unmeth, apply(unmethb, 2, function(x){ log2(median(as.numeric(x))) })) ms <- rbind(ms, matrix(c(l2meth, l2unmeth), ncol = 2)) message(i) } rownames(ms) <- colnames(meth.all) colnames(ms) <- c("meth.l2med", "unmeth.l2med") ds <- as.data.frame(ms) ds$storage <- ifelse(grepl("FFPE", gmf$storage), "ffpe", "frozen") ``` ## Signals plotted by storage type Evaluate signal patterns across storage type using plots using the ggplot2 package. First, make a 2d scatter plot of methylated and unmethylated signals using the `geom_point` function. Color by storage type with the `scale_color_manual` function (FFPE samples are orange, frozen samples are purple). ```{r, dpi = 65, eval = FALSE, fig.width = 4.3, fig.height = 3.1} ggplot(ds, aes(x = meth.l2med, y = unmeth.l2med, color = storage)) + geom_point(alpha = 0.35, cex = 3) + theme_bw() + scale_color_manual(values = c("ffpe" = "orange", "frozen" = "purple")) ``` Next, make separate violin plots for signals and groups using the `geom_violin` function with the same colors for each storage type. Draw horizontal median lines by setting the `draw_quantiles` argument to 0.5. ```{r, dpi = 65, eval = FALSE, fig.width = 4.5, fig.height = 2.5} vp <- matrix(nrow = 0, ncol = 2) vp <- rbind(vp, matrix(c(ds$meth.l2med, paste0("meth.", ds$storage)), ncol = 2)) vp <- rbind(vp, matrix(c(ds$unmeth.l2med, paste0("unmeth.", ds$storage)), ncol = 2)) vp <- as.data.frame(vp, stringsAsFactors = FALSE) vp[,1] <- as.numeric(vp[,1]) colnames(vp) <- c("signal", "group") vp$col <- ifelse(grepl("ffpe", vp$group), "orange", "purple") # make plot ggplot(vp, aes(x = group, y = signal, color = group)) + scale_color_manual(values = c("meth.ffpe" = "orange", "unmeth.ffpe" = "orange", "meth.frozen" = "purple", "unmeth.frozen" = "purple")) + geom_violin(draw_quantiles = c(0.5)) + theme_bw() + theme(legend.position = "none") ``` # Example 3: Identify and analyze tissue-specific probes with the highest variances This example describes variance analyses in liver and adipose, 2 of the 7 tissues analyzed in the manuscript @maden_human_2020. This includes a quality assessment, study ID linear adjustment of DNAm fractions, ANOVA-based and probe filtering, 2-step variance analyses, and results plots. ## Sample identification and summary Summarize the samples of interest. Use two vectors of GSM IDs, `adipose.gsmv` and `liver.gsmv` to filter the metadata (see vectors in the data_analyses.R script). Also define tissues in the new group variable `sgroup`. Summarize the sample groups in a table ```{r, eval = FALSE} gsmv <- c(adipose.gsmv, liver.gsmv) mdf <- md[md$gsm %in% gsmv,] mdf$sgroup <- ifelse(mdf$gsm %in% adipose.gsmv, "adipose", "liver") sst.tvar <- get_sst(sgroup.labs = c("liver", "adipose"), mdf) knitr::kable(sst.tvar, align = "c") ``` ## Calculate log2 methylated and unmethylated signal medians Subset the `MethylSet` dataset, then append the `sgroup` variable from `mdf` and map the object to the genome using the `mapToGenome` function from the `minfi` package. ```{r} ms <- gm[,colnames(gm) %in% rownames(mdf)] ms <- ms[,order(match(colnames(ms), rownames(mdf)))] identical(colnames(ms), rownames(mdf)) # [1] TRUE ms$sgroup <- mdf$sgroup ms <- mapToGenome(ms) dim(ms) # [1] 485512 252 ``` As in example 2 above, calculate the sample log2 median signals from signal matrices. Process the data in blocks using within-block vectorization with `apply`. ```{r} # get log2 medians meth.tx <- getMeth(ms) unmeth.tx <- getUnmeth(ms) blocks <- getblocks(slength = ncol(ms), bsize = 50) # process data in blocks l2m <- matrix(nrow = 0, ncol = 2) for(i in 1:length(blocks)){ b <- blocks[[i]] gmff <- ms[, b] methb <- as.matrix(meth.tx[, b]) unmethb <- as.matrix(unmeth.tx[, b]) l2meth <- l2unmeth <- c() l2meth <- c(l2meth, apply(methb, 2, function(x){ log2(median(as.numeric(x))) })) l2unmeth <- c(l2unmeth, apply(unmethb, 2, function(x){ log2(median(as.numeric(x))) })) l2m <- rbind(l2m, matrix(c(l2meth, l2unmeth), ncol = 2)) message(i) } ds2 <- as.data.frame(l2m) colnames(ds2) <- c("l2med.meth", "l2med.unmeth") ds2$tissue <- as.factor(ms$sgroup) ``` Make a scatter plot of log2 median signals by tissue type with the `geom_point` function. ```{r, dpi = 65, eval = FALSE, fig.width = 3.2, fig.height = 2} ggplot(ds2, aes(x = l2med.meth, y = l2med.unmeth, color = tissue)) + geom_point(alpha = 0.3, cex = 3) + theme_bw() ``` ## Perform linear correction on DNAm for study IDs Access the noob-normalized DNAm Beta-values from the `GenomicRatio` object `gr` loaded above. Extract the DNAm fractions as M-values (logit2 transformed Beta-values) with the `getM` minfi function. Perform linear correction on study ID with the `removeBatchEffect` function from the limma package by setting the `batch` argument to the "gseid" variable. ```{r} lmv <- lgr <- lmd <- lb <- lan <- list() tv <- c("adipose", "liver") # get noob norm data gr <- gr[,colnames(gr) %in% colnames(ms)] gr <- gr[,order(match(colnames(gr), colnames(ms)))] identical(colnames(gr), colnames(ms)) gr$sgroup <- ms$sgroup # do study ID adj for(t in tv){ lmv[[t]] <- gr[, gr$sgroup == t] msi <- lmv[[t]] madj <- limma::removeBatchEffect(getM(msi), batch = msi$gseid) # store adjusted data in a new se object lgr[[t]] <- GenomicRatioSet(GenomicRanges::granges(msi), M = madj, annotation = annotation(msi)) # append samples metadata lmd[[t]] <- pData(lgr[[t]]) <- pData(lmv[[t]]) # append preprocessing metadata metadata(lgr[[t]]) <- list("preprocess" = "noobbeta;removeBatchEffect_gseid") # make betavals list lb[[t]] <- getBeta(lgr[[t]]) # beta values list } ``` ## Perform array-wide ANOVAs and filter probes Prepare and run ANOVAs on autosomal probes. First, identify and remove sex chromosome probes by accessing annotation with the `getAnnotation` minfi function. List the filtered data in the `lbf` object. ```{r} anno <- getAnnotation(gr) chr.xy <-c("chrY", "chrX") cg.xy <- rownames(anno[anno$chr %in% chr.xy,]) lbf <- list() for(t in tv){ bval <- lb[[t]] lbf[[t]] <- bval[!rownames(bval) %in% cg.xy,] } bv <- lbf[[1]] ``` Next, select and format the 9 model covariates for the ANOVA tests. From sample metadata, select the variables for study ID ("gseid"), predicted sex ("predsex"), predicted age ("predage"), and predicted fractions of 6 cell types ("predcell..*"). Convert these to either factor or numeric type with the functions `as.factor` and `as.numeric`, respectively. ```{r} lvar <- list() cnf <- c("gseid", "predsex", "predage", "predcell.CD8T", "predcell.CD4T", "predcell.NK", "predcell.Bcell", "predcell.Mono", "predcell.Gran") for(t in tv){ for(c in cnf){ if(c %in% c("gseid", "predsex")){ lvar[[t]][[c]] <- as.factor(pData(lgr[[t]])[,c]) } else{ lvar[[t]][[c]] <- as.numeric(pData(lgr[[t]])[,c]) } } } ``` Run ANOVAs on probe Beta-values. Use the blocking-with-vectorization strategy here as above, with large blocks of 100,000 sample indices each. Calculations should complete in about 1 hour. For each test, retain unadjusted p-values and variance percentages of the 9 covariates. Store the 18-column results matrices in the `lan` list object. ```{r} bv <- lbf[[1]] blocks <- getblocks(slength = nrow(bv), bsize = 100000) mr <- matrix(nrow = 0, ncol = 18) lan <- list("adipose" = mr, "liver" = mr) t1 <- Sys.time() for(bi in 1:length(blocks)){ for(t in tv){ datr <- lbf[[t]][blocks[[bi]],] tvar <- lvar[[t]] newchunk <- t(apply(datr, 1, function(x){ # do multiple regression and anova x <- as.numeric(x) ld <- lm(x ~ tvar[[1]] + tvar[[2]] + tvar[[3]] + tvar[[4]] + tvar[[5]] + tvar[[6]] + tvar[[7]] + tvar[[8]] + tvar[[9]]) an <- anova(ld) # get results ap <- an[c(1:9),5] # pval av <- round(100*an[c(1:9),2]/sum(an[,2]), 3) # percent var return(as.numeric(c(ap, av))) })) # append new results lan[[t]] <- rbind(lan[[t]], newchunk) } message(bi, "tdif: ", Sys.time() - t1) } # append colnames for(t in tv){colnames(lan[[t]]) <- rep(cnf, 2)} ``` Next, remove probes showing evidence of residual confounding from the covariates. Adjust covariate p-values with the `p.adjust` function, and retain probes with adjusted p-values >= 0.001 and variance < 10% variance for all 9 covariates. Retain the filtered probe DNAm data as `GenomicRatioSet`s for each tissue in the list `lgr.filt`. ```{r} pfilt <- 1e-3 varfilt <- 10 lcgkeep <- list() # list of filtered probe sets for(t in tv){ pm <- lan[[t]][,c(1:9)] vm <- lan[[t]][,c(10:18)] # parse variable thresholds cm <- as.data.frame(matrix(nrow = nrow(pm), ncol = ncol(pm))) for(c in 1:ncol(pm)){ pc <- pm[,c]; pc.adj <- as.numeric(p.adjust(pc)) pc.filt <- pc.adj < pfilt vc.filt <- vm[,c] >= varfilt cm[,c] <- (pc.filt & vc.filt) } cgkeep <- apply(cm, 1, function(x){return((length(x[x == TRUE]) == 0))}) lcgkeep[[t]] <- rownames(pm)[cgkeep] } lgr.filt <- list("adipose" = lgr[[1]][lcgkeep[[1]],], "liver" = lgr[[2]][lcgkeep[[2]],]) ``` ## Get probe DNAm summary statistics and analyze variances Calculate probe DNAm summary statistics. For each tissue, calculate the minima, maxima, means, medians, standard deviations, and variances of Beta-values across samples. Store results in the `lcg.ss` list. ```{r} cnv <- c("min", "max", "mean", "median", "sd", "var") bv <- getBeta(lgr.filt[[t]]) lbt <- lcg.ss <- list() bsize = 100000 for(t in tv){ lcg.ss[[t]] <- matrix(nrow = 0, ncol = 6) lbt[[t]] <- bt <- as.matrix(getBeta(lgr.filt[[t]])) blockst <- getblocks(slength = nrow(bt), bsize = bsize) for(bi in 1:length(blockst)){ bc <- bt[blockst[[bi]],] newchunk <- t(apply(bc, 1, function(x){ newrow <- c(min(x), max(x), mean(x), median(x), sd(x), var(x)) return(as.numeric(newrow)) })) lcg.ss[[t]] <- rbind(lcg.ss[[t]], newchunk) message(t, ";", bi) } colnames(lcg.ss[[t]]) <- cnv } ``` Perform the main variance analyses with 2 strategies. This selects the 2,000 probes with the highest group-specific variances. First, use a single variance cutoff, or "absolute" quantile cutoff, for each group. List probes in the top 99th quantile variances for each tissue in the `lmvp.abs` object. ```{r} qiv = seq(0, 1, 0.01) qwhich = c(100) lmvp.abs <- list() lci <- list() for(t in tv){ cgv <- c() sa <- lcg.ss[[t]] sa <- as.data.frame(sa, stringsAsFactors = FALSE) q <- quantile(sa$var, qiv)[qwhich] lmvp.abs[[t]] <- rownames(sa[sa$var > q,]) } ``` Now select high-variance probes with binning for each tissue. Assign probes to 1 of 10 bins using 0.1 mean Beta-value intervals. Select probes in the top 99th variance quantiles for each bin, and store in `lmvp.bin`. ```{r} # binned quantiles method qiv = seq(0, 1, 0.01) # quantile filter qwhich = c(100) bin.xint <- 0.1 binv = seq(0, 1, bin.xint)[1:10] # binned bval mean # iter on ncts lmvp.bin = list() for(t in tv){ sa <- as.data.frame(lcg.ss[[t]]) cgv <- c() # iterate on betaval bins for(b in binv){ bf <- sa[sa$mean >= b & sa$mean < b + bin.xint, ] # get probes in bin q <- qf <- quantile(bf$var, qiv)[qwhich] # do bin filter cgv <- c(cgv, rownames(bf)[bf$var > q]) # append probes list } lmvp.bin[[t]] <- cgv } ``` With the variance analyses complete, filter the `lmvp.abs` and `lmvp.bin` probes by tissue specificity. Tissue-specific probes should only occur among high variance probes for a single tissue. Categorize probes as "tissue-specific" or "non-specific" using the `table` function to determine their frequency of occurrence across tissues. ```{r, eval = FALSE} cgav <- c() for(t in tv){ txcg <- unique(c(lmvp.abs[[t]], lmvp.bin[[t]])) cgav <- c(cgav, txcg) } cgdf <- as.data.frame(table(cgav)) cgdf$type <- ifelse(cgdf[,2] > 1, "non-specific", "tissue-specific") table(cgdf$type) ``` After filtering probes by tissue specificity, rank them by descending DNAm variance. Select 1,000 probes from `lmvp.abs`, then 1,000 non-overlapping probes from `lmvp.bin`, retain the 2,000 highest-variance probes by tissue in the `ltxcg` list. ```{r} cgfilt <- cgdf$type == "non-specific" cgdff <- cgdf[!cgfilt,] ltxcg <- list() for(t in tv){ cgtx <- c() cgabs <- lmvp.abs[[t]] cgbin <- lmvp.bin[[t]] st <- as.data.frame(lcg.ss[[t]]) # get t tissue specific probes filtbt <- rownames(st) %in% cgdff[,1] st <- st[filtbt,] # get top 1k t tissue specific abs probes filt.bf1 <- rownames(st) %in% cgabs sf1 <- st[filt.bf1,] sf1 <- sf1[rev(order(sf1$var)),] cgtx <- rownames(sf1)[1:1000] # get top 1k t tissue specific bin probes, after filt filt.bf2 <- rownames(st) %in% cgbin & !rownames(st) %in% rownames(sf1) sf2 <- st[filt.bf2,] sf2 <- sf2[rev(order(sf2$var)),] cgtx <- c(cgtx, rownames(sf2)[1:1000]) ltxcg[[t]] <- cgtx } ``` ## Violin plots and heatmaps of probe set DNAm means and variances First, get probe set DNAm summaries and annotation data. ```{r} # filtered cg summaries lfcg <- lapply(lcg.ss, function(x){x <- x[rownames(x) %in% unique(unlist(ltxcg)),]}) # annotation subset anno <- getAnnotation(gr) # save anno for cga anno <- anno[,c("Name", "UCSC_RefGene_Name", "UCSC_RefGene_Group", "Relation_to_Island")] anno <- anno[rownames(anno) %in% unique(unlist(ltxcg)),] # filtered beta values lcgssf <- list() for(t in tv){ bv <- lcg.ss[[t]] bvf <- bv[rownames(bv) %in% ltxcg[[t]],] lcgssf[[t]] <- bvf } ``` Use the `makevp()` helper function to make violin plots with horizontal bars at distribution medians. This function formats the data and calls `geom_violin` to make violin plots for DNAm fraction means and variances. Store plots in the `lvp` list, then display them vertically using the `grid.arrange` function from the gridExtra package. ```{r, dpi = 65, eval = FALSE, fig.width = 3.8, fig.height = 4.5} lvp <- makevp(lfcg, ltxcg) grid.arrange(lvp[[1]], lvp[[2]], ncol = 1, bottom = "Tissue") ``` Tabulate the means of probe set statistics by tissue. ```{r, eval = FALSE} tcgss <- matrix(nrow = 0, ncol = 6) for(t in tv){ datt <- apply(lcgssf[[t]], 2, function(x){ round(mean(x), digits = 2) }) mt <- matrix(datt, nrow = 1) tcgss <- rbind(tcgss, mt) } colnames(tcgss) <- colnames(lcgssf$adipose) rownames(tcgss) <- tv knitr::kable(t(tcgss), align = "c") ``` Next, prepare genome region heatmaps with 3 helper functions. These will tabulate probe abundances by region and use the probe Beta-value means to calculate the mean of means (left heatmap) and variance of means (right heatmap) by genome region type. First, define island and gene annotation groups from the manifest using `get_cga`. Next, get region-specific DNAm summaries with `hmsets` using a minimum region coverage of 2. This means values are calculated for regions with least 2 probes, and regions with less are assigned "NA" and greyed out. Make the 2 plots objects for means and variances with `hmplots()`, which wraps the `geom_tile` ggplot2 function. Finally, display plots horizontally with `grid.arrange`. ```{r, dpi = 65, eval = FALSE, fig.width = 8.2, fig.height = 4.7} cga <- get_cga(anno) lhmset <- hmsets(ltxcg, lfcg, cga) lhmplots <- hmplots(lhmset$hm.mean, lhmset$hm.var, lhmset$hm.size) grid.arrange(lhmplots$hm.mean.plot, lhmplots$hm.var.plot, layout_matrix = matrix(c(1, 1, 1, 1, 1, 2, 2), nrow = 1), bottom = "Tissue", left = "Annotation/Region Type") ``` Colors blue, white, and red represent low, intermediate, and high means and variances of region-specific mean Beta-values. Cell numbers show probe region quantities and are identical for both plots. # Conclusions This vignette described cross-study analyses using data objects accessible with `recountmethylation` and appearing in the manuscript @maden_human_2020. See the manuscript for more information about samples, quality metric signal patterns, and extended variability analyses. For details about data objects, consult the package `users_guide` vignette. Full code and helper function definitions are contained in the `data_analyses.R` companion script. For additional utilities to analyze DNAm data, consult the `minfi` and `wateRmelon` packages. # Session info ```{r get_sessioninfo, eval = FALSE} sessionInfo() ``` # Works Cited