
Package ‘TypeInfo’
October 14, 2021

Version 1.58.0

Date 9/27/2005

Title Optional Type Specification Prototype

Author Duncan Temple Lang
Robert Gentleman (<rgentlem@fhcrc.org>)

Maintainer Duncan Temple Lang <duncan@wald.ucdavis.edu>

Description A prototype for a mechanism for specifying the types of
parameters and the return value for an R function. This is
meta-information that can be used to generate stubs for servers
and various interfaces to these functions. Additionally, the
arguments in a call to a typed function can be validated using
the type specifications.
We allow types to be specified as either
i) by class name using either inheritance - is(x, className),
or strict instance of - class(x) %in% className, or
ii) a dynamic test given as an R expression which is evaluated
at run-time.
More precise information and interesting tests can be done via
ii), but it is harder to use this information as meta-data as
it requires more effort to interpret it and it is of course
run-time information. It is typically more meaningful.

License BSD

LazyLoad true

Depends methods

Suggests Biobase

Collate Classes.S checkArgs.S print.S rewrite.S support.S

biocViews Infrastructure

git_url https://git.bioconductor.org/packages/TypeInfo

git_branch RELEASE_3_13

git_last_commit 11a4340

git_last_commit_date 2021-05-19

Date/Publication 2021-10-14

1

2 checkArgs

R topics documented:
checkArgs . 2
checkReturnValue . 4
ClassNameOrExpression-class . 5
DynamicTypeTest-class . 5
hasParameterType . 6
IndependentTypeSpecification . 8
NamedTypeTest-class . 9
paramNames . 10
ReturnTypeSpecification . 11
rewriteTypeCheck . 12
showTypeInfo . 13
SimultaneousTypeSpecification . 14
TypedSignature . 15
TypedSignature-class . 16
typeInfo . 17
TypeSpecification-class . 18

Index 20

checkArgs Validate the arguments in a call to a typed function.

Description

TypeInfo uses checkArgs internally.

This function is used to validate the arguments in a call to a function that has associated type
information about the parameters. The types for the parameters are currently given associated
with the function via an attribute "ParameterTypes". In the body of the function, one can call
checkArgs and the specification is taken and used to compute whether the elements in the call are
compatible with those in the signatures.

There are currently several ways to specify the signatures. One is as a list of explicit parameter name
- class name pair vectors given as c(paramName = className,paramName = className,...). Al-
ternatively, one can use an expression to perform a dynamic test. For example, one can test the
length of an object, e.g. c(x = length(x) < 4,y = length(y) == length(x)). Each expression
should return a logical value indicating whether the expected condition was satisfied. A third form
of specifying signatures is given using class names for individual parameters and just matching
the argument class to these names. This differs from the first form because the arguments are not
checked simultaneoulsy, but rather one at a time. The test for a given argument is whether it is in
the named vector of classes.

Usage

checkArgs(f = sys.function(1), argNames, args = NULL, forceAll = FALSE,
env = sys.frame(1), isMissing = logical(0))

checkArgs 3

Arguments

f the function object. If this is missing, the function is taken as the function being
called in the previous frame, i.e. the one that called checkArgs.

argNames a character vector giving the names of the arguments that are to be checked.

args a list of named argument values.

forceAll a logical value. If this is TRUE, then we evaluate all of the arguments in the
call frame of the function being evaluated whose arguments we are to check. If
this is FALSE, This should be a three-level enum to represent evaluate as needed,
evaluate all referenced in any of the signatures and evaluate all of the arguments
now.

env the environment in which arguments are located.

isMissing named logical vector indicating missing formal arguments; defined internally
when consulting f of class function.

Value

If the check succeeds in matching the arguments to the parameter types, the signature that matched
is returned. Otherwise, an error is raised. If the signature is returned, this can be used to validate
the return value in the context of that signature.

Note that if an instance of SimultaneousTypeSpecification-class is provided to this func-
tion, the TypedSignature-class elements are searched sequentially until a matching one is found.
That matching signature is returned. Therefore, the order the signatures are specified within the
SimultaneousTypeSpecification-class object is important. This could change if we wanted.
At present, it is up to the author to specify what they want to have happen. We could use the S4
signature matching technique when this is finalized and implemented in C code.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

typeInfo

Examples

bob = function(x, y) {
checkArgs() # Completely unecessary as we don't specify type information.
"Finished"

}

a call generates a warning to say that there was no type information.
bob()

4 checkReturnValue

checkReturnValue Verify the return value from the function has the appropriate type

Description

This function is the counterpart to checkArgs in the type validation for an R function. When called,
either implicitly or explicitly when the function returns, it attempts to determine whether the value
being returned by the function call is valid relative to the type information of the function and the
call itself. Specifically, it uses the signature of the current call to the function if it is available
(returned by checkArgs) to see if it has a specified return type. If so, it compares the return value
to that. Otherwise, it checks to see if the return type for the overall type info object (not just the
specific type signature for the call) is specified and then uses that to validate the type. If neither is
specified, then the value is not validated and the value returned.

Usage

checkReturnValue(returnType, returnJump, sig, f = sys.function(-1))

Arguments

returnType the specifiedtype of the return value.

returnJump this is a very special value which is a call to return the value of value. It must
be explicitly given in the call to checkReturnValue and is used to ensure that
the return from checkReturnValue returns from the calling function also in the
case that the value is valid. This is a piece of magic in R that is very powerful
using the lazy evaluation of the arguments that allows us to return from the place
that the return call was specified.

sig the signature corresponding to the call of the function f. This should have a
returnType slot that contains class information or an expression. Otherwise,
the value is taken from the TypeSpecification-class object for the entire
function and its returnType slot.

f the function object whose return value is to be validated. It is from this that we
get the type info via typeInfo.

Value

If the validation takes place and is successful or simply doesn’t take place because no returnType
is available, the return value is value. Otherwise, if the validation fails, an error is raised.

Note

This is a prototype to illustrate the idea. It might be done in C code in the future within the R
interpreter.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

ClassNameOrExpression-class 5

See Also

checkArgs TypeSpecification-class

ClassNameOrExpression-class

Class "ClassNameOrExpression" to represent type information as ei-
ther class names or arbitrary language test

Description

This class is used to represent a type test that is specified either as a collection of class names
(and whether to check for strict equality or inheritance) or a dynamic predicate expression that is
evaluated at run-time to determine whether the test is satisfied.

We may not need this in the "new" class hierarchy. It was created originally to be a union of charac-
ter vectors, calls or expressions. But now that we have NamedTypeTest and DynamicTypeTest,
we could perhaps use a common base class.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "ClassNameOrExpression" in the signature.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

TypedSignature TypedSignature-class ReturnTypeSpecification

DynamicTypeTest-class Class "DynamicTypeTest" for computed tests on objects.

Description

This virtual class is used interntally to unite type signatures that perform a computation to assess
argument type suitability.

Slots

None.

6 hasParameterType

Extends

Class "ClassNameOrExpression", directly.

Methods

None.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

TypedSignature TypeSpecification-class

Examples

checkedSqrt <- function(x) {
return(sqrt(x))

}

typeInfo(checkedSqrt) <-
SimultaneousTypeSpecification(

TypedSignature(x=quote(
is(x, "numeric") && all(x>=0))))

typeInfo(checkedSqrt)

checkedSqrt(2)
try(checkedSqrt(-2))

hasParameterType Functions to query existence of specific type information

Description

These functions and the associated methods are used to determine if a function has type specification
for any of the parameters and also for the return type. These are used when rewriting the body of
the function to support type checking (see rewriteTypeCheck). We use these predicate functions
to determine if we have information about any parameter types and if not we do not add a check of
the arguments (i.e. a call to checkArgs). Similarly, we determine if we have any information about
the return type before adding a call to checkReturnValue.

They are used internally. They are exported in order to make them available for others to use in
providing alternatives to this prototype implementation and also to overcome an anomoly in the
callNextMethod() mechanism that appears to disappear when the generic is exported from the
NAMESPACE.

hasParameterType 7

Usage

hasParameterType(def)

Arguments

def the object which is to be queried. This can be a function or a TypeSpecification-class
instance which is typically extracted from the function. Generally, a user would
pass the function to the function call and the resulting sequence of recursive
method calls will occur.

Value

A logical value indicating if the object def “has” the relevant facet/property.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

rewriteTypeCheck checkArgs checkReturnValue

Examples

hasReturnType(SimultaneousTypeSpecification(
TypedSignature(x="integer", returnType = "duncan")))

FALSE
hasReturnType(SimultaneousTypeSpecification(TypedSignature(x="integer")))

TRUE
hasReturnType(SimultaneousTypeSpecification(returnType = "duncan"))

TRUE
hasReturnType(ReturnTypeSpecification("duncan"))

hasReturnType(IndependentTypeSpecification(x = c("integer", "logical"),
y = "character",
returnType = "duncan"))

hasReturnType(IndependentTypeSpecification(x = c("integer", "logical"),
y = "character"))

8 IndependentTypeSpecification

IndependentTypeSpecification

Create separate type information for different parameters.

Description

This function is a constructor for the IndependentTypeSpecification-class class. In short, it
collects information about the possible types of parameters that is used to validate arguments in
a call separately. This contrasts with checking the combination of arguments in the call against a
particular signature.

Usage

IndependentTypeSpecification(..., returnType, obj = new("IndependentTypeSpecification", list(...)))

Arguments

... name elements of which are either character vectors or expressions/calls that can
be evaluated. These are of type ClassNameOrExpression-class.

returnType the expected type of the return value. This is optional.

obj the instance of class TypeSpecification-class that is to be populated with
the values from ... and returnType.

Value

The return value is obj after it has been populated with the arguments ... and returnType.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

typeInfo, typeInfo<- checkArgs, checkReturnValue IndependentTypeSpecification-class
SimultaneousTypeSpecification SimultaneousTypeSpecification-class

Examples

pow = function(a, b)
{

the return here is important to ensure the return value is checked.
return(a^b)

}

typeInfo(pow) =
IndependentTypeSpecification(

a = c("numeric", "matrix", "array"),
b = "numeric",

NamedTypeTest-class 9

returnType = quote(class(a))
)

IndependentTypeSpecification(
a = c("numeric", "matrix", "array"),
b = new("StrictIsTypeTest","numeric"),
c = new("StrictIsTypeTest",c("numeric", "complex")),
d = as("numeric", "NamedTypeTest"),
e = new("InheritsTypeTest", c("numeric", "complex"))

)

NamedTypeTest-class Class "NamedTypeTest" and sub-classes for tests on class of an object.

Description

These classes are for specifying a test on the type of an object using the class of that object and
comparing it to target class names. The tests can be either for x inherits from class name (or
is(x,"className")) or x is an instance of class name (i.e. class(x) == "className"). The
first of these is represented by InheritsTypeTest and the second by StrictTypeTest.

Objects from the NamedTypeTest class

Objects can be created for the non-virtual classes using new("InheritsTypeTest",...) and new("StrictIsTypeTest",...)
or the convenience functions InheritsTypeTest(...), StrictIsTypeTest(...) Additionally,
where appropriate, a character vector is coerced to InheritsTypeTest.

Slots

.Data: Object of class "character". This is an internal data type to represent the class names. It
is not to be used directly. It is inherited from the “character” class.

Extends

Class "character", from data part. Class "ClassNameOrExpression", directly. Class "vector",
by class "character".

Methods

coerce signature(from = "character",to = "NamedTypeTest"): converts a character vector into
a InheritsTypeTest.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

TypedSignature TypeSpecification-class DynamicTypeTest-class

10 paramNames

Examples

new("InheritsTypeTest", c("A", "B"))

m = array(1:60, c(3, 4, 5))
tt = new("StrictIsTypeTest", c("matrix"))
TypeInfo:::checkType(m, tt)

tt = new("StrictIsTypeTest", c("array"))
TypeInfo:::checkType(m, tt)

paramNames Compute the names of all the specified parameters in a TypeSpecifica-
tion object

Description

This generic function has methods for computing the names of all the parameters in a type specifi-
cation for a function for which type information is explicitly specified. There is also a method for
functions which merely returns the names of the formal parameters, i.e. a call to formals.

Usage

paramNames(def)

Arguments

def the object from which we are to identify the names of the parameters

Value

A character vector giving the names of the parameters that were found.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

typeInfo

ReturnTypeSpecification 11

ReturnTypeSpecification

Constructor for specifying information about only the return type

Description

This function is a constructor for a class that represents information only about the return type of a
function and explicitly has no information about the parameters.

Usage

ReturnTypeSpecification(type, obj = new("ReturnTypeSpecification"))

Arguments

type the type specification. This should be an object of class ClassNameOrExpres-
sion or coercible to one.

obj the instance that is to be populated and returned.

Value

By default, an object of class ReturnTypeSpecification-class. However, it merely returns the
value of obj after populating it with the value of type. So strictly the return value is the augmented
value of obj.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

IndependentTypeSpecification SimultaneousTypeSpecification

Examples

ReturnTypeSpecification(quote(length(x) == 3))

ReturnTypeSpecification("matrix")

ReturnTypeSpecification(new("StrictIsTypeTest", "matrix"))

12 rewriteTypeCheck

rewriteTypeCheck Insert code to support type validation

Description

This generic function and its methods are used to modify the expressions in the body of a function
in order to support the validation of type information in calls to this function. This changes the form
of explicit calls to return, modifies the last expression if it is not an explicit call to return, and adds
an initial command to compute check the arguments in the cal via checkArgs.

Usage

rewriteTypeCheck(f, doReturn = TRUE, checkArgs = TRUE, addInvisible = FALSE)

Arguments

f the object which is to be modified to add the information for checking the return
value and checking the input arguments. These are functions, expressions, calls,
and other language objects.

doReturn a logical value. If this is FALSE, the modifications are greatly simplified and
no additions are made to handle the validation of the return value. This is used
when the type information provides no information about the return type and so
it cannot be validated or constrained.

checkArgs a logical value indicating whether the modifications should including check the
arguments. If the only type information given is about the return type, no check-
ing of the arguments is necessary (in the current model).

addInvisible logical indicating whether returned argument needs to be cloaked in invisible.

Value

The potentially modified version of the original input argument. The modifications contain any
necessary changes to support the type checking at run-time.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

typeInfo checkArgs checkReturnValue

Examples

f = function(x, y) {
z = x + y
sum(z)

}

showTypeInfo 13

showTypeInfo Display information about argument types

Description

This generic function returns type specifications as a list. Elements in the list contain information
about different parts of the signature. The order and white spece of the list suggests structure of the
type specification.

showTypeInfo is usually invoked with a single argument, the name of the function with type infor-
mation.

Usage

showTypeInfo(object, name=character(), prefix="", ...)

Arguments

object The object about which type information is required

name Class name, not normally specified by user.

prefix Used by methods to ensure pretty indentation type specifications.

... Additional arguments used for derivatives of NamedTypeTest, not noramlly as-
signed by user.

Value

A list containing type information for def

Author(s)

MT Morgan <mtmorgan@fhcrc.org>

See Also

typeInfo

Examples

foo <- function(x) { return(x) }
typeInfo(foo) <- SimultaneousTypeSpecification(

TypedSignature(x = "numeric"),
returnType = "numeric")

res <- showTypeInfo(foo)
cat(res, sep="\n")

14 SimultaneousTypeSpecification

SimultaneousTypeSpecification

Create type signature information governing parameters in a call.

Description

This function is a constructor for specifying different permissible combinations of argument types
in a call to a function. Each combination of types identifies a signature and in a call, the types of
the arguments are compared with these types. If all are compatible with the specification, then the
call is valid. Otherwise, we check other permissible combinations.

Note that if an instance of SimultaneousTypeSpecification-class is provided to the checkArgs
function, the TypedSignature-class elements are searched sequentially until a matching one
is found. That matching signature is returned. Therefore, the order the signatures are specified
within the SimultaneousTypeSpecification-class object is important. This could change if we
wanted. At present, it is up to the author to specify what they want to have happen. We could use
the S4 signature matching technique when this is finalized and implemented in C code.

Usage

SimultaneousTypeSpecification(..., returnType, obj = new("SimultaneousTypeSpecification", list(...)))

Arguments

... named TypedSignature objects. The names identify the parameter to which
the type specification applies.

returnType if supplied this should be an object of class ClassNameOrExpression-class.

obj the instance of TypeSpecification-class that is to be populated with the con-
tent of ... and returnType.

Value

The return value is obj. By default, this has class SimultaneousTypeSpecification-class. It
should be an object of class TypeSpecification-class.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

IndependentTypeSpecification typeInfo

TypedSignature 15

Examples

foo =
function(x, y)
{

x + y
}

typeInfo(foo) =
SimultaneousTypeSpecification(

TypedSignature(x = "integer", y = "integer"),
TypedSignature(x = "numeric", y = "logical"))

TypedSignature Constructor for a TypedSignature object

Description

This is a constructor function for the TypedSignature-class that represents constraints on the
types or values of a combination of parameters. It takes named arguments that identify the types of
the parameters. Each parameter type should be an object that is “compatible with” ClassNameOrExpression-class,
i.e. a test for inheritance or a dynamic expression.

Usage

TypedSignature(..., returnType, obj = new("TypedSignature", list(...)))

Arguments

... the types for the parameters given as name = type to identify the parameter and
its type description.

returnType the type description for the return value. This applies to the particular combina-
tion of inputs given in . . .

obj the instance to populate with the information given in the other arguments. This
allows us to pass in objects of sub-classes to this function or to populate previ-
ously created objects.

Value

The populated value of obj, by default an object of class TypedSignature-class.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

SimultaneousTypeSpecification typeInfo checkArgs

16 TypedSignature-class

Examples

TypedSignature(x = "logical", y = quote(length(y) == length(x)))

TypedSignature-class Class "TypedSignature" representing type information about function
parameters and the return type

Description

This class is used to describe an AND or simultaneous condition on the types of several arguments
of a function call. The entire test is satisfied if all the individual elements are satisfied. One can
represent the test elements for the different parameters as either class names (i.e. character strings or
NamedTypeTest-class and sub-classes), and also predicate expressions using DynamicTypeTest.

In addition to the types on the parameters, one can also specify a test for the return type if a call to
the function matches this signature. This allows us to associate a specific return type with a specific
set of input types.

Currently this class is only used to describe the elements in SimultaneousTypeSpecification-class
objects.

Objects from the Class

Use the constructor function TypedSignature to create objects of this class.

Slots

.Data: This object extends list. But this slot is intended to be opaque and should not be used
directly.

returnType: Object of class "ClassNameOrExpression". This represents the description of the
return type of the function associated with this set of given input types.

Extends

Class "list", from data part. Class "vector", by class "list".

Methods

hasParameterType signature(def = "TypedSignature"):

hasReturnType signature(def = "TypedSignature"):

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

SimultaneousTypeSpecification

typeInfo 17

typeInfo Get or set type information for a function.

Description

These functions provide controlled access to type information for a function. They encapsulate the
way the information is stored for the function (although it is trivial to find out how it is done and
where the information is)

Usage

typeInfo(func)
"typeInfo<-"(func, rewrite = TRUE, value)

Arguments

func the function whose type information is to be accessed

rewrite a logical value. This controls whether the body of the function func is rewritten
so that checks for the arguments and return type are added to the code and the
appropriate actions are taken when the function returns control to the caller. This
is necessary to get calls to return in the function to behave correctly and allow
the return value to be validated.

value an object of class TypeSpecification-class

Value

typeInfo returns the type information associated with the function. typeInfo<- returns the modi-
fied function.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

http://www.omegahat.org/OptionalTyping

See Also

checkArgs checkReturnValue

http://www.omegahat.org/OptionalTyping

18 TypeSpecification-class

TypeSpecification-class

Class "TypeSpecification" and derived class

Description

The classes in this collection are used to represent type information about a function in different
ways. TypeSpecification is the virtual base class and provides the common slot to describe the
type for the return value of the function.

The ReturnTypeSpecification-class is used when there is no information about the parameters
of the function (either because there are no parameters or because we have no constraints on them).

The classes IndependentTypeSpecification-class and SimultaneousTypeSpecification-class
are used to describe constraints on the arguments to the function. Both are lists, but behave very
differently in the type checking. The difference is more difficult to describe succinctly than it is
conceptually.

SimultaneousTypeSpecification-class is used when we want to specify information about the
types of several arguments in a call taken as a group and imposing a constraint on that group of
values. This corresponds to a call signature in the method dispatching. It says match each argument
in turn with the given types and confirm the match over all of these tests. For example, we might
have a function that accepts either (a) two numbers, or (b) two matrices. In that case, we need to
specify the acceptable argument types as pairs: c("numeric", "numeric") and c("matrix", "matrix").
The key idea here is that the constraints on the types are AND-ed together across the different
arguments. In our example, we impose the constraint is.numeric(arg1) && is.numeric(arg2).

The IndependentTypeSpecification-class is used when we want to specify something about
the types of different parameters but do not want the types to be AND-ed together. If we had a func-
tion that accepts a matrix or a number for its first parameter, and a matrix or string for its second pa-
rameter or any combination of those, then we would use the IndependentTypeSpecification-class.
The term ’independent’ is intended to suggest that the type checking is done for each parameter sep-
arately or independently of the others and then the check succeeds if all arguments pass. The phrase
simultaneous means that we test the types of the arguments as a unit or simultaneously. The names
can be easily changed to something more suggestive. It is the concept that is important.

A description of a quite different nature may also help and also provide information about the
contents of these different list classes. For IndependentTypeSpecification-class, one can think
of the list as having an element for each parameter for which we want to specify type information.
This element is, at its simplest, a character vector giving the names of the acceptable classes. (We
can have more complex elements such as expressions.) I think of this as being a collection of
column vectors hanging from the parameters.

For SimultaneousTypeSpecification-class, we have rows or tuples of type information. These
are call signatures. So we have

IndependentTypeSpecification corresponds to the SimultaneousTypeSpecification in the
following computational manner. We can take the cartesian product (e.g. via expand.grid) of
the inputs for IndependentTypeSpecification to form all possible combinations of types for the
parameters and then we have the tuples for the corresponding SimultaneousTypeSpecification.

TypeSpecification-class 19

Constructors

One can create objects of the three non-virtual classes using the corresponding constructor func-
tions in the package. These are ReturnTypeSpecification, IndependentTypeSpecification,
SimultaneousTypeSpecification.

Slots

.Data: each of the non-virtual classes is really a list. They inherit the list properties and all the
relevant methods. This slot is implementation specific and should not be used.

returnType: Object of class ClassNameOrExpression-class. This describes the return type for
the function. In SimultaneousTypeDescription objects, we can also specify return type
information corresponding to each signature, i.e. in the TypedSignature-class.

Extends

Class "list", from data part. Class "TypeSpecification", directly. Class "vector", by class
"list".

Methods

Available methods are computed in the example below; see the corresponding help page for details.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

IndependentTypeSpecification SimultaneousTypeSpecification ReturnTypeSpecification
typeInfo, typeInfo<- checkArgs, checkReturnValue

Examples

showMethods(classes=c(
"TypeSpecification",
"IndependentTypeSpecification",
"SimultaneousTypeSpecification",
"ReturnTypeSpecification"))

Index

∗ IO
rewriteTypeCheck, 12

∗ classes
ClassNameOrExpression-class, 5
DynamicTypeTest-class, 5
NamedTypeTest-class, 9
TypedSignature-class, 16
TypeSpecification-class, 18

∗ interface
checkArgs, 2
checkReturnValue, 4
hasParameterType, 6
IndependentTypeSpecification, 8
paramNames, 10
ReturnTypeSpecification, 11
showTypeInfo, 13
SimultaneousTypeSpecification, 14
TypedSignature, 15
typeInfo, 17

∗ programming
checkArgs, 2
checkReturnValue, 4
hasParameterType, 6
IndependentTypeSpecification, 8
paramNames, 10
ReturnTypeSpecification, 11
rewriteTypeCheck, 12
showTypeInfo, 13
SimultaneousTypeSpecification, 14
TypedSignature, 15
typeInfo, 17

checkArgs, 2, 4–8, 12, 14, 15, 17, 19
checkArgs,function-method (checkArgs), 2
checkArgs,IndependentTypeSpecification-method

(checkArgs), 2
checkArgs,InheritsTypeTest-method

(checkArgs), 2
checkArgs,missing-method (checkArgs), 2

checkArgs,SimultaneousTypeSpecification-method
(checkArgs), 2

checkArgs-methods (checkArgs), 2
checkReturnValue, 4, 6–8, 12, 17, 19
ClassNameOrExpression-class, 5
coerce,character,NamedTypeTest-method

(NamedTypeTest-class), 9

DynamicTypeTest
(DynamicTypeTest-class), 5

DynamicTypeTest-class, 5

expand.grid, 18

formals, 10

hasParameterType, 6
hasParameterType,function-method

(hasParameterType), 6
hasParameterType,IndependentTypeSpecification-method

(hasParameterType), 6
hasParameterType,NamedTypeTest-method

(hasParameterType), 6
hasParameterType,SimultaneousTypeSpecification-method

(hasParameterType), 6
hasParameterType,TypedSignature-method

(TypedSignature-class), 16
hasParameterType,TypeSpecification-method

(hasParameterType), 6
hasReturnType (hasParameterType), 6
hasReturnType,function-method

(hasParameterType), 6
hasReturnType,SimultaneousTypeSpecification-method

(hasParameterType), 6
hasReturnType,TypedSignature-method

(TypedSignature-class), 16
hasReturnType,TypeSpecification-method

(hasParameterType), 6

IndependentTypeSpecification, 8, 11, 14,
19

20

INDEX 21

IndependentTypeSpecification-class
(TypeSpecification-class), 18

InheritsTypeTest (NamedTypeTest-class),
9

InheritsTypeTest-class
(NamedTypeTest-class), 9

initialize,TypeSpecifcation-method
(TypeSpecification-class), 18

initialize,TypeSpecification-method
(TypeSpecification-class), 18

NamedTypeTest-class, 9

paramNames, 10
paramNames,function-method

(paramNames), 10
paramNames,IndependentTypeSpecification-method

(paramNames), 10
paramNames,NamedTypeTest-method

(paramNames), 10
paramNames,ReturnTypeSpecification-method

(paramNames), 10
paramNames,SimultaneousTypeSpecification-method

(paramNames), 10
paramNames,TypedSignature-method

(paramNames), 10
paramNames,TypeSpecification-method

(paramNames), 10

ReturnTypeSpecification, 5, 11, 19
ReturnTypeSpecification-class

(TypeSpecification-class), 18
rewriteTypeCheck, 6, 7, 12

showTypeInfo, 13
showTypeInfo,ANY-method (showTypeInfo),

13
showTypeInfo,DynamicTypeTest-method

(showTypeInfo), 13
showTypeInfo,function-method

(showTypeInfo), 13
showTypeInfo,IndependentTypeSpecification-method

(showTypeInfo), 13
showTypeInfo,InheritsTypeTest-method

(showTypeInfo), 13
showTypeInfo,SimultaneousTypeSpecification-method

(showTypeInfo), 13
showTypeInfo,StrictIsTypeTest-method

(showTypeInfo), 13

showTypeInfo,TypedSignature-method
(showTypeInfo), 13

SimultaneousTypeSpecification, 8, 11, 14,
15, 16, 19

SimultaneousTypeSpecification-class
(TypeSpecification-class), 18

StrictIsTypeTest (NamedTypeTest-class),
9

StrictIsTypeTest-class
(NamedTypeTest-class), 9

TypedSignature, 5, 6, 9, 14, 15, 16
TypedSignature-class, 16
typeInfo, 3, 4, 8, 10, 12–15, 17, 19
typeInfo<- (typeInfo), 17
TypeSpecification-class, 18

	checkArgs
	checkReturnValue
	ClassNameOrExpression-class
	DynamicTypeTest-class
	hasParameterType
	IndependentTypeSpecification
	NamedTypeTest-class
	paramNames
	ReturnTypeSpecification
	rewriteTypeCheck
	showTypeInfo
	SimultaneousTypeSpecification
	TypedSignature
	TypedSignature-class
	typeInfo
	TypeSpecification-class
	Index

