Package ‘ISAnalytics’

October 14, 2021

Title Analyze gene therapy vector insertion sites data identified from
genomics next generation sequencing reads for clonal tracking
studies

Version 1.2.1
Date 2020-07-03

Description In gene therapy, stem cells are modified using viral vectors to deliver the therapeu-
tic transgene and replace functional properties since the genetic modification is stable and inher-
ited in all cell progeny. The retrieval and mapping of the sequences flanking the virus-
host DNA junctions allows the identification of insertion sites (IS), essential for monitor-
ing the evolution of genetically modified cells in vivo. A comprehensive toolkit for the analy-
sis of IS is required to foster clonal trackign studies and supporting the assess-
ment of safety and long term efficacy in vivo. This package is aimed at (1) supporting automa-
tion of IS workflow, (2) performing base and advance analysis for IS tracking (clonal abun-
dance, clonal expansions and statistics for insertional mutagenesis, etc.), (3) providing basic biol-
ogy insights of transduced stem cells in vivo.

License CC BY 4.0

URL https://calabrialab.github.io/ISAnalytics,
https://github.com//calabrialab/isanalytics

BugReports https://github.com/calabrialab/ISAnalytics/issues
biocViews Biomedicallnformatics, Sequencing, SingleCell
Depends R (>=4.1), magrittr

Imports utils, reactable, htmltools, dplyr, readr, tidyr, purrr,
rlang, tibble, BiocParallel, stringr, fs, zip, lubridate,
lifecycle, ggplot2, ggrepel, stats, upsetjs, psych, grDevices,
data.table, readxl, tools, Rcapture, plotly

Encoding UTF-8

LazyData false

Roxygen list(markdown = TRUE)
RoxygenNote 7.1.1

Suggests testthat, covr, knitr, BiocStyle, knitcitations, sessioninfo,
rmarkdown, roxygen2, vegan, withr, extraDistr

1

https://calabrialab.github.io/ISAnalytics
https://github.com//calabrialab/isanalytics
https://github.com/calabrialab/ISAnalytics/issues

2 R topics documented:

VignetteBuilder knitr

RdMacros lifecycle

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/IS Analytics
git_branch RELEASE_3_13

git_last_commit ab38e¢96

git_last_commit_date 2021-06-08

Date/Publication 2021-10-14

Author Andrea Calabria [aut, cre],
Giulio Spinozzi [aut],
Giulia Pais [aut]

Maintainer Andrea Calabria <calabria.andrea@hsr.it>

R topics documented:

aggregate_metadata L. L e e e e 3
aggregate_values_by_key 4
annotation_IS_vars L. e e e 6
association_file_columns e 7
AS_SPArSE_MATIX v v v v v e e e e e e e e e e e e e e e e e e 7
available_outlier_tests e e e e e 8
blood_lineages_default 9
CIS_grubbs e e 10
CIS_volcano_plot e 11
clinical_relevant_suspicious_genes e e 14
COMPAriSON_MALIIX . . . o v v v v e v v e e e e e e e e e e e e e e e 14
compute_abundance L.l e e 16
compute_near_integrations oo e e e e e e e e e e 17
cumulative_count_union e e e e e e e e e e 19
date_columns_coll e 21
date_formats L e e e e 21
default_iss_file_prefixes 22
default_meta_agg L 23
default_stats L s 24
generate_blank_association_file oL L. 24
generate_Vispa2_launch_ AF 25
HSC_population_plot 26
HSC_population_size_estimate 27
import_association_fileo 29
import_parallel_Vispa2Matrices_auto 31
import_parallel_Vispa2Matrices_interactive 33
import_single_Vispa2Matrix 35
import_Vispa2_statS e e 36
ISAnalytics 37

known_clinical_oncogenes 39

aggregate_metadata 3

mandatory_IS_vars 39
matching_oOptions e e e e e 40
outliers_by_pool_fragments 40
outlier_filter e e e e 42
qUantification_types i e e e e e e e e e e e 43
realign_after_collisions 44
reduced_AF columns e 45
remove_colliSIONS e 46
sample_StatiStics L. e e e e e e e e e e 47
separate_quant_matriCes e e e e e e e e 49
threshold_filter e 51
tOp_INtegrations e e e e e e e e 54
unzip_file_systemo L. 56
Index 57
aggregate_metadata Performs aggregation on metadata contained in the association file.
Description

[Maturing] Groups metadata by the specified grouping keys and returns a summary of info for
each group. For more details on how to use this function: vignette("Working with aggregate
functions”, package = "ISAnalytics")

Usage

aggregate_metadata(

association_file,

grouping_keys = c("SubjectID", "CellMarker", "Tissue”, "TimePoint"),
aggregating_functions = default_meta_agg(),

import_stats = lifecycle: :deprecated()

)

Arguments

association_file

The imported association file (via linkimport_association_file)

grouping_keys A character vector of column names to form a group

aggregating_functions

A data frame containing specifications of the functions to be applied to columns
in the association file during aggregation. It defaults to default_meta_agg. The
structure of this data frame should be maintained if the user wishes to change
the defaults.

import_stats [Deprecated] The import of VISPA2 stats has been moved to its dedicated func-

tion, see import_Vispa2_stats.

4 aggregate_values_by_key

Value

An aggregated data frame

See Also

Other Aggregate functions: aggregate_values_by_key(), default_meta_agg()

Examples

op <- options("ISAnalytics.widgets” = FALSE, "ISAnalytics.verbose” = FALSE)
path_AF <- system.file("extdata"”, "ex_association_file.tsv",
package = "ISAnalytics”
)
root_correct <- system.file("extdata”, "fs.zip", package = "ISAnalytics")
root_correct <- unzip_file_system(root_correct, "fs")
association_file <- import_association_file(path_AF, root_correct,
dates_format = "dmy"”
)
aggregated_meta <- aggregate_metadata(association_file)
options(op)

aggregate_values_by_key
Aggregates matrices values based on specified key.

Description

[Maturing] Performs aggregation on values contained in the integration matrices based on the key
and the specified lambda. For more details on how to use this function: vignette("Working with
aggregate functions”,package = "ISAnalytics")

Usage

aggregate_values_by_key(
X,
association_file,
value_cols = "Value”,
key = c("SubjectID", "CellMarker"”, "Tissue"”, "TimePoint"),
lambda = list(sum = ~sum(.x, na.rm = TRUE)),
group = c(mandatory_IS_vars(), annotation_IS_vars()),
join_af_by = "CompleteAmplificationID”

aggregate_values_by_key 5

Arguments

X A single integration matrix (tibble) or a list of imported integration matrices
(tibble)

association_file
The imported association file

value_cols A character vector containing the names of the columns to apply the given lamb-
das. Must be numeric or integer columns.

key A string or a character vector with column names of the association file to take
as key

lambda A named list of functions or purrr-style lambdas. See details section.

group Other variables to include in the grouping besides key, can be set to NULL

join_af_by A character vector representing the joining key between the matrix and the meta-

data. Useful to re-aggregate already aggregated matrices.

Details

Setting the lambda parameter:
The lambda parameter should always contain a named list of either functions or purrr-style lamb-
das. It is also possible to specify the namespace of the function in both ways, for example:

lambda = list(sum = sum, desc = psych::describe)

Using purrr-style lambdas allows to specify arguments for the functions, keeping in mind that the
first parameter should always be . x:

lambda = list(sum = ~sum(.x, na.rm = TRUE))

It is also possible to use custom user-defined functions, keeping in mind that the symbol will be
evaluated in the calling environment, for example if the function is called in the global environ-
ment and lambda contains "foo" as a function, "foo" will be evaluated in the global environment.

foo <- function(x) {
sum(x)

}

lambda = list(sum = ~sum(.x, na.rm = TRUE), foo = foo)

Or with lambda notation
lambda = list(sum = ~sum(.x, na.rm = TRUE), foo = ~foo(.x))

Constraints on aggregation functions:
Functions passed in the lambda parameters must respect a few constraints to properly work and
it’s the user responsibility to ensure this.

» Functions have to accept as input a numeric or integer vector

* Function should return a single value or a list/data frame: if a list or a data frame is returned
as a result, all the columns will be added to the final data frame.

Value

A list of tibbles or a single tibble aggregated according to the specified arguments

6 annotation_IS vars

See Also

Other Aggregate functions: aggregate_metadata(), default_meta_agg()

Examples

op <- options("ISAnalytics.widgets” = FALSE, "ISAnalytics.verbose"” = FALSE)
path_AF <- system.file("extdata"”, "ex_association_file.tsv",
package = "ISAnalytics”
)
root_correct <- system.file("extdata”, "fs.zip", package = "ISAnalytics")
root_correct <- unzip_file_system(root_correct, "fs")
association_file <- import_association_file(path_AF, root_correct,
dates_format = "dmy"
)
matrices <- import_parallel_Vispa2Matrices_auto(
association_file = association_file, root = NULL,
quantification_type = c("fragmentEstimate”, "seqCount"”),
matrix_type = "annotated”, workers = 2, matching_opt = "ANY"

agg <- aggregate_values_by_key(
X = matrices,
association_file = association_file,

value_cols = c("fragmentEstimate”, "seqCount")
)
options(op)
annotation_IS_vars Names of the annotation variables for an integration matrix.
Description

Contains the names of the columns that are present if the integration matrix is annotated.

Usage

annotation_IS_vars()

Value

A character vector

Examples

annotation_IS_vars()

association_file_columns 7

association_file_columns
Names of the columns in the association file.

Description

All the names of the columns present in the association file.

Usage

association_file_columns()

Value

A character vector

Examples

association_file_columns()

as_sparse_matrix Converts tidy integration matrices in the original sparse matrix form.

Description

[Maturing] This function is particularly useful when a sparce matrix structure is needed by a spe-
cific function (mainly from other packages).

Usage

as_sparse_matrix(
X,
fragmentEstimate = "fragmentEstimate”,
segCount = "segCount”,
barcodeCount = "barcodeCount”,
cellCount = "cellCount”,
ShsCount = "ShsCount”

8 available_outlier_tests

Arguments

X A single tidy integration matrix or a list of integration matrices. Supports also
multi-quantification matrices obtained via comparison_matrix

fragmentEstimate
For multi-quantification matrix support: the name of the fragment estimate val-
ues column

seqCount For multi-quantification matrix support: the name of the sequence count values
column

barcodeCount For multi-quantification matrix support: the name of the barcode count values

column

cellCount For multi-quantification matrix support: the name of the cell count values col-
umn

ShsCount For multi-quantification matrix support: the name of the Shs Count values col-
umn

Value
Depending on input, 2 possible outputs:

* A single sparce matrix (tibble) if input is a single quantification matrix

* A list of sparce matrices divided by quantification if input is a single multi-quantification
matrix or a list of matrices

See Also

Other Utility functions: generate_Vispa2_launch_AF (), generate_blank_association_file(),
unzip_file_system()

Examples

path <- system.file("extdata”, "ex_annotated_ISMatrix.tsv.xz",
package = "ISAnalytics”

)

matrix <- import_single_Vispa2Matrix(path)

sparse <- as_sparse_matrix(matrix)

available_outlier_tests

A character vector containing all the names of the currently supported
outliers tests that can be called in the function outlier_filter.

Description

A character vector containing all the names of the currently supported outliers tests that can be
called in the function outlier_filter.

blood_lineages_default 9
Usage

available_outlier_tests()

Value

A character vector

See Also

Other Outlier tests: outliers_by_pool_fragments()

Examples

available_outlier_tests()

blood_lineages_default
Default blood lineages info

Description

A default table with info relative to different blood lineages associated with cell markers that can
be supplied as a parameter to HSC_population_size_estimate

Usage

blood_lineages_default()

Value

A data frame

Examples

blood_lineages_default()

10 CIS_grubbs

CIS_grubbs Grubbs test for Common Insertion Sites (CIS).

Description

[Experimental] Statistical approach for the validation of common insertion sites significance based
on the comparison of the integration frequency at the CIS gene with respect to other genes con-
tained in the surrounding genomic regions. For more details please refer to this paper: https://
ashpublications.org/blood/article/117/20/5332/21206/Lentiviral-vector-common-integration-sites-in

Usage

CIS_grubbs(
X,
genomic_annotation_file = system.file("extdata”, "hgl19.refGene.oracle.tsv.xz",
package = "ISAnalytics"),
grubbs_flanking_gene_bp = 1e+05,
threshold_alpha = 0.05,
add_standard_padjust = TRUE

)

Arguments

X An integration matrix, must include the mandatory_IS_vars() columns and
the annotation_IS_vars() columns
genomic_annotation_file
Database file for gene annotation, see details
grubbs_flanking_gene_bp
Number of base pairs flanking a gene
threshold_alpha
Significance threshold
add_standard_padjust
Compute the standard padjust?

Details

Genomic annotation file:

This file is a data base, or more simply a .tsv file to import, with genes annotation for the specific
genome. The annotations for the human genome (hg19) is already included in this package. If for
any reason the user is performing an analysis on another genome, this file needs to be changed
respecting the USCS Genome Browser format, meaning the input file headers should be:

name2, chrom, strand

min_txStart, max_txEnd, minmax_TxLen

average_TxLen, name, min_cdsStart

max_cdsEnd, minmax_CdsLen, average_CdsLen

https://ashpublications.org/blood/article/117/20/5332/21206/Lentiviral-vector-common-integration-sites-in
https://ashpublications.org/blood/article/117/20/5332/21206/Lentiviral-vector-common-integration-sites-in

CIS_volcano_plot 11

Value

A data frame

See Also
Other Analysis functions: comparison_matrix(), compute_abundance(), cumulative_count_union(),

sample_statistics(), separate_quant_matrices(), threshold_filter(), top_integrations()

Examples

op <- options(ISAnalytics.widgets = FALSE)

path_AF <- system.file("extdata”, "ex_association_file.tsv",
package = "ISAnalytics”

)

root_correct <- system.file("extdata”, "fs.zip",
package = "ISAnalytics”

)

root_correct <- unzip_file_system(root_correct, "fs")

matrices <- import_parallel_Vispa2Matrices_auto(
association_file = path_AF, root = root_correct,
quantification_type = c("seqCount”, "fragmentEstimate"),
matrix_type = "annotated”, workers = 2, patterns = NULL,
matching_opt = "ANY”,
dates_format = "dmy"”

)
cis <- CIS_grubbs(matrices)

options(op)

CIS_volcano_plot Trace volcano plot for computed CIS data.

Description

[Experimental] Traces a volcano plot for IS frequency and CIS results.

Usage

CIS_volcano_plot(

X,

onco_db_file = system.file("extdata”, "201806_uniprot-Proto-oncogene.tsv.xz", package
= "ISAnalytics"),

tumor_suppressors_db_file = system.file("extdata",
"201806_uniprot-Tumor-suppressor.tsv.xz", package = "ISAnalytics"),

species = "human”,

known_onco = known_clinical_oncogenes(),

12 CIS_volcano_plot

suspicious_genes = clinical_relevant_suspicious_genes(),
significance_threshold = 0.05,
annotation_threshold_ontots = 0.1,

highlight_genes = NULL,

title_prefix = NULL,

return_df = FALSE

Arguments

X Either a simple integration matrix or a data frame resulting from the call to
CIS_grubbs with add_standard_padjust = TRUE

onco_db_file Uniprot file for proto-oncogenes (see details)

tumor_suppressors_db_file
Uniprot file for tumor-suppressor genes

"non

species One between "human", "mouse" and "all"

known_onco Data frame with known oncogenes. See details.

suspicious_genes
Data frame with clinical relevant suspicious genes. See details.

significance_threshold
The significance threshold

annotation_threshold_ontots
Value above which genes are annotated

highlight_genes
Either NULL or a character vector of genes to be highlighted in the plot even if
they’re not above the threshold

title_prefix A string to be displayed in the title - usually the project name and other charac-
terizing info

return_df Return the data frame used to generate the plot? This can be useful if the user
wants to manually modify the plot with ggplot2. If TRUE the function returns a
list containing both the plot and the data frame.

Details

Input data frame:

Users can supply as x either a simple integration matrix or a data frame resulting from the call to
CIS_grubbs with add_standard_padjust = TRUE. In the first case an internal call to the function
CIS_grubbs is performed.

Oncogene and tumor suppressor genes files:

These files are included in the package for user convenience and are simply UniProt files with
gene annotations for human and mouse. For more details on how this files were generated use the
help ?filename function.

Known oncogenes:

The default values are contained in a data frame exported by this package, it can be accessed by
doing:

CIS_volcano_plot

head(known_clinical_oncogenes())

A tibble: 5 x 2
GeneName KnownClonalExpansion

<chr>
1 MECOM
2 CCND2
3 TAL1
4 LMO2
5 HMGA2

<lgl>
TRUE
TRUE
TRUE
TRUE
TRUE

13

If the user wants to change this parameter the input data frame must preserve the column structure.
The same goes for the suspicious_genes parameter (DOIReference column is optional):

head(clinical_relevant_suspicious_genes())

A tibble: 6 x 3
GeneName ClinicalRelevance DOIReference

<chr>
1 DNMT3A
2 TET2
3 ASXL1
4 JAK2
5 CBL

6 TP53

Value

<lgl> <chr>

TRUE https://doi.org/10.
TRUE https://doi.org/10.
TRUE https://doi.org/10.
TRUE https://doi.org/10.
TRUE https://doi.org/10.
TRUE https://doi.org/10.

A plot or a list containing a plot and a data frame

See Also

Other Plotting functions: HSC_population_plot()

Examples

op <- options(ISAnalytics.widgets = FALSE)

1182/blood-2018-01-829937
1182/blood-2018-01-829937
1182/blood-2018-01-829937
1182/blood-2018-01-829937
1182/blood-2018-01-829937
1182/blood-2018-01-829937

path_AF <- system.file("extdata"”, "ex_association_file.tsv",
package = "ISAnalytics”

)

root_correct <- system.file("extdata”, "fs.zip",

package = "ISAnalytics”

)

root_correct <- unzip_file_system(root_correct, "fs")

matrices <- import_parallel_Vispa2Matrices_auto(
association_file = path_AF, root = root_correct,

quantification_
matrix_type ="'

matching_opt =
dates_format =

type = c("seqgCount”, "fragmentEstimate"),

'annotated”, workers = 2, patterns = NULL,

"ANY"
" dmy "

14 comparison_matrix

)

cis <- CIS_grubbs(matrices)
plot <- CIS_volcano_plot(cis)
options(op)

clinical_relevant_suspicious_genes
Clinical relevant suspicious genes (for mouse and human).

Description

Clinical relevant suspicious genes (for mouse and human).

Usage

clinical_relevant_suspicious_genes()

Value

A data frame

See Also

Other Plotting function helpers: known_clinical_oncogenes()

Examples

clinical_relevant_suspicious_genes()

comparison_matrix obtain a single integration matrix from individual quantification ma-
trices.

Description

[Maturing] Takes a list of integration matrices referring to different qunatification types and merges
them in a single data frame that has multiple value columns, each renamed according to their quan-
tification type of reference.

comparison_matrix 15

Usage

comparison_matrix(
X,
fragmentEstimate = "fragmentEstimate”,
seqCount = "seqgCount”,
barcodeCount = "barcodeCount”,
cellCount = "cellCount”,
ShsCount = "ShsCount”

)
Arguments
X A named list of integration matrices, ideally obtained via import_parallel_Vispa2Matrices_interactive
or import_parallel_Vispa2Matrices_auto. Names must be quantification types.
fragmentEstimate
The name of the output column for fragment estimate values
seqCount The name of the output column for sequence count values

barcodeCount The name of the output column for barcode count values

cellCount The name of the output column for cell count values
ShsCount The name of the output column for Shs count values
Value
A tibble
See Also

quantification_types

Other Analysis functions: CIS_grubbs(), compute_abundance(), cumulative_count_union(),
sample_statistics(), separate_quant_matrices(), threshold_filter(), top_integrations()

Examples

op <- options("ISAnalytics.widgets” = FALSE)

path <- system.file("extdata”, "ex_association_file.tsv",
package = "ISAnalytics”

)

root_pth <- system.file("extdata”, "fs.zip"”, package = "ISAnalytics")

root <- unzip_file_system(root_pth, "fs")

matrices <- import_parallel_Vispa2Matrices_auto(
association_file = path, root = root,
quantification_type = c("fragmentEstimate”, "seqCount"”),
matrix_type = "annotated”, workers = 2, patterns = NULL,
matching_opt = "ANY",
dates_format = "dmy”, multi_quant_matrix = FALSE

)

total_matrix <- comparison_matrix(matrices)
options(op)

16 compute_abundance

compute_abundance Computes the abundance for every integration event in the input data
frame.

Description

[Maturing] Abundance is obtained for every integration event by calculating the ratio between the
single value and the total value for the given group.

Usage
compute_abundance(
X,
columns = "Value"”,

percentage = TRUE,
key = "CompleteAmplificationID"”,
keep_totals = FALSE

)
Arguments

X An integration matrix - aka a data frame that includes the mandatory_IS_vars()
as columns. The matrix can either be aggregated (via aggregate_values_by_key())
or not.

columns A character vector of column names to process, must be numeric or integer
columns

percentage Add abundance as percentage?

key The key to group by when calculating totals

keep_totals A value between TRUE, FALSE or df. If TRUE, the intermediate totals for each
group will be kept in the output data frame as a dedicated column with a trail-
ing "_tot". If FALSE, totals won’t be included in the output data frame. If df,
the totals are returned to the user as a separate data frame, together with the
abundance data frame.

Details

Abundance will be computed upon the user selected columns in the columns parameter. For each
column a corresponding relative abundance column (and optionally a percentage abundance col-
umn) will be produced.

Value

Either a single data frame with computed abundance values or a list of 2 data frames (abundance_df,
quant_totals)

compute_near_integrations 17

See Also

Other Analysis functions: CIS_grubbs(), comparison_matrix(), cumulative_count_union(),
sample_statistics(), separate_quant_matrices(), threshold_filter(), top_integrations()

Examples

path <- system.file("extdata"”, "ex_annotated_ISMatrix.tsv.xz",
package = "ISAnalytics”
)

matrix <- import_single_Vispa2Matrix(path)

Simple integration matrix - grouping by CompleteAmplificationID
abundancel <- compute_abundance(matrix)
abundancel

Keeping totals as a separate data frame
abundance2 <- compute_abundance(matrix, keep_totals = "df")
abundance2

compute_near_integrations
Scans input matrix to find and merge near integration sites.

Description

[Experimental] This function scans the input integration matrix to detect eventual integration sites
that are too "near" to each other and merges them into single integration sites adjusting their values
if needed.

Usage
compute_near_integrations(
X}
threshold = 4,
keep_criteria = "max_value”,
strand_specific = TRUE,
max_value_column = "seqCount”,

map_as_widget = TRUE,
map_as_file = TRUE,

file_path = ".",
export_widget_path = NULL
)
Arguments
X A single integration matrix, either with a single "Value" column or multiple

value columns corresponding to different quantification types (obtained via com-
parison_matrix)

18 compute_near._integrations

threshold A single integer that represents an absolute number of bases for which two inte-
grations are considered distinct

keep_criteria While scanning, which integration should be kept? The 2 possible choices for
this parameter are:

* "max_value": keep the integration site which has the highest value (and
collapse other values on that integration).
* "keep_first": keeps the first integration
strand_specific
Should strand be considered? If yes, for example these two integration sites
c(chr="1", strand = "+", integration_locus = 14568) and c(chr = "1", strand = "-
", integration_locus = 14568) are considered different and not grouped together.
max_value_column
The column that has to be considered for searching the maximum value

map_as_widget Produce recalibration map as an HTML widget?
map_as_file Produce recalibration map as a .tsv file?

file_path String representing the path were the file will be saved. By default the function
produces a folder in the current working directory and generates file names with
time stamps.

export_widget_path
A path on disk to save produced widgets or NULL if the user doesn’t wish to
save the html file

Details

The whole matrix is scanned with a sliding window mechanism: for each row in the integration
matrix an interval is calculated based on the threshold value, then a "look ahead" operation is
performed to detect subsequent rows which integration locuses fall in the interval. If CompleteAm-
plificationIDs of the near integrations are different only the locus value (and optionally GeneName
and GeneStrand if the matrix is annotated) is modified, otherwise rows with the same id are ag-
gregated and values are summed. If one of the map parameters is set to true the function will also
produce a re-calibration map: this data frame contains the reference of pre-recalibration values for
chr, strand and integration locus and the value to which that integration was changed to after.

Value

An integration matrix with same or less number of rows

Note

We do recommend to use this function in combination with comparison_matrix to automatically
perform re-calibration on all quantification matrices.

Examples

path <- system.file("extdata”, "ex_annotated_ISMatrix.tsv.xz",
package = "ISAnalytics”
)

cumulative_count_union 19

matrix <- import_single_Vispa2Matrix(path)
near <- compute_near_integrations(matrix,
map_as_widget = FALSE,
map_as_file = FALSE

cumulative_count_union
Integrations cumulative count in time by sample

Description

[Experimental] This function computes the cumulative number of integrations observed in each
sample at different time points by assuming that if an integration is observed at time point "t" then
it is also observed in time point "t+1".

Usage
cumulative_count_union(
X’
association_file = NULL,
timepoint_column = "TimePoint”,

key = c("SubjectID", "CellMarker”, "Tissue"”, "TimePoint"),
include_tp_zero = FALSE,

zero = "0000",

aggregate = FALSE,

Arguments

X A simple integration matrix or an aggregated matrix (see details)

association_file
NULL or the association file for x if aggregate is set to TRUE

timepoint_column
What is the name of the time point column?

key The aggregation key - must always contain the timepoint_column

include_tp_zero
Include timepoint 0?7

zero How is 0 coded in the data frame?
aggregate Should x be aggregated?

Additional parameters to pass to aggregate_values_by_key

20 cumulative_count_union

Details

Input data frame:

The user can provide as input for the x parameter both a simple integration matrix AND set-
ting the aggregate parameter to TRUE, or provide an already aggregated matrix via aggre-
gate_values_by_key. If the user supplies a matrix to be aggregated the association_file param-
eter must not be NULL: aggregation will be done by an internal call to the aggregation function. If
the user supplies an already aggregated matrix, the key parameter is the key used for aggregation
- NOTE: for this operation is mandatory that the time point column is included in the key.

Assumptions on time point format:

By using the functions provided by this package, when imported, an association file will be cor-
rectly formatted for future usage. In the formatting process there is also a padding operation
performed on time points: this means the functions expects the time point column to be of type
character and to be correctly padded with Os. If the chosen column for time point is detected
as numeric the function will attempt the conversion to character and automatic padding. If you
choose to import the association file not using the import_association_file function, be sure to
check the format of the chosen column to avoid undesired results.

Value

A data frame

See Also
Other Analysis functions: CIS_grubbs(), comparison_matrix(), compute_abundance(), sample_statistics(),

separate_quant_matrices(), threshold_filter(), top_integrations()

Examples

op <- options(ISAnalytics.widgets = FALSE)

path_AF <- system.file("extdata”, "ex_association_file.tsv",
package = "ISAnalytics”

)

root_correct <- system.file("extdata”, "fs.zip",
package = "ISAnalytics”

)

root_correct <- unzip_file_system(root_correct, "fs")

association_file <- import_association_file(path_AF, root_correct,
dates_format = "dmy"”

)

matrices <- import_parallel_Vispa2Matrices_auto(
association_file = association_file, root = NULL,
quantification_type = c("seqCount”, "fragmentEstimate"),
matrix_type = "annotated”, workers = 2, patterns = NULL,
matching_opt = "ANY”, multi_quant_matrix = FALSE

EXTERNAL AGGREGATION

date_columns_coll 21

aggregated <- aggregate_values_by_key(matrices$seqCount, association_file)
cumulative_count <- cumulative_count_union(aggregated)

INTERNAL AGGREGATION

cumulative_count_2 <- cumulative_count_union(matrices$seqCount,
association_file,
aggregate = TRUE

options(op)

date_columns_coll Possible choices for date_col parameter.

Description

Possible choices for date_col parameter.

Usage

date_columns_coll()

Value

A character vector of column names

See Also

remove_collisions

Examples

dates <- date_columns_coll()

date_formats Possible choices for the dates_format pa-
rameter in import_association_file,
import_parallel_vispa2Matrices_interactive and

import_parallel_vispa2Matrices_auto.

22

Description

All options correspond to lubridate functions:

Usage

ymd:
ydm:
mdy:
myd:
dmy:
dym:

year, month, date
year, day, month
month, day, year
month, year, day
day, month, year

day, year, month

yq: year quantile

date_formats()

Details

NOTE: use the same date format across the association file.

Value

A character vector

See Also

import_association_file, import_parallel_Vispa2Matrices_auto

Examples

date_formats()

default_iss_file_prefixes

default_iss_file_prefixes

Default regex prefixes for Vispa2 stats files.

Description

Note that each element is a regular expression.

Usage

default_iss_file_prefixes()

Value

A character vector of regexes

default_meta_agg 23

Examples

default_iss_file_prefixes()

default_meta_agg Default metadata aggregation function table

Description

A default columns-function specifications for aggregate_metadata

Usage

default_meta_agg()

Details
This data frame contains four columns:

e Column: holds the name of the column in the association file that should be processed

* Function: contains either the name of a function (e.g. mean) or a purrr-style lambda (e.g. ~
mean(.x,na.rm = TRUE)). This function will be applied to the corresponding column specified
in Column

* Args: optional additional arguments to pass to the corresponding function. This is relevant
ONLY if the corresponding Function is a simple function and not a purrr-style lambda.

* Output_colname: a glue specification that will be used to determine a unique output column
name. See glue for more details.

Value

A data frame

See Also

Other Aggregate functions: aggregate_metadata(), aggregate_values_by_key()

Examples

default_meta_agg()

24 generate_blank_association_file

default_stats A set of pre-defined functions for sample_statistics.

Description

A set of pre-defined functions for sample_statistics.

Usage
default_stats()

Value

A named list of functions/purrr-style lambdas

Examples

default_stats()

generate_blank_association_file
Creates a blank association file.

Description
This function is useful if you want a blank association file to start using both Vispa2 and this package
or simply if you want a correct framework to fix a malformed association file you have already.
Usage

generate_blank_association_file(path)

Arguments

path The path on disk where the file should be written

Value

returns NULL

See Also

Other Utility functions: as_sparse_matrix(), generate_Vispa2_launch_AF(),unzip_file_system()

Examples

temp <- tempfile()
generate_blank_association_file(temp)

generate_Vispa2_launch_AF 25

generate_Vispa2_launch_AF
Creates a reduced association file for Vispa2 run, given project and
pool

Description

The function selects the appropriate columns and prepares a file for the launch of Vispa2 pipeline
for each project/pool pair specified.

Usage

generate_Vispa2_launch_AF (association_file, project, pool, path)

Arguments

association_file
The imported association file (via import_association_file)

project A vector of characters containing project names

pool A vector of characters containing pool names. NOTE: the names should refer
to the values contained in the PoolID column of the association file and NOT
the concatenatePoolIDSeqRun column!

path A single string representing the path to the folder where files should be written.
If the folder doesn’t exist it will be created.

Details

Note: the function is vectorized, meaning you can specify more than one project and more than one
pool as vectors of characters, but you must ensure that:

* Both project and pool vectors have the same length

* You correclty type names in corresponding positions, for example c¢("CLOEXP", "PROJECT1100",
"PROJECT1100") - ¢("POOL6", "ABX-LR-PL5-POOL14-1", "ABX-LR-PL6-POOL15-1").
If you type a pool in the position of a corresponding project that doesn’t match no file will be
produced since that pool doesn’t exist in the corresponding project.

Value

returns NULL

See Also

Other Utility functions: as_sparse_matrix(), generate_blank_association_file(),unzip_file_system()

26 HSC_population_plot

Examples

op <- options("ISAnalytics.widgets” = FALSE)
temp <- tempdir()
path_af <- system.file("extdata”, "ex_association_file.tsv",
package = "ISAnalytics”
)
root_pth <- system.file("extdata”, "fs.zip"”, package = "ISAnalytics”)
root <- unzip_file_system(root_pth, "fs")
association_file <- import_association_file(path_af, root,

dates_format = "dmy"”
)
generate_Vispa2_launch_AF (association_file, "CLOEXP", "POOL6", temp)
options(op)

HSC_population_plot Plot of the estimated HSC population size for each patient.

Description

Plot of the estimated HSC population size for each patient.

Usage
HSC_population_plot(
estimates,
project_name,
timepoints = "Consecutive”,
models = "Mth Chao (LB)"
)
Arguments
estimates The estimates data frame, obtained via HSC_population_size_estimate

project_name The project name, will be included in the plot title

timepoints Which time points to plot? One between "All", "Stable" and "Consecutive"
models Name of the models to plot (as they appear in the column of the estimates)
Value
A plot
See Also

Other Plotting functions: CIS_volcano_plot()

HSC_population_size_estimate 27

Examples

op <- options("ISAnalytics.widgets” = FALSE, "ISAnalytics.verbose” = FALSE)
path_AF <- system.file("extdata”, "ex_association_file.tsv",
package = "ISAnalytics”
)
root_correct <- system.file("extdata”, "fs.zip"”, package = "ISAnalytics”)
root_correct <- unzip_file_system(root_correct, "fs")
association_file <- import_association_file(path_AF, root_correct,
dates_format = "dmy"”
)
aggregated_meta <- aggregate_metadata(association_file)
matrices <- import_parallel_Vispa2Matrices_auto(
association_file = association_file, root = NULL,
quantification_type = c("fragmentEstimate”, "seqCount"),
matrix_type = "annotated”, workers = 2, matching_opt = "ANY”

agg <- aggregate_values_by_key(
X = matrices,
association_file = association_file,
value_cols = "seqgCount”
)
estimate <- HSC_population_size_estimate(x = agg,
metadata = aggregated_meta,
stable_timepoints = NULL)
p <- HSC_population_plot(estimate, "PROJECT1")
options(op)

HSC_population_size_estimate
Hematopoietic stem cells population size estimate.

Description

[Experimental] Hematopoietic stem cells population size estimate with capture-recapture models.

Usage

HSC_population_size_estimate(
X,
metadata,
stable_timepoints = NULL,
aggregation_key = c("SubjectID”, "CellMarker"”, "Tissue"”, "TimePoint"),
blood_lineages = blood_lineages_default(),
timepoint_column = "TimePoint",
seqCount_column = "seqCount_sum"”,
segCount_threshold = 3,
nIS_threshold = 5,
cell_type = "MYELOID",
tissue_type = "PB"

28 HSC_population_size_estimate

Arguments
X An aggregated integration matrix. See details.
metadata An aggregated association file. See details.

stable_timepoints
A numeric vector or NULL if there are no stable time points.
aggregation_key
A character vector indicating the key used for aggregating x and metadata. Note
that x and metadata should always be aggregated with the same key.

blood_lineages A data frame containing information on the blood lineages. Users can supply
their own, provided the columns CellMarker and CellType are present.

timepoint_column
What is the name of the time point column to use? Note that this column must
be present in the key.

seqCount_column
What is the name of the column in x holding the values of sequence count quan-
tification?

seqCount_threshold
A single numeric value. After re-aggregating x, rows with a value greater or
equal will be kept, the others will be discarded.

nIS_threshold A single numeric value. If a group (row) in the metadata data frame has a count
of distinct integration sites strictly greater than this number it will be kept, oth-
erwise discarded.

cell_type The cell types to include in the models. Note that the matching is case-insensitive.
tissue_type The tissue types to include in the models. Note that the matching is case-
insensitive.
Value

A data frame with the results of the estimates

Input formats

Both x and metadata should be supplied to the function in aggregated format (ideally through the
use of aggregate_metadata and aggregate_values_by_key). Note that the aggregation_key,
aka the vector of column names used for aggregation, must contain at least the columns SubjectID,
CellMarker, Tissue and a time point column (the user can specify the name of the column in the
argument timepoint_column).

On time points

If stable_timepoints is a vector with length > 1, the function will look for the first available
stable time point and slice the data from that time point onward. If NULL is supplied instead, it
means there are no stable time points available. Note that 0 time points are ALWAYS discarded.
Also, to be included in the analysis, a group must have at least 2 distinct non-zero time points.

import_association_file 29

Examples

op <- options("ISAnalytics.widgets” = FALSE, "ISAnalytics.verbose” = FALSE)
path_AF <- system.file("extdata”, "ex_association_file.tsv",
package = "ISAnalytics”
)
root_correct <- system.file("extdata”, "fs.zip"”, package = "ISAnalytics”)
root_correct <- unzip_file_system(root_correct, "fs")
association_file <- import_association_file(path_AF, root_correct,
dates_format = "dmy"”
)
aggregated_meta <- aggregate_metadata(association_file)
matrices <- import_parallel_Vispa2Matrices_auto(
association_file = association_file, root = NULL,
quantification_type = c("fragmentEstimate”, "seqCount"),
matrix_type = "annotated”, workers = 2, matching_opt = "ANY”

agg <- aggregate_values_by_key(
X = matrices,
association_file = association_file,
value_cols = "seqgCount”
)
estimate <- HSC_population_size_estimate(x = agg,
metadata = aggregated_meta,
stable_timepoints = NULL)
options(op)

import_association_file
Import the association file from disk

Description

[Maturing] Imports the association file and immediately performs a check on the file system start-
ing from the root to assess the alignment between the two.

Usage
import_association_file(
path,
root = NULL,

tp_padding = 4,
dates_format = "ymd",
separator = "\t",
filter_for = NULL,
import_iss = FALSE,
export_widget_path = NULL,
convert_tp = TRUE,

30 import_association_file

Arguments
path The path on disk to the association file.
root The path on disk of the root folder of Vispa2 output or NULL. See details.
tp_padding Timepoint padding, indicates the number of digits of the "Timepoint" column

once imported. Fills the content with Os up to the length specified (ex: 1 be-
comes 0001 with a tp_padding of 4)

dates_format A single string indicating how dates should be parsed. Must be a value in:
date_formats()

separator The column separator used in the file

filter_for A named list where names represent column names that must be filtered. For
example: list(ProjectID = c("PROJECT1", "PROJECT?2)) will filter the associ-
ation file so that it contains only those rows for which the value of the column
"ProjectID" is one of the specified values. If multiple columns are present in the
list all filtering conditions are applied as a logical AND.

import_iss Import Vispa2 stats and merge them with the association file?
export_widget_path
A path on disk to save produced widgets or NULL if the user doesn’t wish to
save the html file

convert_tp Should be time points be converted into months and years?

Additional arguments to pass to import_Vispa2_stats

Details

The import series of functions is designed to work in combination with the use of Vispa2 pipeline,
please refer to this article for more details: VISPA2: A Scalable Pipeline for High-Throughput
Identification and Annotation of Vector Integration Sites.

The pipeline automatically produces an hierarchical structure in the file system which follows this
schema:

e /root_folder

— Optional intermediate folders

* ProjectID
|_bam
|_bcmuxall
|_bed
|_iss
|_quality
|_report
|_quantification
*|___concatenatePoolIDSeqRun

For each ProjectID there may be several nested PoolIDs. The alignment function only looks for
PoolIDs in the quantification folder, since it’s the location of the matrices to import. For more details
on how to properly use these functions, refer to the vignette - vignette("how_to_import_functions").
If 'NULL’ the file system alignment step is skipped.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702242/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702242/

import_parallel_Vispa2Matrices_auto 31

Value

A tibble with the contents of the association file plus columns containing the path in the file system
for every project and pool if found.

See Also

date_formats

Other Import functions: import_Vispa2_stats(), import_parallel_Vispa2Matrices_auto(),
import_parallel_Vispa2Matrices_interactive(), import_single_Vispa2Matrix()

Examples

op <- options("ISAnalytics.widgets” = FALSE)
path <- system.file("extdata"”, "ex_association_file.tsv",
package = "ISAnalytics”
)
root_pth <- system.file("extdata”, "fs.zip"”, package = "ISAnalytics"”)
root <- unzip_file_system(root_pth, "fs")
association_file <- import_association_file(path, root, dates_format = "dmy")
options(op)

import_parallel_Vispa2Matrices_auto
Import integration matrices based on the association file.

Description

[Maturing] These functions are designed to import the appropriate integration matrix files given
the association file and the root folder of the file system where Vispa2 matrices are generated.

Usage

import_parallel_Vispa2Matrices_auto(
association_file,
quantification_type,
matrix_type = "annotated”,
workers = 2,
multi_quant_matrix
export_report_path
patterns = NULL,
matching_opt = matching_options(),

TRUE,
NULL,

32 import_parallel_Vispa2Matrices_auto

Arguments

association_file
A single string containing the path to the association file on disk, or a data frame
resulting from a previous call to import_association_file
quantification_type
A vector of requested quantification_types. Must be one in quantification_types()

matrix_type A single string representing the type of matrices to be imported. Can only be
one in "annotated” or "not_annotated”

workers A single integer representing the number of parallel workers to use for the import

multi_quant_matrix
If set to TRUE will produce a multi-quantification matrix (data frame) through
comparison_matrix instead of a list.

export_report_path
A path on disk to save produced import report or NULL if the user doesn’t wish
to save the html file

patterns A character vector of additional patterns to match on file names. Please note
that patterns must be regular expressions. Can be NULL if no patterns needs to
be matched.

matching_opt A single value between matching_options

<dynamic-dots> Additional named arguments to pass to import_association_file
and comparison_matrix

Details

Import family functions are designed to work in combination with Vispa2, for more details on this

take a look here: VISPA2: A Scalable Pipeline for High-Throughput Identification and Annotation

of Vector Integration Sites.

For more details on how to properly use these functions, refer to the vignette - vignette("how_to_import_functions")

Value

A named list of data frames containing data from all imported integration matrices, divided by
quantification type or a multi-quantification matrix

Automatic version

The automatic version of import_parallel_Vispa2Matrices doesn’t interact with the user directly,
for this reason options in this modality are more limited compared to the interactive version. In
automatic version you can’t:

» Choose single projects or pools: to have a selection import the association file first and filter
it according to your needs before calling the function (more details on this in the vignette)

» Choose duplicates: if, after filtering by the specified patterns, duplicates are found they are
automatically ignored

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702242/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702242/

import_parallel_Vispa2Matrices_interactive 33

Interactive version

The interactive version of import_parallel_Vispa2Matrices asks user for input and allows a more
detailed choice of projects to import, pools to import and, if necessary, duplicate files. During the
execution, a series of reports is shown in html format.

See Also

matching_options, https://stringr.tidyverse.org/articles/regular-expressions.html

Other Import functions: import_Vispa2_stats(), import_association_file(), import_parallel_Vispa2Matrices_i
import_single_Vispa2Matrix()

Examples

op <- options("ISAnalytics.widgets” = FALSE)
path <- system.file("extdata"”, "ex_association_file.tsv",
package = "ISAnalytics”
)
root_pth <- system.file("extdata”, "fs.zip"”, package = "ISAnalytics”)
root <- unzip_file_system(root_pth, "fs")
matrices <- import_parallel_Vispa2Matrices_auto(
association_file = path,
quantification_type = c("fragmentEstimate”, "seqCount"),
patterns = NULL, matching_opt = "ANY",
root = root,
dates_format = "dmy",
workers = 2
)
options(op)

import_parallel_Vispa2Matrices_interactive
Import integration matrices based on the association file.

Description

[Maturing] These functions are designed to import the appropriate integration matrix files given
the association file and the root folder of the file system where Vispa2 matrices are generated.

Usage

import_parallel_Vispa2Matrices_interactive(
association_file,
quantification_type,
matrix_type = "annotated”,
workers = 2,
multi_quant_matrix = TRUE,
export_report_path = NULL,

https://stringr.tidyverse.org/articles/regular-expressions.html

34 import_parallel_Vispa2Matrices_interactive

Arguments

association_file
A single string containing the path to the association file on disk, or a data frame
resulting from a previous call to import_association_file
quantification_type
A vector of requested quantification_types. Must be one in quantification_types()
matrix_type A single string representing the type of matrices to be imported. Can only be
one in "annotated” or "not_annotated”
workers A single integer representing the number of parallel workers to use for the import
multi_quant_matrix
If set to TRUE will produce a multi-quantification matrix (data frame) through
comparison_matrix instead of a list.
export_report_path
A path on disk to save produced import report or NULL if the user doesn’t wish
to save the html file

<dynamic-dots> Additional named arguments to pass to import_association_file
and comparison_matrix

Details

Import family functions are designed to work in combination with Vispa2, for more details on this

take a look here: VISPA2: A Scalable Pipeline for High-Throughput Identification and Annotation

of Vector Integration Sites.

For more details on how to properly use these functions, refer to the vignette - vignette("how_to_import_functions")

Value

A named list of data frames containing data from all imported integration matrices, divided by
quantification type or a multi-quantification matrix

Interactive version

The interactive version of import_parallel_Vispa2Matrices asks user for input and allows a more
detailed choice of projects to import, pools to import and, if necessary, duplicate files. During the
execution, a series of reports is shown in html format.

See Also

comparison_matrix, import_association_file

Other Import functions: import_Vispa2_stats(), import_association_file(), import_parallel_Vispa2Matrices_a
import_single_Vispa2Matrix()

Examples

Not run:

Can't run because it's interactive and requires user input

matrices <- import_parallel_Vispa2Matrices_interactive(
association_file,

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702242/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702242/

import_single_Vispa2Matrix 35

quantification_type,
matrix_type = "annotated”,
workers = 2,
multi_quant_matrix = FALSE,
export_report_path = NULL,

)

End(Not run)

import_single_Vispa2Matrix
Import a single integration matrix from file

Description

[Stable] This function allows to read and import an integration matrix produced as the output of
Vispa?2 pipeline and converts it to a tidy format.

Usage

import_single_Vispa2Matrix(path, to_exclude = NULL, separator = "\t")

Arguments
path The path to the file on disk
to_exclude Either NULL or a character vector of column names that should be ignored when
importing
separator The column delimiter used
Details

The import series of functions is designed to work in combination with the use of Vispa2 pipeline,
please refer to this article for more details: VISPA2: A Scalable Pipeline for High-Throughput
Identification and Annotation of Vector Integration Sites. For more details on how to properly use
these functions, refer to vignette ("How to use import functions”,package = "ISAnalytics”)

Value

A data.table object in tidy format

See Also

Other Import functions: import_Vispa2_stats(), import_association_file(), import_parallel_Vispa2Matrices_a
import_parallel_Vispa2Matrices_interactive()

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702242/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702242/

36 import_Vispa2_stats

Examples

path_to_file <- system.file("extdata”, "ex_annotated_ISMatrix.tsv.xz",
package = "ISAnalytics”
)

isa_dataframe <- import_single_Vispa2Matrix(path_to_file)

import_Vispa2_stats Import Vispa2 stats given the aligned association file.

Description

[Experimental] Imports all the Vispa2 stats files for each pool provided the association file has
been aligned with the file system (see import_association_file).

Usage

import_Vispa2_stats(
association_file,
file_prefixes = default_iss_file_prefixes(),
join_with_af = TRUE,

pool_col = "concatenatePoolIDSeqRun”,
export_widget_path = NULL
)
Arguments

association_file

The file system aligned association file (contains columns with absolute paths to
the ’iss’ folder)

file_prefixes A character vector with known file prefixes to match on file names. NOTE: the
elements represent regular expressions. For defaults see default_iss_file_prefixes.

join_with_af Logical, if TRUE the imported stats files will be merged with the association
file, if false a single data frame holding only the stats will be returned.

pool_col A single string. What is the name of the pool column used in the Vispa2 run?
This will be used as a key to perform a join operation with the stats files POOL
column.

export_widget_path
Either NULL or the path on disk where the widget report should be saved.

Value

A data frame

See Also

Other Import functions: import_association_file(), import_parallel_Vispa2Matrices_auto(),
import_parallel_Vispa2Matrices_interactive(), import_single_Vispa2Matrix()

ISAnalytics 37

Examples

op <- options("ISAnalytics.widgets” = FALSE)
path <- system.file("extdata”, "ex_association_file.tsv",
package = "ISAnalytics”
)
root_pth <- system.file("extdata”, "fs.zip"”, package = "ISAnalytics")
root <- unzip_file_system(root_pth, "fs")

association_file <- import_association_file(path, root, dates_format = "dmy")
af_with_stats <- import_Vispa2_stats(association_file)
options(op)

ISAnalytics ISAnalytics: Analyze gene therapy vector insertion sites data identified
from genomics next generation sequencing reads for clonal tracking
studies

Description

[Maturing] In gene therapy, stem cells are modified using viral vectors to deliver the therapeutic
transgene and replace functional properties since the genetic modification is stable and inherited in
all cell progeny. The retrieval and mapping of the sequences flanking the virus-host DNA junctions
allows the identification of insertion sites (IS), essential for monitoring the evolution of genetically
modified cells in vivo. A comprehensive toolkit for the analysis of IS is required to foster clonal
trackign studies and supporting the assessment of safety and long term efficacy in vivo. This pack-
age is aimed at (1) supporting automation of IS workflow, (2) performing base and advance analysis
for IS tracking (clonal abundance, clonal expansions and statistics for insertional mutagenesis, etc.),
(3) providing basic biology insights of transduced stem cells in vivo.

Useful resources

* VISPA2: A Scalable Pipeline for High-Throughput Identification and Annotation of Vector
Integration Sites

ISAnalytics function families

* Import functions:
— import_single_Vispa2Matrix
— import_association_file
— import_Vispa2_stats
— import_parallel_Vispa2Matrices_interactive
— import_parallel_Vispa2Matrices_auto
» Aggregation functions:
— aggregate_metadata
— aggregate_values_by_key

¢ Collision removal functions:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702242/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702242/

38

ISAnalytics

remove_collisions

realign_after_collisions

¢ Removal of outliers from raw reads

outlier_filter

outliers_by_pool_fragments

¢ Recalibration functions:

compute_near_integrations

* Analysis functions:

compute_abundance
comparison_matrix
separate_quant_matrices
threshold_filter
top_integrations
sample_statistics
CIS_grubbs

cumulative_count_union

* HSC population size estimate:

HSC_population_size_estimate

* Plotting functions:

CIS_volcano_plot
HSC_population_plot

* Utility functions:

Vignettes

generate_blank_association_file
generate_Vispa2_launch_AF
unzip_file_system

as_sparse_matrix

e vignette("How to use import functions”,package = "ISAnalytics")

e vignette(”"Collision removal functionality”, package = "ISAnalytics")

e vignette("Working with aggregate functions”,package = "ISAnalytics")

known_clinical_oncogenes 39

known_clinical_oncogenes
Known clinical oncogenes (for mouse and human).

Description

Known clinical oncogenes (for mouse and human).

Usage

known_clinical_oncogenes()

Value

A data frame

See Also

Other Plotting function helpers: clinical_relevant_suspicious_genes()

Examples

known_clinical_oncogenes()

mandatory_IS_vars Names of mandatory variables for an integration matrix.

Description
Contains the names of the columns that need to be present in order for a tibble to be considered an
integration matrix.

Usage

mandatory_IS_vars()

Value

A character vector

Examples

mandatory_IS_vars()

40 outliers_by_pool_fragments

matching_options Possible choices for the matching_opt parameter.

Description

These are all the possible values for the matching_opt parameter in import_parallel_vispa2Matrices_auto.

Usage

matching_options()

Details

The values "ANY", "ALL" and "OPTIONAL", represent how the patterns should be matched, more
specifically

* ANY = look only for files that match AT LEAST one of the patterns specified
* ALL =look only for files that match ALL of the patterns specified

* OPTIONAL = look preferentially for files that match, in order, all patterns or any pattern
and if no match is found return what is found (keep in mind that duplicates are discarded in
automatic mode)

Value

A vector of characters for matching_opt

See Also

import_parallel_Vispa2Matrices_auto

Other Import functions helpers: quantification_types()

Examples

opts <- matching_options()

outliers_by_pool_fragments
Identify and flag outliers based on pool fragments.

Description

[Experimental] Identify and flag outliers

outliers_by_pool_fragments 41

Usage

outliers_by_pool_fragments(
metadata,
key = "BARCODE_MUX",
outlier_p_value_threshold = 9.05,
normality_test = FALSE,
normality_p_value_threshold = 0.05,
transform_log2 = TRUE,
per_pool_test = TRUE,
pool_col = "PoolID",
min_samples_per_pool = 5,
flag_logic = "AND",
keep_calc_cols = TRUE,
save_widget_path = NULL

)
Arguments
metadata The metadata data frame
key A character vector of numeric column names

outlier_p_value_threshold
The p value threshold for a read to be considered an outlier
normality_test Perform normality test? Normality is assessed for each column in the key using

Shapiro-Wilk test and if the values do not follow a normal distribution, other
calculations are skipped

normality_p_value_threshold

Normality threshold
transform_log2 Perform alog2 trasformation on values prior the actual calculations?
per_pool_test Perform the test for each pool?

pool_col A character vector of the names of the columns that uniquely identify a pool
min_samples_per_pool
The minimum number of samples that a pool needs to contain in order to be
processed - relevant only if per_pool_test = TRUE

flag_logic A character vector of logic operators to obtain a global flag formula - only rele-
vant if the key is longer than one. All operators must be chosen between: AND,
OR, XOR, NAND, NOR, XNOR

keep_calc_cols Keep the calculation columns in the output data frame?
save_widget_path
Either null or a string containing the path on disk where the report should be
saved
Details

This particular test calculates for each column in the key

e The zscore of the values

42 outlier_filter

¢ The tstudent of the values
¢ The the distribution of the tstudent values

Optionally the test can be performed for each pool and a normality test can be run prior the actual
calculations. Samples are flagged if this condition is respected:

* tdist < outlier_p_value_threshold & zscore < 0

If the key contains more than one column an additional flag logic can be specified for combin-
ing the results. Example: let’s suppose the key contains the names of two columns, X and Y
key = c("X","Y") if we specify the the argument flag_logic = "AND" then the reads will be
flagged based on this global condition: (tdist_X < outlier_p_value_threshold & zscore_X < 0) AND
(tdist_Y < outlier_p_value_threshold & zscore_Y < 0)

The user can specify one or more logical operators that will be applied in sequence.

Value

A data frame of metadata with the column to_remove

See Also

Other Outlier tests: available_outlier_tests()

Examples

op <- options(ISAnalytics.widgets = FALSE)

path_AF <- system.file("extdata”, "ex_association_file.tsv",
package = "ISAnalytics”
)
association_file <- import_association_file(path_AF, root = NULL,
dates_format = "dmy"”
)
filtered_af <- outliers_by_pool_fragments(association_file, key = "VCN")
options(op)
outlier_filter Filter out outliers in metadata, identified by the chosen outlier test.
Description

[Experimental] Filter out outliers in metadata.

Usage

outlier_filter(
metadata,
outlier_test = "outliers_by_pool_fragments”,
negate = FALSE,

quantification_types 43

Arguments

metadata The metadata data frame

outlier_test A string representing a function name. The name must be one of the available
outlier tests, see available_outlier_tests.

negate If TRUE will return only the metadata that was flagged to be removed. If FALSE
will return only the metadata that wasn’t flagged to be removed.

Additional named arguments passed to outliers_test

Value

A data frame of metadata which has less or the same amount of rows

Examples

op <- options(ISAnalytics.widgets = FALSE)

path_AF <- system.file("extdata”, "ex_association_file.tsv",
package = "ISAnalytics”

)

association_file <- import_association_file(path_AF, root = NULL,
dates_format = "dmy"

)

filtered_af <- outlier_filter(association_file, key = "VCN")

options(op)

quantification_types Possible choices for the quantification_type parameter.

Description
These are all the possible values for the quantification_type parameterin import_parallel_vispa2Matrices_interac
and import_parallel_vispa2Matrices_auto.

Usage

quantification_types()

Details
The possible values are:

* fragmentEstimate
* seqCount

* barcodeCount

¢ cellCount

* ShsCount

44 realign_after_collisions

Value

A vector of characters for quantification types

See Also

import_parallel_Vispa2Matrices_interactive, import_parallel_Vispa2Matrices_auto

Other Import functions helpers: matching_options()

Examples

quant_types <- quantification_types()

realign_after_collisions
Re-aligns matrices of other quantification types based on the pro-
cessed sequence count matrix.

Description

[Experimental] This function should be used to keep data consistent among the same analy-
sis: if for some reason you removed the collisions by passing only the sequence count matrix
to the remove_collisions function, you should call this function afterwards, providing a list
of other quantification matrices. NOTE: if you provided a list of several quantification types to
remove_collisions before, there is no need to call this function.

Usage

realign_after_collisions(sc_matrix, other_matrices)

Arguments

sc_matrix The sequence count matrix already processed for collisions via remove_collisions

other_matrices A named list of matrices to re-align. Names in the list must be quantification
types (quantification_types()) except "seqCount".
Details
For more details on how to use collision removal functionality: vignette("Collision removal
functionality"”,package = "ISAnalytics")
Value

A named list with re-aligned matrices

See Also

remove_collisions

Other Collision removal: remove_collisions()

reduced_AF_columns 45

Examples

op <- options("ISAnalytics.widgets” = FALSE)
path <- system.file("extdata”, "ex_association_file.tsv",
package = "ISAnalytics”
)
root_pth <- system.file("extdata”, "fs.zip", package = "ISAnalytics")
root <- unzip_file_system(root_pth, "fs")
association_file <- import_association_file(path, root,
dates_format = "dmy"”
)
matrices <- import_parallel_Vispa2Matrices_auto(
association_file = association_file, root = NULL,
quantification_type = c("fragmentEstimate”, "seqCount"),
matrix_type = "annotated”, workers = 2,
patterns = NULL, matching_opt = "ANY",
multi_quant_matrix = FALSE
)
sc_matrix <- remove_collisions(matrices$seqCount, association_file)
others <- matrices[!names(matrices) %in% "seqCount"]
aligned_matrices <- realign_after_collisions(sc_matrix, others)

options(op)
reduced_AF_columns Names of the columns of the association file to consider for Vispa2
launch.
Description

Selection of column names from the association file to be considered for Vispa2 launch. NOTE: the
TagID column appears only once but needs to be repeated twice for generating the launch file. Use
the appropriate function to generate the file automatically.

Usage

reduced_AF_columns()

Value

A character vector

Examples

reduced_AF_columns()

46 remove_collisions

remove_collisions Identifies and removes collisions based on the sequence count matrix.

Description

[Experimental] A collision is an integration (aka a unique combination of chr, integration_locus
and strand) which is observed in more than one independent sample (a unique pair of ProjectID and
SubjectID). The function tries to decide to which subject an integration should be assigned and if
no decision can be taken, the integration is completely removed from the data frame.

Usage
remove_collisions(
X,
association_file,
date_col = "SequencingDate”,
reads_ratio = 10,
seq_count_col = "seqCount”,
max_rows_reports = 50,
save_widget_path = NULL
)
Arguments
X A named list of matrices (names must be quantification types), a single inte-

gration matrix representing the sequence count matrix of interest or a multi-
quantification matrix obtained via comparison_matrix

association_file
The association file imported via import_association_file

date_col The date column that should be considered for the analysis. Must be one value
in date_columns_coll()

reads_ratio A single numeric value that represents the ratio that has to be considered when
deciding between seqCount value.

seq_count_col For support of multi-quantification matrix - the name of the sequence count
values column

max_rows_reports
A numeric value, represents the maximum number of rows of the reports data
frames that can be printed on console if the option ISAnalytics.verbose is
active. If the data frames are too large they won’t be printed on console - we
recommend using widgets for detailed and more accessible info.

save_widget_path
Either NULL or a path where the html report file should be saved. If NULL the
report is visualized via browser ONLY (not saved on disk).

sample_statistics 47

Details

If you don’t want the function to show details and messages do: options(ISAnalitics.verbose

= FALSE). To restore to the original value: options(ISAnalitics.verbose = TRUE). For more de-

tails on how to use collision removal functionality: vignette("Collision removal functionality”,package
= "ISAnalytics")

Value

A list of tibbles with removed collisions

See Also

date_columns_coll

Other Collision removal: realign_after_collisions()

Examples

op <- options("ISAnalytics.widgets” = FALSE)

path <- system.file("extdata"”, "ex_association_file.tsv",
package = "ISAnalytics”

)

root_pth <- system.file("extdata”, "fs.zip"”, package = "ISAnalytics”)

root <- unzip_file_system(root_pth, "fs")

association_file <- import_association_file(path, root,
dates_format = "dmy"”

)

matrices <- import_parallel_Vispa2Matrices_auto(
association_file = association_file, root = NULL,
quantification_type = c("fragmentEstimate”, "seqCount"),
matrix_type = "annotated”, workers = 2,
patterns = NULL, matching_opt = "ANY",
multi_quant_matrix = FALSE

)
matrices <- remove_collisions(matrices, association_file)
options(op)
sample_statistics Computes user specified functions on numerical columns and updates
the metadata data frame accordingly.
Description

[Experimental] The function operates on a data frame by grouping the content by the sample
key and computing every function specified on every column in the value_columns parameter.
After that the metadata data frame is updated by including the computed results as columns for the
corresponding key. For this reason it’s required that both x and metadata have the same sample key,
and it’s particularly important if the user is working with previously aggregated data. For example:

48 sample_statistics

Importing association file and matrices

path_AF <- system.file("extdata”, "ex_association_file.tsv",
package = "ISAnalytics”)
root_correct <- system.file("extdata”, "fs.zip",

package = "ISAnalytics"”)
root_correct <- unzip_file_system(root_correct, "fs")

association_file <- import_association_file(path_AF, root_correct)
matrices <- import_parallel_Vispa2Matrices_auto(

association_file = association_file , root = NULL,
quantification_type = c("seqCount”,"fragmentEstimate"”),
matrix_type = "annotated”, workers = 2, patterns = NULL,
matching_opt = "ANY", dates_format = "dmy")

Aggregating data (both by same key)

aggreggated_x <- aggregate_values_by_key(matrices$seqCount,
association_file)

aggregated_meta <- aggregate_metadata(association_file)

Sample statistics

sample_stats <- sample_statistics(x = aggregated_x,

metadata = aggregated_meta,

sample_key = c("SubjectID”, "CellMarker”,6"Tissue”, "TimePoint"))

Usage
sample_statistics(
X,
metadata,
sample_key = "CompleteAmplificationID”,
value_columns = "Value",
functions = default_stats()
)
Arguments
X A data frame
metadata The metadata data frame
sample_key Character vector representing the key for identifying a sample

value_columns THe name of the columns to be computed, must be numeric or integer

functions A named list of function or purrr-style lambdas

Value

A list with modified x and metadata data frames

separate_quant_matrices 49

See Also
Other Analysis functions: CIS_grubbs (), comparison_matrix(), compute_abundance(), cumulative_count_union(),

separate_quant_matrices(), threshold_filter(), top_integrations()

Examples

op <- options(ISAnalytics.widgets = FALSE)

path_AF <- system.file("extdata”, "ex_association_file.tsv",
package = "ISAnalytics”

)

root_correct <- system.file("extdata”, "fs.zip",
package = "ISAnalytics”

)

root_correct <- unzip_file_system(root_correct, "fs")

association_file <- import_association_file(path_AF, root_correct,
dates_format = "dmy"”

)

matrices <- import_parallel_Vispa2Matrices_auto(
association_file = association_file, root = NULL,
quantification_type = c("seqCount”, "fragmentEstimate"),
matrix_type = "annotated”, workers = 2, patterns = NULL,
matching_opt = "ANY”, multi_quant_matrix = FALSE

)

stats <- sample_statistics(matrices$seqCount, association_file)
options(op)

separate_quant_matrices
Separate a multiple-quantification matrix into single quantification
matrices.

Description

[Maturing] The function separates a single multi-quantification integration matrix, obtained via
comparison_matrix, into single quantification matrices as a named list of tibbles.

Usage

separate_quant_matrices(
X,
fragmentEstimate = "fragmentEstimate”,
seqCount = "seqgCount”,
barcodeCount = "barcodeCount”,
cellCount = "cellCount”,
ShsCount = "ShsCount”,
key = c(mandatory_IS_vars(), annotation_IS_vars(), "CompleteAmplificationID")

50 separate_quant_matrices

Arguments
X Single integration matrix with multiple quantification value columns, likely ob-
tained via comparison_matrix.
fragmentEstimate
Name of the fragment estimate values column in input
seqCount Name of the sequence count values column in input

barcodeCount Name of the barcode count values column in input

cellCount Name of the cell count values column in input

ShsCount Name of the shs count values column in input

key Key columns to perform the joining operation
Value

A named list of tibbles, where names are quantification types

See Also

quantification_types

Other Analysis functions: CIS_grubbs(), comparison_matrix(), compute_abundance(), cumulative_count_union(),
sample_statistics(), threshold_filter(), top_integrations()

Examples

op <- options("ISAnalytics.widgets” = FALSE)

path <- system.file("extdata”, "ex_association_file.tsv",
package = "ISAnalytics”

)

root_pth <- system.file("extdata”, "fs.zip", package = "ISAnalytics")

root <- unzip_file_system(root_pth, "fs")

association_file <- import_association_file(
path = path, root = root,
dates_format = "dmy"”

)

matrices <- import_parallel_Vispa2Matrices_auto(
association_file = association_file,
quantification_type = c("seqCount”, "fragmentEstimate"),
matrix_type = "annotated”, workers = 2, patterns = NULL,
matching_opt = "ANY"”

)

separated_matrix <- separate_quant_matrices(matrices)

options(op)

threshold_filter 51

threshold_filter Filter data frames with custom predicates

Description

[Experimental] Filter a single data frame or a list of data frames with custom predicates assembled
from the function parameters.

Usage

threshold_filter(x, threshold, cols_to_compare = "Value"”, comparators = ">")
Arguments

X A data frame or a list of data frames

threshold A numeric/integer vector or a named list of numeric/integer vectors

cols_to_compare
A character vector or a named list of character vectors

comparators A character vector or a named list of character vectors. Must be one of the
allowed Values betWeen C("<” , ">” , "==" s n ! =" , ”>=” , ”<=H)

Details

A single data frame as input:

If the user chooses to operate on a single data frame, the other parameters should only be vectors:
numeric vector for threshold and character vectors for both cols_to_compare and comparators.

A filtering condition is obtained by combining element by element cols_to_compare + comparators
+ threshold (similarly to the paste function). For example:

threshold = ¢(20, 35, 50)

cols_to_compare = c("a", "b", "c")

comparators = "<"

given these vectors, the input data frame will be filtered by checking which values in column "a"
are less than 20 AND which values in column "b" are less than 35 AND which values in column
"c" are less than 50. Things the user should keep in mind are:

» The vectors of length 1 are going to be recycled if one or more parameters are longer (in the
example, the comparators value)
* If vectors are not of length 1 they must have the same length

* Columns to compare, of course, need to be included in the input data frame and need to be
numeric/integer

* The filtering will perform a logical "AND" on all the conditions, only rows that satisfy ALL
the conditions are preserved

A list of data frames as input:

The input for the function may also be a list of data frames, either named or unnamed.

52

threshold_filter

Unnamed list:

If the input is a simple unnamed list, the other parameters should be simple vectors (as for data
frames). All the predicates will simply be applied to every data frame in the list: this is useful if
it’s desirable to filter for the same conditions different data frames that have the same structure
but different data.

Named list:

It is also possible to filter different data frames with different sets of conditions. Besides having
the possibility of defining the other parameters as simple vector, which has the same results
as operating on an unnamed list, the user can define the parameters as named lists containing
vectors. For example:

example_df <- tibble::tibble(a = c(20, 30, 40),
b = c(40, 50, 60),
C = C(Ha”’ "b”, ”C”),
d = c(3L, 4L, 5L))

example_list <- list(first = example_df,
second = example_df,
third = example_df)
print(example_list)

$first

A tibble: 3 x 4

#i# a b c d
<dbl> <dbl> <chr> <int>
1 20 40 a 3
#H 2 30 50 b 4
3 40 60 c 5
#H#

$second

A tibble: 3 x 4

#it a b c d
<dbl> <dbl> <chr> <int>
1 20 40 a 3
2 30 50 b 4
#H# 3 40 60 c 5
##

$third

A tibble: 3 x 4

#i# a b c d
<dbl> <dbl> <chr> <int>
1 20 40 a 3
#H 2 30 50 b 4
3 40 60 c 5

filtered <- threshold_filter(example_list,
threshold = list(first = c(20, 60),
third = c(25)),

cols_to_compare = list(first = c("a", "b"),
third = c("a")),
comparators = list(first = c(">", "<"),

third = c(">=")))

threshold_filter 53

Value

print(filtered)

$first

A tibble: 1 x 4

#it a b c d
<dbl> <dbl> <chr> <int>
1 30 50 b 4
##

$second

A tibble: 3 x 4

#i a b c d
<dbl> <dbl> <chr> <int>
1 20 40 a 3
2 30 50 b 4
3 40 60 c 5
##

$third

A tibble: 2 x 4

#i a b c d
<dbl> <dbl> <chr> <int>
1 30 50 b 4
2 40 60 c 5

The above signature will roughly be translated as:

* Filter the element "first" in the list by checking that values in column "a" are bigger than 20
AND values in column "b" are less than 60
* Don’t apply any filter to the element "second" (returns the data frame as is)

* Filter the element "third" by checking that values in column "a" are equal or bigger than 25.

It is also possible to use some parameters as vectors and some as lists: vectors will be recycled
for every element filtered.

filtered <- threshold_filter(example_list,

threshold = list(first = c(20, 60),
third = c(25, 65)),

cols_to_compare = c("a", "b"),

comparators = list(first = c(">", "<"),

third = C(”>:", n<=n>))

In this example, different threshold and comparators will be applied to the same columns in all
data frames.
Things the user should keep in mind are:

* Names for the list parameters must be the same names in the input list
* Only elements explicited in list parameters as names will be filtered

* Lengths of both vectors and lists must be consistent

A data frame or a list of data frames

54 top_integrations

See Also

Other Analysis functions: CIS_grubbs(), comparison_matrix(), compute_abundance(), cumulative_count_union(),
sample_statistics(), separate_quant_matrices(), top_integrations()

Examples

example_df <- tibble::tibble(
a = c(20, 30, 40),
b = c(40, 50, 60),
c =c("a", "b", "c"),
d = c(3L, 4L, 5L)

)

example_list <- list(
first = example_df,
second = example_df,
third = example_df

)

filtered <- threshold_filter(example_list,

threshold = list(
first = c(20, 60),
third = c(25)

),

cols_to_compare = list(
first = c("a", "b"),
third = c("a")

),

comparators = list(
first = c(">", "<")
third = c(">=")

’

)
)
top_integrations Sorts and keeps the top n integration sites based on the values in a
given column.
Description

[Experimental] The input data frame will be sorted by the highest values in the columns specified
and the top n rows will be returned as output. The user can choose to keep additional columns in
the output by passing a vector of column names or passing 2 "shortcuts":

* keep = "everything"” keeps all columns in the original data frame

* keep = "nothing” only keeps the mandatory columns (mandatory_IS_vars()) plus the columns
in the columns parameter.

top_integrations 55

Usage
top_integrations(
X ’
n = 50,
columns = "fragmentEstimate_sum_RelAbundance”,
keep = "everything”,
key = NULL
)
Arguments
X An integration matrix (data frame containing mandatory_IS_vars())
n How many integrations should be sliced (in total or for each group)? Must be
numeric or integer and greater than 0
columns Columns to use for the sorting. If more than a column is supplied primary
ordering is done on the first column, secondary ordering on all other columns
keep Names of the columns to keep besides mandatory_IS_vars() and columns
key Either NULL or a character vector of column names to group by. If not NULL the
input will be grouped and the top fraction will be extracted from each group.
Value

Either a data frame with at most n rows or a data frames with at most n*(number of groups) rows.

See Also

Other Analysis functions: CIS_grubbs(), comparison_matrix(), compute_abundance(), cumulative_count_union(),
sample_statistics(), separate_quant_matrices(), threshold_filter()

Examples

smpl <- tibble::tibble(
chr = c("1", "2", "3", "4" "K' "g"),
integration_locus = c(14536, 14544, 14512, 14236, 14522, 14566),
strand = c("+", "+", "= MM U=ty
CompleteAmplificationID = c("ID1", "ID2", "ID1", "ID1", "ID3", "ID2"),
Value = c(3, 10, 40, 2, 15, 150),
Value2 = c(456, 87, 87, 9, 64, 96),
Value3 = c("a", "b", "c", "d", "e", "f")

)
top <- top_integrations(smpl,
n =3,
columns = c("Value”, "Value2"),
keep = "nothing”
)
top_key <- top_integrations(smpl,
n =3,
columns = "Value”,

keep = "Value2",

56 unzip_file_system

key = "CompleteAmplificationID”

)
unzip_file_system A utility function to unzip and use example file systems included in the
package
Description

This utility function is a simple shortcut to create a temporary directory, unzip and reference the
examples file systems included in the package for testing purposes.

Usage

unzip_file_system(zipfile, name)

Arguments

zipfile The zipped file to decompress

name The name of the folder in the zipped archive ("fs" or "fserr")
Value

A path to reference

See Also

Other Utility functions: as_sparse_matrix(), generate_Vispa2_launch_AF(), generate_blank_association_file()

Examples

root_pth <- system.file("extdata”, "fs.zip"”, package = "ISAnalytics”)
root <- unzip_file_system(root_pth, "fs")

Index

* Aggregate functions known_clinical_oncogenes, 39
aggregate_metadata, 3 + Plotting functions
aggregate_values_by_key, 4 CIS_volcano_plot, 11
default_meta_agg, 23 HSC_population_plot, 26

* Analysis functions helpers + Population estimates
default_stats, 24 HSC_population_size_estimate, 27

+ Analysis functions * Recalibration functions
CIS_grubbs, 10 compute_near_integrations, 17
comparison_matrix, 14 * Utility functions
compute_abundance, 16 as_sparse_matrix, 7
cumulative_count_union, 19 generate_blank_association_file,
sample_statistics, 47 24
separate_quant_matrices, 49 generate_Vispa2_launch_AF, 25
threshold_filter, 51 unzip_file_system, 56

top_integrations, 54

* Collision removal helpers
date_columns_coll, 21

* Collision removal
realign_after_collisions, 44
remove_collisions, 46

* Import functions helpers
matching_options, 40
quantification_types, 43

* Import functions

aggregate_metadata, 3, 6, 23, 28, 37

aggregate_values_by_key, 4, 4, 20, 23, 28,
37

annotation_IS_vars, 6

as_sparse_matrix, 7, 24, 25, 38, 56

association_file_columns, 7

available_outlier_tests, 8, 42, 43

blood_lineages_default, 9

import_association_file, 29 CIS_grubbs, 10, 12, 15, 17, 20, 38, 49, 50, 54
import_parallel_Vispa2Matrices_auto, 55
) 31))) ~ CIs_volcano_plot, 11, 26, 38
import_parallel_Vispa2Matrices_interactiveijnjcal_relevant_suspicious_genes, 14,
33 39
import_single_Vispa2Matrix, 35 comparison_matrix, 8, 11, 14, 17, 18, 20, 34,
import_Vispa2_stats, 36 38, 46, 49, 50, 54, 55
* Outlier tests compute_abundance, 11, 15, 16, 20, 38, 49,
available_outlier_tests, 8 50, 54, 55
outliers_by_pool_fragments, 40 compute_near_integrations, 17, 38
* Outliers filter cumulative_count_union, 11, 15,17, 19, 38,
outlier_filter, 42 49, 50, 54, 55
* Plotting function helpers
clinical_relevant_suspicious_genes, date_columns_coll, 21, 47
14 date_formats, 21, 31

57

58

default_iss_file_prefixes, 22, 36
default_meta_agg, 3, 4, 6, 23
default_stats, 24

generate_blank_association_file, 8, 24,
25, 38, 56

generate_Vispa2_launch_AF, 8, 24, 25, 38,
56

glue, 23

HSC_population_plot, /3, 26, 38
HSC_population_size_estimate, 9, 26, 27,
38

import_association_file, 20, 22, 29,
33-37

import_parallel_Vispa2Matrices_auto,
15,22, 31,31,34-37,40, 44

import_parallel_Vispa2Matrices_interactive,

15,31, 33,33, 35-37, 44
import_single_Vispa2Matrix, 31, 33, 34,
35, 36, 37
import_Vispa2_stats, 3, 30, 31, 33-35, 36,
37
ISAnalytics, 37

known_clinical_oncogenes, /4, 39

mandatory_IS_vars, 39
matching_options, 33, 40, 44

outlier_filter, 8, 38, 42
outliers_by_pool_fragments, 9, 38, 40

quantification_types, 15, 40, 43, 50

realign_after_collisions, 38, 44, 47
reduced_AF_columns, 45
remove_collisions, 21, 38, 44, 46

sample_statistics, 11, 15, 17, 20, 38, 47,
50, 54, 55

separate_quant_matrices, 11, 15, 17, 20,
38,49, 49, 54, 55

threshold_filter, 11, 15,17, 20, 38, 49, 50,
51,55

top_integrations, 11, 15, 17, 20, 38, 49, 50,
54, 54

unzip_file_system, 8, 24, 25, 38, 56

INDEX

	aggregate_metadata
	aggregate_values_by_key
	annotation_IS_vars
	association_file_columns
	as_sparse_matrix
	available_outlier_tests
	blood_lineages_default
	CIS_grubbs
	CIS_volcano_plot
	clinical_relevant_suspicious_genes
	comparison_matrix
	compute_abundance
	compute_near_integrations
	cumulative_count_union
	date_columns_coll
	date_formats
	default_iss_file_prefixes
	default_meta_agg
	default_stats
	generate_blank_association_file
	generate_Vispa2_launch_AF
	HSC_population_plot
	HSC_population_size_estimate
	import_association_file
	import_parallel_Vispa2Matrices_auto
	import_parallel_Vispa2Matrices_interactive
	import_single_Vispa2Matrix
	import_Vispa2_stats
	ISAnalytics
	known_clinical_oncogenes
	mandatory_IS_vars
	matching_options
	outliers_by_pool_fragments
	outlier_filter
	quantification_types
	realign_after_collisions
	reduced_AF_columns
	remove_collisions
	sample_statistics
	separate_quant_matrices
	threshold_filter
	top_integrations
	unzip_file_system
	Index

