Package 'EventPointer'

October 14, 2021

Type Package

Title An effective identification of alternative splicing events using junction arrays and RNA-Seq data

Version 3.0.0

Description EventPointer is an R package to identify alternative splicing events that involve either simple (case-control experiment) or complex experimental designs such as time course experiments and studies including paired-samples. The algorithm can be used to analyze data from either junction arrays (Affymetrix Arrays) or sequencing data (RNA-Seq.)

The software returns a data.frame with the detected alternative splicing events: gene name, type of event (cassette, alternative 3',...,etc), genomic position, statistical significance and increment of the percent spliced in (Delta PSI) for all the events.

The algorithm can generate a series of files to visualize the detected alternative splicing events in IGV. This eases the interpretation of results and the design of primers for standard PCR validation.

Depends R (>= 3.4), SGSeq, Matrix, SummarizedExperiment

Imports GenomicFeatures, stringr, GenomeInfoDb, igraph, MASS, nnls, limma, matrixStats, RBGL, prodlim, graph, methods, utils, stats, doParallel, foreach, affxparser, GenomicRanges, S4Vectors, IRanges, qvalue, cobs, rhdf5, BSgenome, Biostrings, glmnet, abind, iterators, lpSolve, poibin, speedglm, tximport

Suggests knitr, rmarkdown, BiocStyle, RUnit, BiocGenerics, dplyr, kableExtra

License Artistic-2.0

LazyData true

RoxygenNote 7.1.1

Encoding UTF-8

biocViews AlternativeSplicing, DifferentialSplicing, mRNAMicroarray, RNASeq, Transcription, Sequencing, TimeCourse, ImmunoOncology

VignetteBuilder knitr

Url https://github.com/jpromeror/EventPointer

Index

$\pmb{BugReports} \ \texttt{https://github.com/jpromeror/EventPointer/issues}$
git_url https://git.bioconductor.org/packages/EventPointer
git_branch RELEASE_3_13
git_last_commit e4f2123
git_last_commit_date 2021-05-19
Date/Publication 2021-10-14
Author Juan Pablo Romero [aut], Juan A. Ferrer-Bonsoms [aut, cre]
Maintainer Juan A. Ferrer-Bonsoms <jafhernandez@tecnun.es></jafhernandez@tecnun.es>

R topics documented:

AllEvents_RNASeq	3
AllEvents_RNASeq_MP	3
ArrayDatamultipath	4
ArraysData	4
CDFfromGTF	5
CDFfromGTF_Multipath	6
CreateExSmatrix	7
EventDetection	8
EventDetectionMultipath	9
EventDetection_transcriptome	9
EventPointer	11
EventPointer_Bootstraps	12
EventPointer_IGV	13
EventPointer_RNASeq	15
EventPointer_RNASeq_IGV	15
EventPointer_RNASeq_TranRef	16
EventPointer_RNASeq_TranRef_IGV	17
EventXtrans	18
FindPrimers	19
Fit	22
getbootstrapdata	22
GetPSI_FromTranRef	23
MyPrimers	24
MyPrimers_taqman	25
PrepareBam_EP	
Protein_Domain_Enrichment	26
PSIss	27
PSI_Statistic	28
ResulTable	29
SF_Prediction	30
SG_RNASeq	30
TxD	31
	32

AllEvents_RNASeq 3

AllEvents_RNASeq

Alternative splicing events detected by EventPointer

Description

Alternative splicing events detected by EventPointer

Usage

```
data(AllEvents_RNASeq)
```

Format

A list object AllEvents_RNASeq[[i]][[j]] displays the jth splicing event for the ith gene.

Value

AllEvents_RNASeq object contains all the detected alternativesplicing events using EventPointermethodology. The splicing events where detected using the BAM files from the dataset published in Seshagiri et al. 2012 andused in the SGSeq R package vignette.

AllEvents_RNASeq_MP

Alternative splicing multi-path events detected by EventPointer

Description

Alternative splicing multi-path events detected by EventPointer

Usage

```
data(AllEvents_RNASeq_MP)
```

Format

A list object AllEvents_RNASeq[[i]][[j]] displays the jth splicing event for the ith gene.

Value

AllEvents_RNASeq_MP object contains all the detected alternative splicing events using Event-Pointer methodology for multi-path events. The splicing events where detected using the BAM files from the dataset published in Seshagiri et al. 2012 and used in the SGSeq R package vignette.

4 ArraysData

ArrayDatamultipath

Preprocessed arrays data with multi-path events

Description

Preprocessed arrays data with multi-path events

Usage

data(ArrayDatamultipath)

Format

A data. frame with preprocessed arrays data. The preprocessing was done using aroma.affymetrix. See the package vignette for the preprocessing pipeline

Value

ArrayDatamultipath object contains preprocessed junction arrays data. The preprocessing was done using aroma.affymetrix R package, refer to EventPointer vignette for the pipeline used for the preprocessing. The data corresponds to 4 samples from the SUM149 Cell line hybridized to the HTA 2.0 Affymetrix array. The first two samples are control and the second ones are treated.

ArraysData

Preprocessed arrays data

Description

Preprocessed arrays data

Usage

data(ArraysData)

Format

A data. frame with preprocessed arrays data. The preprocessing was done using aroma.affymetrix. See the package vignette for the preprocessing pipeline

Value

ArraysData object contains preprocessed junction arrays data. The preprocessing was done using aroma.affymetrix R package, refer to EventPointer vignette for the pipeline used for the preprocessing. The data corresponds to 4 samples from the SUM149 Cell line hybridized to the HTA 2.0 Affymetrix array. The first two samples are control and the second ones are treated.

CDFfromGTF 5

CDFfromGTF	CDF file creation for EventPointer	
------------	------------------------------------	--

Description

Generates the CDF file to be used under the aroma.affymetrix framework

Usage

```
CDFfromGTF(
  input = "Ensembl",
  inputFile = NULL,
  PSR,
  Junc,
  PathCDF,
  microarray = NULL
)
```

Arguments

input Reference transcriptome used to build the CDF file. Must be one of: 'Ensembl',

'UCSC', 'AffyGTF' or 'CustomGTF'.

inputFile If input is 'AffyGTF' or 'CustomGTF', inputFile should point to the GTF file to

be used.

PSR Path to the Exon probes txt file

Junc Path to the Junction probes txt file

PathCDF Directory where the output will be saved

microarray Microarray used to create the CDF file. Must be one of: HTA-2_0, ClariomD,

RTA or MTA

Value

The function displays a progress bar to show the user the progress of the function. However, there is no value returned in R as the function creates three files that are used later by other EventPointer functions.1) EventsFound.txt: Tab separated file with all the information of all the alternative splcing events found. 2) .flat file: Used to build the corresponding CDF file. 3) .CDF file: Output required for the aroma.affymetrix preprocessing pipeline. Both the .flat and .CDF file take large ammounts of memory in the hard drive, it is recommended to have at least 1.5 GB of free space.

```
PathFiles<-system.file('extdata',package='EventPointer')
DONSON_GTF<-paste(PathFiles,'/DONSON.gtf',sep='')
PSRProbes<-paste(PathFiles,'/PSR_Probes.txt',sep='')
JunctionProbes<-paste(PathFiles,'/Junction_Probes.txt',sep='')
Directory<-tempdir()</pre>
```

CDFfromGTF_Multipath CDF file creation for EventPointer (MultiPath)

Description

Generates the CDF file to be used under the aroma.affymetrix framework.

Usage

```
CDFfromGTF_Multipath(
  input = "Ensembl",
  inputFile = NULL,
  PSR,
  Junc,
  PathCDF,
  microarray = NULL,
  paths = 2
)
```

Arguments

input Reference transcriptome used to build the CDF file. Must be one of Ensembl,

UCSC or GTF.

inputFile If input is GTF, inputFile should point to the GTF file to be used.

PSR Path to the Exon probes txt file

Junc Path to the Junction probes txt file

PathCDF Directory where the output will be saved

Directory where the output will be saved

microarray used to create the CDF file. Must be one of: HTA-2_0, ClariomD,

RTA or MTA

paths Maximum number of paths of the events to find.

Value

The function displays a progress bar to show the user the progress of the function. However, there is no value returned in R as the function creates three files that are used later by other EventPointer functions. 1) EventsFound.txt: Tab separated file with all the information of all the alternative splcing events found. 2) .flat file: Used to build the corresponding CDF file. 3) .CDF file: Output required for the aroma.affymetrix preprocessing pipeline. Both the .flat and .CDF file take large ammounts of memory in the hard drive, it is recommended to have at least 1.5 GB of free space.

CreateExSmatrix 7

Examples

CreateExSmatrix

Events X RBPS matrix creation

Description

Generates the Events x RBP matrix for the splicing factor enrichment analysis.

Usage

```
CreateExSmatrix(
  pathtoeventstable,
  SG_List,
  nt = 400,
  Peaks,
  POSTAR,
  EventsRegions = NULL,
  cores = 1
)
```

Arguments

pathtoeventstable

Path to eventsFound.txt with the information of all the events

SG_List List with the information of the splicing graph of the genes. Returned by the

funciotn EventDetectio_transcriptome

nt Number of nt up and down for the splicing regions of each event

Peaks Table with the peaks

POSTAR Table with peaks of POSTAR

cores Number of cores if user want to run in parallel.

8 EventDetection

Value

The function returns a list with the ExS matrix and with the splicing regions of the events. If the Splicing regions is an input of the function then only the ExS matrix will be returned. The ExS matrix is the input for the Splicing Factor enrichment analysis.

EventDetection

Detect splicing events using EventPointer methodology

Description

Identification of all the alternative splicing events in the splicing graphs

Usage

```
EventDetection(Input, cores, Path)
```

Arguments

Input Output of the PrepareBam_EP function

cores Number of cores used for parallel processing

Path Directory where to write the EventsFound_RNASeq.txt file

Value

list with all the events found for all the genes present in the experiment. It also generates a file called EventsFound_RNASeq.txt with the information of each event.

```
# Run EventDetection function
data(SG_RNASeq)
TxtPath<-tempdir()
AllEvents_RNASeq<-EventDetection(SG_RNASeq,cores=1,Path=TxtPath)</pre>
```

EventDetectionMultipath

Detect splicing multipath events using EventPointer methodology

Description

Identification of all the multipath alternative splicing events in the splicing graphs

Usage

EventDetectionMultipath(Input, cores, Path, paths = 2)

Arguments

Input	Output of the PrepareBam_EP function
cores	Number of cores used for parallel processing
Path	Directory where to write the EventsFound_RNASeq.txt file
paths	Maximum number of paths of the events to find.

Value

list with all the events found for all the genes present in the experiment. It also generates a file called EventsFound_RNASeq.txt with the information each event.

Examples

```
# Run EventDetection function
data(SG_RNASeq)
TxtPath<-tempdir()
AllEvents_RNASeq_MP<-EventDetectionMultipath(SG_RNASeq,cores=1,Path=TxtPath,paths=3)</pre>
```

 ${\tt EventDetection_transcriptome}$

EventDetection_transcriptome

Description

Finds all the possible alternative splicing (AS) events given a reference transcriptome. This function use parallel foreach. User must set the value of cores (by default equal to one). Moreover, it will create a .txt file with the relative information of all the AS events found. Besides, it will return a list with main information of the splicing graph of each event. This list will be used as an input in downstream functions (Get_PSI_FromTranRef, FindPrimers, and Event-Pointer_RNASeq_TranRef_IGV)

Usage

```
EventDetection_transcriptome(
  inputFile = NULL,
  Transcriptome = NULL,
  Pathtxt = NULL,
  cores = 1
)
```

Arguments

inputFile Path to the GTF file of the reference transcriptome.

Transcriptome Name of the transcriptome

Pathtxt Directory to save the .txt of the events found

cores Number of cores using in the parallel processing (by default = 1)

Value

a list is returned with the following information:

ExTP1 a sparce matrix of Events x Transcripts that relates which isoform build up the path1 of each event.

ExTP2 a sparce matrix of Events x Transcripts that relates which isoform build up the path2 of each event.

ExTPRef a sparce matrix of Events x Transcripts that relates which isoform build up the pathRef of each event.

transcritnames a vector with the annotation names of the isoforms.

SG_List A list containing the information of the splicing graph of each gene.

EventPointer 11

EventPointer EventPointer

Description

Statistical analysis of alternative splcing events

Usage

```
EventPointer(
   Design,
   Contrast,
   ExFit,
   Eventstxt,
   Filter = TRUE,
   Qn = 0.25,
   Statistic = "LogFC",
   PSI = FALSE
)
```

Arguments

Design The design matrix for the experiment. Contrast The contrast matrix for the experiment. ExFit aroma.affymetrix pre-processed variable after using extractDataFrame(affy,addNames=TRUE) Eventstxt Path to the EventsFound.txt file generated by CDFfromGTF function. Filter Boolean variable to indicate if an expression filter is applied Quantile used to filter the events (Bounded between 0-1, Q1 would be 0.25). Qn Statistical test to identify differential splicing events, must be one of : LogFC, Statistic Dif_LogFC or DRS. PSI Boolean variable to indicate if Delta PSI should be calculated for every splicing event.

Value

Data.frame ordered by the splicing p.value. The object contains the different information for each splicing event such as Gene name, event type, genomic position, p.value, z.value and delta PSI.

```
data(ArraysData)

Dmatrix<-matrix(c(1,1,1,1,0,0,1,1),nrow=4,ncol=2,byrow=FALSE)
Cmatrix<-t(t(c(0,1)))
EventsFound<-paste(system.file('extdata',package='EventPointer'),'/EventsFound.txt',sep='')</pre>
```

EventPointer_Bootstraps

EventPointer_Bootstraps

Description

Statistical analysis of alternative splicing events with bootstrap technique.

Usage

```
EventPointer_Bootstraps(
   PSI,
   Design,
   Contrast,
   cores = 1,
   ram = 0.1,
   nBootstraps = 10000,
   UsePseudoAligBootstrap = TRUE,
   Threshold = 0
)
```

Arguments

PSI Array or matrix that contains the values of PSI calculated in the function GetP-

SIFromTranRef. If bootstrap option was selected in GetPSIFromTranRef, input

must be an array. If not, input must be a matrix

Design Design matrix
Contrast Contrast matrix

cores The number of cores desired to use.

ram How many ram memory is used,in Gb.

nBootstraps How many layers, Bootstraps or samplings are going to be used. Caution, high

numbers increase computational time.

UsePseudoAligBootstrap

TRUE (default) if bootstrap data from pseudoaligment want to be used or FALSe

if not.

Threshold it assigns a threshold to compute the pvalues. default = 0.

EventPointer_IGV 13

Value

A list containing the summary of the Bootstrap analysis: DeltaPSI, Pvalues, FDR. This info can be obtained in a simple table with the function ResulTable.

Examples

EventPointer_IGV

EventPointer IGV Visualization

Description

Generates of files to be loaded in IGV for visualization and interpretation of events

Usage

```
EventPointer_IGV(
   Events,
   input,
   inputFile = NULL,
   PSR,
   Junc,
   PathGTF,
   EventsFile,
   microarray = NULL
)
```

Arguments

Events Data.frame generated by EventPointer with the events to be included in the GTF

file.

input Reference transcriprome. Must be one of: 'Ensembl', 'UCSC', 'AffyGTF' or

'CustomGTF'.

14 EventPointer_IGV

inputFile If input is 'AffyGTF' or 'CustomGTF', inputFile should point to the GTF file to

be used.

PSR Path to the Exon probes txt file.

Junc Path to the Junction probes txt file.

PathGTF Directory where to write the GTF files.

EventsFile Path to EventsFound.txt file generated with CDFfromGTF function.

microarray used to create the CDF file. Must be one of: HTA-2_0, ClariomD,

RTA or MTA

Value

The function displays a progress bar to show the user the progress of the function. Once the progress bar reaches 100 in PathGTF. The created files are: 1) paths.gtf: GTF file representing the alternative splicing events and 2) probes.gtf: GTF file representing the probes that measure each event and each path.

```
PathFiles<-system.file('extdata',package='EventPointer')</pre>
  DONSON_GTF<-paste(PathFiles,'/DONSON.gtf',sep='')</pre>
  PSRProbes<-paste(PathFiles,'/PSR_Probes.txt',sep='')
  JunctionProbes<-paste(PathFiles,'/Junction_Probes.txt',sep='')</pre>
  Directory<-tempdir()</pre>
  data(ArraysData)
  \label{local_decomposition} D matrix < -matrix(c(1,1,1,1,0,0,1,1), nrow=4, ncol=2, by row=FALSE)
  Cmatrix < -t(t(c(0,1)))
EventsFound<-paste(system.file('extdata',package='EventPointer'),'/EventsFound.txt',sep='')</pre>
  Events<-EventPointer(Design=Dmatrix,</pre>
                       Contrast=Cmatrix,
                       ExFit=ArraysData,
                       Eventstxt=EventsFound,
                       Filter=TRUE,
                       Qn=0.25,
                       Statistic='LogFC',
                       PSI=TRUE)
EventPointer_IGV(Events=Events[1,,drop=FALSE],
                  input='AffyGTF',
                  inputFile=DONSON_GTF,
                  PSR=PSRProbes,
                  Junc=JunctionProbes,
                  PathGTF=Directory,
                 EventsFile= EventsFound,
                 microarray='HTA-2_0')
```

EventPointer_RNASeq

EventPointer_RNASeq	Statistical analysis of alternative splcing events for RNASeq data	
	statistical analysis of alternative sprens events for 12 11 seq and	

Description

Statistical analysis of all the alternative splicing events found in the given bam files.

Usage

```
EventPointer_RNASeq(Events, Design, Contrast, Statistic = "LogFC", PSI = FALSE)
```

Arguments

Events	Output from EventDetection function
Design	The design matrix for the experiment.
Contrast	The contrast matrix for the experiment.
Statistic	Statistical test to identify differential splicing events, must be one of : LogFC, Dif_LogFC and DRS.
PSI	Boolean variable to indicate if PSI should be calculated for every splicing event.

Value

Data.frame ordered by the splicing p.value. The object contains the different information for each splicing event such as Gene name, event type, genomic position, p.value, z.value and delta PSI.

Examples

```
data(AllEvents_RNASeq)
Dmatrix<-matrix(c(1,1,1,1,1,1,1,0,0,0,0,1,1,1,1),ncol=2,byrow=FALSE)
Cmatrix<-t(t(c(0,1)))
Events <- EventPointer_RNASeq(AllEvents_RNASeq,Dmatrix,Cmatrix,Statistic='LogFC',PSI=TRUE)</pre>
```

```
EventPointer_RNASeq_IGV
```

EventPointer RNASeq IGV Visualization

Description

Generates of files to be loaded in IGV for visualization and interpretation of events

```
EventPointer_RNASeq_IGV(Events, SG_RNASeq, EventsTxt, PathGTF)
```

Arguments

Events	Data.frame generated by EventPointer_RNASeq with the events to be included in the GTF file.
SG_RNASeq	Output from PrepareBam_EP function. Contains splicing graphs components.
EventsTxt	Path to EventsFound.txt file generated with EventDetection function
PathGTF	Directory where to write the GTF files.

Value

The function displays a progress bar to show the user the progress of the function. Once the progress bar reaches 100 file is written to the specified directory in PathGTF. The created file: 1) paths_RNASeq.gtf: GTF file representing the alternative splicing events.

Examples

```
data(AllEvents_RNASeq)
data(SG_RNASeq)

# Run EventPointer

Dmatrix<-matrix(c(1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1),ncol=2,byrow=FALSE)
    Cmatrix<-t(t(c(0,1)))
Events <- EventPointer_RNASeq(AllEvents_RNASeq,Dmatrix,Cmatrix,Statistic='LogFC',PSI=TRUE)

# IGV Visualization

EventsTxt<-paste(system.file('extdata',package='EventPointer'),'/EventsFound_RNASeq.txt',sep='')
    PathGTF<-tempdir()
    EventPointer_RNASeq_IGV(Events,SG_RNASeq,EventsTxt,PathGTF)</pre>

EventPointer_RNASeq_TranRef

EventPointer_RNASeq_TranRef
```

Description

Statistical analysis of alternative splicing events with the output of GetPSI_FromTranRef

```
EventPointer_RNASeq_TranRef(
   Count_Matrix,
   Statistic = "LogFC",
   Design,
   Contrast
)
```

Arguments

Count_Matrix The list containing the expression data taken from the ouput of GetPSI_FromTranRef

Statistic The type of statistic to apply. Default = 'LogFC' (can be 'logFC, 'Dif_LogFC', 'DRS')

Design The design matrix of the experiment.

Contrast The Contrast matrix of the experiment.

Value

a data.frame with the information of the names of the event, its p.values and the corresponding z.value. If there is more than one contrast, the function returns as many data.frames as number of contrast and all these data.frame are sotred in an unique list.

Examples

EventPointer_RNASeq_TranRef_IGV

EventPointer RNASeq from reference transcriptome IGV Visualization

Description

Generates of files to be loaded in IGV for visualization and interpretation of events detected from a reference transcriptome (see EventDetection_transcriptome).

```
EventPointer_RNASeq_TranRef_IGV(SG_List, pathtoeventstable, PathGTF)
```

18 EventXtrans

Arguments

SG_List List with the Splicing Graph information of the events. This list is created by

EventDetection_transcriptome function.

pathtoeventstable

Complete path to the table returned by EventDetection_transcriptome that contains the information of each event, or table with specific events that the user

want to load into IGV to visualize.

PathGTF Directory where to write the GTF files.

Value

The function displays a progress bar to show the user the progress of the function. Once the progress bar reaches 100 file is written to the specified directory in PathGTF. The created file is named 'paths_RNASeq.gtf'.

Examples

```
###### example using all the events found in a reference transcriptome
data("EventXtrans")
SG_List <- EventXtrans$SG_List
PathEventsTxt<-system.file('extdata',package='EventPointer')
PathEventsTxt <- paste0(PathEventsTxt,"/EventsFound_Gencode24_2genes.txt")
PathGTF <- tempdir()
EventPointer_RNASeq_TranRef_IGV(SG_List = SG_List,pathtoeventstable = PathEventsTxt,PathGTF = PathGTF)</pre>
```

EventXtrans

relationship between isoforms and events

Description

relationship between isoforms and events

Usage

```
data(EventXtrans)
```

Format

A list object EventXtrans[[1]] displays the isoform that build up the path1 of each event.

Value

EventXtrans object contains the relationship between the isoforms and the events. It is a list of 4 elements. the first three stored sparse matrices relating the isoforms with the events. The fourth element stores de names of the reference annotation used (isoforms names)

FindPrimers 19

FindPrimers

FindPrimers

Description

FindPrimers is the main function of the primers design option. The aim of this function is the design of PCR primers and TaqMan probes for detection and quantification of alternative splicing.

Depending on the assay we want to carry out the the algorithm will design the primers for a conventional PCR or the primers and TaqMan probes if we are performing a TaqMan assay.

In the case of a conventional PCR we will be able to detect the alternative splicing event. Besides, the algorithm gives as an output the length of the PCR bands that are going to appear. In the case of a TaqMan assay, we will not only detect but also quantify alternative splicing.

Usage

```
FindPrimers(
  SG,
  EventNum,
  Primer3Path,
  Dir,
  mygenomesequence,
  taqman = NA,
  nProbes = 1,
  nPrimerstwo = 3,
  ncommonForward = 3,
  ncommonReverse = 3,
  nExons = 5,
  nPrimers = 15,
  shortdistpenalty = 2000,
  maxLength = 1000,
  minsep = 100,
  wminsep = 200,
  valuethreePenalty = 1000,
  minexonlength = 25,
  wnpaths = 200,
  qualityfilter = 5000
)
```

Arguments

SG

Information of the graph of the gene where the selected event belongs. This information is availble in the output of EventsGTFfromTranscriptomeGTF function.

EventNum

The "EventNum" variable can be found in the returned .txt file from the Events-GTFfromTranscriptomeGTF function in the column "EventNumber" or in the output of EventPointer_RNASeq_TranRef, the number after the "_" character of the 'Event_ID'.

20 FindPrimers

Primer3Path Complete path where primer3_core.exe is placed.

Dir Complete path where primer3web_v4_0_0_default_settings.txt file and primer3_config

directory are stored.

mygenomesequence

genome sequence of reference

tagman TRUE if you want to get probes and primers for tagman. FALSE if you want to

get primers for conventional PCR.

nProbes Number of probes for Taqman experiments. By default 1.

nPrimers two Number of potential exon locations for primers using two primers (one forward

and one reverse). By default 3.

ncommonForward Number of potential exon locations for primers using one primer in forward and

two in reverse. By default 3.

ncommonReverse Number of potential exon locations for primers using two primer in forward and

one in reverse. By default 3.

nExons Number of combinations of ways to place primers in exons to interrogate an

event after sorting. By default 5.

nPrimers Once the exons are selected, number of primers combination sequences to search

within the whole set of potential sequences. By default 5.

shortdistpenalty

Penalty for short exons following an exponential funciton(A * exp(-dist * short-

distpenalty)). By defautl 2000.

maxLength Max length of exons that are between primers and for paths once we have cal-

culated the sequence. By default 1000.

minsep Distance from which it is penalized primers for being too close By default 100.

wminsep Weigh of the penalization to primers for being too close By default 200.

valuethreePenalty

penalization for cases that need three primers instead of 2. By default 1000.

minexonlength Minimum length that a exon has to have to be able to contain a primer. By

default 25.

wnpaths Penalty for each existing path By default 200.

qualityfilter Results will show as maximum 3 combinations with a punctuation higher than

qualityfilter By default 5000.

Value

The output of the function is a 'data.frame' whose columns are:

For 1 Seq: Sequence of the first forward primer.

For 2Seq: Sequence of the second forward primer in case it is needed.

Rev1Seq: Sequence of the first reverse primer.

Rev2Seq: Sequence of the second reverse primer in case it is needed.

For1Exon: Name of the exon of the first forward primer.

For2Exon: Name of the exon of the second forward primer in case it is needed.

FindPrimers 21

Rev1Exon: Name of the exon of the first reverse primer.

Rev2Exon: Name of the exon of the second reverse primer in case it is needed.

FINAL value: Final punctuation for that combination of exons and sequences. The lower it is this score, the better it is the combination.

DistPath1: Distances of the bands, in base pairs, that interrogate Path1 when we perform the conventional PCR experiment.

DistPath2: Distances of the bands, in base pairs, that interrogate Path2 'when we perform the conventional PCR experiment.

DistNoPath: Distances of the bands, in base pairs, that they do not interrogate any of the two paths when we perform the conventional PCR experiment.

SeqProbeRef: Sequence of the TaqMan probe placed in the Reference.

SeqProbeP1: Sequence of the TaqMan probe placed in the Path1.

SeqProbeP2: Sequence of the TaqMan probe placed in the Path2.

```
## Not run:
data("EventXtrans")
#From the output of EventsGTFfromTranscriptomeGTF we take the splicing graph information
SG_list <- EventXtrans$SG_List</pre>
#SG_list contains the information of the splicing graphs for each gene
#Let's supone we want to design primers for the event 1 of the gene ENSG00000254709.7
#We take the splicing graph information of the required gene
SG <- SG_list$ENSG00000254709.7
#We point the event number
EventNum <- 1
#Define rest of variables:
Primer3Path <- Sys.which("primer3_core")</pre>
Dir <- "C:\\PROGRA~2\\primer3\\"</pre>
MyPrimers <- FindPrimers(SG = SG,
                         EventNum = EventNum,
                         Primer3Path = Primer3Path,
                         mygenomesequence = BSgenome.Hsapiens.UCSC.hg38::Hsapiens,
                          taqman = 1,
                          nProbes=1,
                         nPrimerstwo=4,
                          ncommonForward=4,
                          ncommonReverse=4,
                         nExons=10,
                         nPrimers =5,
                         maxLength = 1200)
```

22 getbootstrapdata

```
## End(Not run)
```

Fit

Result of EventPointer_Bootstrap

Description

Result of EventPointer_Bootstrap

Usage

data(Fit)

Format

A list object

Value

A list containing the summary of the Bootstrap analysis: DeltaPSI, Pvalues, FDR. This info can be obtained in a simple table with the function ResulTable.

 ${\tt getbootstrapdata}$

getbootstrapdata

Description

Function to load the values of the bootstrap returned by kallisto or salmon pseudoaligners.

Usage

```
getbootstrapdata(PathSamples, type)
```

Arguments

PathSamples

A vector with the complete directory to the folder of the output of kallisto/salmon.

type

'kallisto' or 'salmon'.

Value

A list containing the quantification data with the bootstrap information.

GetPSI_FromTranRef 23

Examples

```
PathSamples<-system.file("extdata",package="EventPointer")
PathSamples <- paste0(PathSamples,"/output")
PathSamples <- dir(PathSamples,full.names = TRUE)

data_exp <- getbootstrapdata(PathSamples = PathSamples,type = "kallisto")</pre>
```

GetPSI_FromTranRef

GetPSI_FromTranRef

Description

Get the values of PSI. A filer expression is applied if the user select the option of filter.

Usage

```
GetPSI_FromTranRef(
   Samples,
   PathsxTranscript,
   Bootstrap = FALSE,
   Filter = TRUE,
   Qn = 0.25
)
```

Arguments

Samples matrix or list containing the expression of the samples.

PathsxTranscript

the output of EventDetection_transcriptome.

Bootstrap Boolean variable to indicate if bootstrap data from pseudo-alignment is used.

Filter Boolean variable to indicate if an expression filter is applied. Default TRUE.

Qn Quartile used to filter the events (Bounded between 0-1, Qn would be 0.25 by

default).

Value

The output is a list containing two elements: a matrix with the values of PSI and a list containing as many matrices as number of events. In each matrix is stored the expression of the different paths of an event along the samples.

24 MyPrimers

Examples

```
data(EventXtrans)

PathSamples <- system.file("extdata",package="EventPointer")
PathSamples <- paste0(PathSamples,"/output")
PathSamples <- dir(PathSamples,full.names = TRUE)

data_exp <- getbootstrapdata(PathSamples = PathSamples,type = "kallisto")

#same annotation
rownames(data_exp[[1]]) <- gsub("\\|.*","",rownames(data_exp[[1]]))

#Obtain values of PSI
PSI_List <- GetPSI_FromTranRef(PathsxTranscript = EventXtrans,Samples = data_exp,Bootstrap = TRUE, Filter = FAI
PSI <- PSI_List$PSI
Expression_List <- PSI_List$ExpEvs</pre>
```

MyPrimers

Data frame with primers design for conventional PCR

Description

Data frame with primers design for conventional PCR

Usage

```
data(MyPrimers)
```

Format

A data. frame object displays the relative information for primers design for conventional PCR

Value

MyPrimers object contains a data.frame with the information of the design primers for conventioanl PCR.

MyPrimers_taqman 25

MyPrimers_taqman	Data frame with primers design for taqman PCR
	Edited from promotes design for telefinent 1 eli

Description

Data frame with primers design for taqman PCR

Usage

```
data(MyPrimers_taqman)
```

Format

A data. frame object displays the relative information for primers design for taqman PCR

Value

MyPrimers_taqman object contains a data.frame with the information of the design primers for taqman PCR.

PrepareBam_EP Bam files preparation for EventPointer

Description

Prepares the information contained in .bam files to be analyzed by EventPointer

Usage

```
PrepareBam_EP(
   Samples,
   SamplePath,
   Ref_Transc = "Ensembl",
   fileTransc = NULL,
   cores = 1,
   Alpha = 2
)
```

Arguments

Samples	Name of the .bam files to be analyzed (Sample1.bam,Sample2.bam,,etc).	
SamplePath	Path where the bam files are stored.	
Ref_Transc	Reference transcriptome used to name the genes found in bam files. Options are: Ensembl, UCSC or GTF.	
fileTransc	Path to the GTF reference transcriptome ff Ref_Transc is GTF.	
cores	Number of cores used for parallel processing.	
Alpha	Internal SGSeq parameter to include or exclude regions	

Value

SGFeaturesCounts object. It contains a GRanges object with the corresponding elements to build the different splicing graphs found and the counts related to each of the elements.

Examples

Protein_Domain_Enrichment

Protein_Domain_Enrichment

Description

Analyze whether the presence of a protein domain increases or decreases in the condition under study.

Usage

```
Protein_Domain_Enrichment(PathsxTranscript, TxD, Diff_PSI, method = "spearman")
```

Arguments

 ${\tt PathsxTranscript}$

the output of EventDetection_transcriptome.

TxD matrix that relates transcripts with Protein domain. Users can get it from BioMart

Diff_PSI matrix with the difference of psi of the condition under study. Can get it from

the output of EventPointer_Bootstraps

method a character string indicating which correlation coeffcient is to be calculated.

"spearman" (default) or "pearson" can be selected.

PSIss 27

Value

A list containing the results of the protein domain enrichment analysisis. This list contains 3 matrices in which the rows indicate the protein domains and the columns the number of contrasts. The 3 matrices are the following:

-mycor: correlation value between the deltaPSI and the DifProtDomain matrix (see more details in vignette)

-STATISTIC: the values of the test statistic

-PVAL: the pvalues of the test statistic

Examples

PSIss

relationship between isoforms and events

Description

relationship between isoforms and events

Usage

```
data(PSIss)
```

Format

A object PSIss[[1]] displays the values of PSI and PSIss[[2]] the valeus of expression.

Value

PSIss object the values of PSI calculated by the funcion GetPSI_FromTranRef and also the values of expression.

28 PSI_Statistic

Description

Statistical analysis of the alternative splicing events. This function takes as input the values of PSI. Perform a statistical analysis based on permutation test

Usage

```
PSI_Statistic(PSI, Design, Contrast, nboot)
```

Arguments

PSI	A matrix with the values of the PSI.
Design	The design matrix for the experiment.
Contrast	The contrast matrix for the experiment.
nboot	The number of random analysis.

Value

The output of these functions is a list containing: two data.frame (deltaPSI and Pvalues) with the values of the deltaPSI and the p.values for each contrast, and a third element (LocalFDR) with the information of the local false discovery rate.

```
data(ArraysData)
PSI_Arrays_list<-EventPointer:::getPSI(ArraysData)
PSI_Arrays <- PSI_Arrays_list$PSI
Design <- matrix(c(1,1,1,1,0,0,1,1),nrow=4)
Contrast <- matrix(c(0,1),nrow=1)

# Statistical analysis:
table <- PSI_Statistic(PSI_Arrays,Design = Design, Contrast = Contrast, nboot = 50)</pre>
```

ResulTable 29

ResulTable	ResulTable

Description

Extract a table of the top-ranked events from the output of EventPointer_Bootstraps.

Usage

```
ResulTable(EP_Result,coef = 1,number = Inf)
```

Arguments

EP_Result The output of the function EventPointer_Bootstraps

coef Number specifying which coefficient or contrast of the model is of interest.

number Maximum number of events to list

Value

A dataframe with a row for the number of top events and the following columns:

deltaPSI: the difference of PSI between conditions

pvalue: raw p-value

Ifdr: local false discovery rate qvalue: adjusted p-value or q-value

30 SG_RNASeq

SF	D	1:	- 4	•	
\F	Pr	וחב	c_{T}	1	Λn

Splicing Factor Prediction

Description

Methodology to predict context-specific splicing factors

Usage

```
SF_Prediction(
  P_value_PSI,
  ExS,
  nSel = 1000,
  significance = NULL,
  method = "Fisher"
)
```

Arguments

P_value_PSI A data.frame with the p.values of the experiment.

ExS The ExS matrix biuldt in CreateExSmatrix function.

nSel Top ranked events to be considered as spliced events.

significance Threshold of P.value to consider which events are deferentially spliced. A vector

of length equal to the number of contrasts. If null it will consider the nSel top

ranked events.

method methodology to apply: "Fisher" for Fisher's exact test (default) or "PoiBin" for

Poisson Binomial test.

Value

The function returs a list. This list has for each contrast a data.frame containing the results of the prediction.

SG_RNASeq

Splicing graph elements predicted from BAM files

Description

Splicing graph elements predicted from BAM files

```
data(SG_RNASeq)
```

TxD 31

Format

A SGFeatureCounts objects with predicted splicing graph features and counts

Value

SG_RNASeq object displays the predicted features found in the BAM files from the dataset published in Seshagiri et al. 2012 and used in the SGSeq R package vignette.

 TxD

Transcript x Protein Domain matrix: small matrix for examples

Description

Transcript x Protein Domain matrix: small matrix for examples

Usage

data(TxD)

Format

A matrix object

Value

A matrix containing the relates Transcripts with Protein Domains

Index

```
AllEvents_RNASeq, 3
AllEvents_RNASeq_MP, 3
{\tt ArrayDatamultipath, 4}
ArraysData, 4
CDFfromGTF, 5
CDFfromGTF_Multipath, 6
CreateExSmatrix, 7
EventDetection, 8
{\tt EventDetection\_transcriptome, 9}
EventDetectionMultipath, 9
EventPointer, 11
EventPointer_Bootstraps, 12
EventPointer_IGV, 13
EventPointer_RNASeq, 15
EventPointer_RNASeq_IGV, 15
EventPointer_RNASeq_TranRef, 16
EventPointer_RNASeq_TranRef_IGV, 17
EventXtrans, 18
FindPrimers, 19
Fit, 22
getbootstrapdata, 22
GetPSI_FromTranRef, 23
MyPrimers, 24
MyPrimers_taqman, 25
PrepareBam_EP, 25
{\tt Protein\_Domain\_Enrichment}, {\tt 26}
PSI_Statistic, 28
PSIss, 27
ResulTable, 29
SF_Prediction, 30
SG_RNASeq, 30
TxD, 31
```