Package 'DeepPINCS'

October 14, 2021

Type Package

Title Protein Interactions and Networks with Compounds based on Sequences using Deep Learning

Description

The identification of novel compound-protein interaction (CPI) is important in drug discovery. Revealing unknown compound-protein interactions is useful to design a new drug for a target protein by screening candidate compounds. The accurate CPI prediction assists in effective drug discovery process. To identify potential CPI effectively, prediction methods based on machine learning and deep learning have been developed. Data for sequences are provided as discrete symbolic data. In the data, compounds are represented as SMILES (simplified molecular-input line-entry system) strings and proteins are sequences in which the characters are amino acids. The outcome is defined as a variable that indicates how strong two molecules interact with each other or whether there is an interaction between them. In this package, a deeplearning based model that takes only sequence information of both compounds and proteins are information of both compounds and proteins are information (CPI), chemical-chemical interaction (CCI), or single compounds and proteins. Although the model is designed for proteins, DNA and RNA can be used if they are represented as sequences.

Version 1.0.2

Date 2021-08-27

LazyData TRUE

LazyDataCompression xz

Depends keras, tensorflow, R (>= 4.1)

Imports CatEncoders, matlab, rcdk, stringdist, tokenizers, webchem, purrr, ttgsea, PRROC, reticulate, stats

Suggests knitr, testthat, rmarkdown

License Artistic-2.0

biocViews Software, Network, GraphAndNetwork, NeuralNetwork

NeedsCompilation no

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/DeepPINCS

git_branch RELEASE_3_13
git_last_commit 71f9817
git_last_commit_date 2021-08-27
Date/Publication 2021-10-14
Author Dongmin Jung [cre, aut] (<https://orcid.org/0000-0001-7499-8422>)
Maintainer Dongmin Jung <dmdmjung@gmail.com>

R topics documented:

antiviral_drug	2
cpi_model	3
encoder_in_out	8
example_bioassay	10
example_cci	11
example_chem	11
example_cpi	12
example_pd	12
example_ppi	13
example_prot	13
get_canonical_smiles	14
get_fingerprint	15
get_graph_structure_node_feature	16
get_seq_encode_pad	17
metric_concordance_index	18
metric_f1_score	19
multiple_sampling_generator	20
	21
seq_check	21
seq_preprocessing	22
	24

Index

antiviral_drug

List of antiviral drugs with SMILES strings

Description

81 antiviral drugs with SMILES strings

Usage

antiviral_drug

Value

SMILES string

2

cpi_model

Author(s)

Dongmin Jung

Source

Huang, K., Fu, T., Glass, L. M., Zitnik, M., Xiao, C., & Sun, J. (2020). DeepPurpose: A Deep Learning Library for Drug-Target Interaction Prediction. Bioinformatics.

cpi_modelDeep learning model fitting and prediction for compound-protein in-
teractions

Description

The model for compound-protein interactions (CPI) takes the pair of SMILES strings of compounds and amino acid sequences (one letter amino acid code) of proteins as input. They are fed into the compound and protein encoders, respectively, and then these encoders are concatenated. Due to the combination of compound and protein encoders, there are many kinds of CPI models. However, the graph neural network such as the graph concolutional network (GCN) is only available for compounds. We need to select one of types of compounds. For graph and fingerprint, the SMILES sequences are not used for encoders, because the information of graph or fingerprint is extracted from the SMILES sequenes and then it is fed into encoders. For sequence, the unigram is used as default, but the n-gram is available only for proteins. Since the CPI model needs some arguments of encoders, we may have to match the names of such arguments.

Usage

```
fit_cpi(smiles = NULL, AAseq = NULL, outcome,
        convert_canonical_smiles = TRUE,
        compound_type = NULL, compound_max_atoms,
        compound_length_seq, protein_length_seq,
        compound_embedding_dim, protein_embedding_dim,
        protein_ngram_max = 1, protein_ngram_min = 1,
        smiles_val = NULL, AAseq_val = NULL, outcome_val = NULL,
        net_args = list(
            compound,
            compound_args,
            protein,
            protein_args,
            fc_units = c(1),
            fc_activation = c("linear"), ...),
        net_names = list(
            name_compound_max_atoms = NULL,
            name_compound_feature_dim = NULL,
            name_compound_fingerprint_size = NULL,
            name_compound_embedding_layer = NULL,
            name_compound_length_seq = NULL,
```

```
name_compound_num_tokens = NULL,
            name_compound_embedding_dim = NULL,
            name_protein_length_seq = NULL,
            name_protein_num_tokens = NULL,
            name_protein_embedding_dim = NULL),
        preprocessor_only = FALSE,
        preprocessing = list(
            outcome = NULL,
            outcome_val = NULL,
            convert_canonical_smiles = NULL,
            canonical_smiles = NULL,
            compound_type = NULL,
            compound_max_atoms = NULL,
            compound_A_pad = NULL,
            compound_X_pad = NULL,
            compound_A_pad_val = NULL,
            compound_X_pad_val = NULL,
            compound_fingerprint = NULL,
            compound_fingerprint_val = NULL,
            smiles_encode_pad = NULL,
            smiles_val_encode_pad = NULL,
            compound_lenc = NULL,
            compound_length_seq = NULL,
            compound_num_tokens = NULL,
            compound_embedding_dim = NULL,
            AAseq_encode_pad = NULL,
            AAseq_val_encode_pad = NULL,
            protein_lenc = NULL,
            protein_length_seq = NULL,
            protein_num_tokens = NULL,
            protein_embedding_dim = NULL,
            protein_ngram_max = NULL,
            protein_ngram_min = NULL),
        batch_size, use_generator = FALSE,
        validation_split = 0, ...)
predict_cpi(modelRes, smiles = NULL, AAseq = NULL,
            preprocessing = list(
                canonical_smiles = NULL,
                compound_A_pad = NULL,
                compound_X_pad = NULL,
                compound_fingerprint = NULL,
                smiles_encode_pad = NULL,
                AAseq_encode_pad = NULL),
            use_generator = FALSE,
            batch_size = NULL)
```

cpi_model

Arguments

smiles	SMILES strings, each column for the element of a pair (default: NULL)
AAseq	amino acid sequences, each column for the element of a pair (default: NULL)
outcome	a variable that indicates how strong two molecules interact with each other or whether there is an interaction between them
<pre>convert_canonic</pre>	al_smiles
	SMILES strings are converted to canonical SMILES strings if TRUE (default: TRUE)
compound_type	"graph", "fingerprint" or "sequence"
compound_max_at	oms
	maximum number of atoms for compounds
compound_length	_seq
	length of compound sequence
<pre>protein_length_</pre>	
	length of protein sequence
compound_embedd	
	dimension of the dense embedding for compounds
protein_embeddi	
protoin param m	dimension of the dense embedding for proteins
protein_ngram_m	maximum size of an n-gram for protein sequences (default: 1)
protein_ngram_m	
procern_ngram_m	minimum size of an n-gram for protein sequences (default: 1)
smiles_val	SMILES strings for validation (default: NULL)
AAseq_val	amino acid sequences for validation (default: NULL)
outcome_val	outcome for validation (default: NULL)
net_args	list of arguments for compound and protein encoder networks and for fully con- nected layer
	 compound : encoder network for compounds
	 compound_args : arguments of compound encoder
	• protein : encoder network for proteins
	 protein_args : arguments of protein encoder
	• fc_units : dimensionality of the output space in the fully connected layer (default: 1)
	• fc_activation : activation of the fully connected layer (default: "linear")
	• : arguments of "keras::compile" but for object
net_names	list of names of arguments used in both the CPI model and encoder networks, names are set to NULL as default
	• name_compound_max_atoms : corresponding name for the maximum num- ber of atoms in the compound encoder, "max_atoms" if NULL
	• name_compound_feature_dim : corresponding name for the dimension of node features in the compound encoder, "feature_dim" if NULL

	• name_compound_fingerprint_size : corresponding name for the length of a
	fingerprint in the compound encoder, "fingerprint_size" if NULL
	 name_compound_embedding_layer : corresponding name for the use of the embedding layer in the compound encoder, "embedding_layer" if NULL
	• name_compound_length_seq : corresponding name for the length of se- quences in the compound encoder, "length_seq" if NULL
	 name_compound_num_tokens : corresponding name for the total number of distinct strings in the compound encoder, "num_tokens" if NULL
	 name_compound_embedding_dim : corresponding name for dimension of the dense embedding in the compound encoder, "embedding_dim" if NULL
	• name_protein_length_seq : corresponding name for the length of sequences in the protein encoder, "length_seq" if NULL
	• name_protein_num_tokens : corresponding name for the total number of distinct strings in the protein encoder, "num_tokens" if NULL
	• name_protein_embedding_dim : corresponding name for dimension of the dense embedding in the protein encoder, "embedding_dim" if NULL
preprocessor_o	
	model is not fitted after preprocessing if TRUE (default: FALSE)
preprocessing	list of preprocessed results for "fit_cpi" or "predict_cpi", they are set to NULL as default
	• outcome : outcome variable
	• outcome_val : outcome variable for validation
	 convert_canonical_smiles : canonical representation used for preprocessing if TRUE
	• canonical_smiles : canonical representation of SMILES
	• compound_type : "graph", "fingerprint" or "sequence"
	• compound_max_atoms : maximum number of atoms for compounds
	• compound_A_pad : padded or turncated adjacency matrix of compounds
	• compound_X_pad : padded or turncated node features of compounds
	 compound_A_pad_val : padded or turncated adjacency matrix for valida- tion
	• compound_X_pad_val : padded or turncated node features for validation
	 compound_fingerprint : fingerprint of compounds
	 compound_fingerprint_val : fingerprint for validation
	 smiles_encode_pad : encoded SMILES sequence which is padded or trun- cated
	 smiles_val_encode_pad : encoded SMILES sequence for validation
	• compound_lenc : encoded labels for characters of SMILES strings
	• compound_length_seq : length of compound sequence

- compound_num_tokens : total number of characters of compounds
- compound_embedding_dim : dimension of the dense embedding for compounds
- AAseq_encode_pad : encoded amino acid sequence which is padded or truncated

	 AAseq_val_encode_pad : encoded amino acid sequence for validation
	 protein_lenc : encoded labels for characters of amino acid sequenes
	 protein_length_seq : length of protein sequence
	 protein_num_tokens : total number of characters of proteins
	 protein_embedding_dim : dimension of the dense embedding for proteins
	• protein_ngram_max : maximum size of an n-gram for protein sequences
	 protein_ngram_min : minimum size of an n-gram for protein sequences
	 removed_smiles : index for removed smiles while checking
	 removed_AAseq : index for removed AAseq while checking
	 removed_smiles_val : index for removed smiles of validation
	 removed_AAseq_val : index for removed AAseq of validation
batch_size	batch size
use_generator	use data generator if TRUE (default: FALSE)
validation_spli	t
	proportion of validation data, it is ignored when there is a validation set (default: 0)
modelRes	result of the "fit_cpi"
	additional parameters for the "keras::fit" or "keras::fit_generator"
Value	

Value

model

Author(s)

Dongmin Jung

See Also

keras::compile, keras::fit_generator, keras::layer_dense, keras::keras_model, purrr::pluck, webchem::is.smiles

Examples

```
compound_max_atoms <- 50
protein_embedding_dim <- 16
protein_length_seq <- 100
gcn_cnn_cpi <- fit_cpi(
    smiles = example_cpi[1:100, 1],
    AAseq = example_cpi[1:100, 2],
    outcome = example_cpi[1:100, 3],
    compound_type = "graph",
    compound_max_atoms = compound_max_atoms,
    protein_length_seq = protein_length_seq,
    protein_embedding_dim = protein_embedding_dim,
    net_args = list(
        compound = "gcn_in_out",
</pre>
```

```
compound_args = list(
            gcn_units = c(128, 64),
            gcn_activation = c("relu", "relu"),
            fc_units = c(10),
            fc_activation = c("relu")),
        protein = "cnn_in_out",
        protein_args = list(
            cnn_filters = c(32),
            cnn_kernel_size = c(3),
            cnn_activation = c("relu"),
            fc_units = c(10),
            fc_activation = c("relu")),
        fc_units = c(1),
        fc_activation = c("sigmoid"),
        loss = "binary_crossentropy",
        optimizer = keras::optimizer_adam(),
        metrics = "accuracy"),
    epochs = 2, batch_size = 16)
pred <- predict_cpi(gcn_cnn_cpi, example_cpi[101:110, 1], example_cpi[101:110, 2])</pre>
gcn_cnn_cpi2 <- fit_cpi(</pre>
   preprocessing = gcn_cnn_cpi$preprocessing,
   net_args = list(
        compound = "gcn_in_out",
        compound_args = list(
            gcn_units = c(128, 64),
            gcn_activation = c("relu", "relu"),
            fc_units = c(10),
            fc_activation = c("relu")),
        protein = "cnn_in_out",
        protein_args = list(
            cnn_filters = c(32),
            cnn_kernel_size = c(3),
            cnn_activation = c("relu"),
            fc_units = c(10),
            fc_activation = c("relu")),
        fc_units = c(1),
        fc_activation = c("sigmoid"),
        loss = "binary_crossentropy",
        optimizer = keras::optimizer_adam(),
        metrics = "accuracy"),
    epochs = 2, batch_size = 16)
pred <- predict_cpi(gcn_cnn_cpi2, preprocessing = pred$preprocessing)</pre>
```

encoder_in_out Input and output tensors of encoders

Description

The graph convolutional network (GCN), recurrent neural network (RNN), convolutional neural network (CNN), and multilayer perceptron (MLP) are used as encoders. The last layer of the en-

coders is the fully connected layer. The units and activation can be vectors and the length of the vectors represents the number of layers.

Usage

```
rnn_in_out(length_seq, fingerprint_size, embedding_layer = TRUE,
    num_tokens, embedding_dim, rnn_type, rnn_bidirectional,
    rnn_units, rnn_activation, fc_units, fc_activation)
```

cnn_in_out(length_seq, fingerprint_size, embedding_layer = TRUE, num_tokens, embedding_dim, cnn_filters, cnn_kernel_size, cnn_activation, fc_units, fc_activation)

Arguments

max_atoms	maximum number of atoms for gcn	
feature_dim	dimension of atom features for gcn	
gcn_units	dimensionality of the output space in the gcn layer	
gcn_activation	activation of the gcn layer	
fingerprint_siz	ze	
	the length of a fingerprint	
embedding_layer		
	use the embedding layer if TRUE (default: TRUE)	
embedding_dim	a non-negative integer for dimension of the dense embedding	
length_seq	length of input sequences	
num_tokens	total number of distinct strings	
cnn_filters	dimensionality of the output space in the cnn layer	
cnn_kernel_size		
	length of the 1D convolution window in the cnn layer	
cnn_activation	activation of the cnn layer	
<pre>rnn_type</pre>	"lstm" or "gru"	
rnn_bidirectional		
	use the bidirectional wrapper for rnn if TRUE	
rnn_units	dimensionality of the output space in the rnn layer	
<pre>rnn_activation</pre>	activation of the rnn layer	
fc_units	dimensionality of the output space in the fully connected layer	
fc_activation	activation of the fully connected layer	

Value

input and output tensors of encoders

Author(s)

Dongmin Jung

See Also

keras::layer_activation, keras::bidirectional, keras::layer_conv_1d, keras::layer_dense, keras::layer_dot, keras::layer_embedding, keras::layer_global_average_pooling_1d, keras::layer_input, keras::layer_lstm, keras::layer_gru, keras::layer_flatten

Examples

```
gcn_in_out(max_atoms = 50,
    feature_dim = 50,
    gcn_units = c(128, 64),
    gcn_activation = c("relu", "relu"),
    fc_units = c(10),
    fc_activation = c("relu"))
```

example_bioassay Example Data for PubChem AID1706 bioassay

Description

This is a compound-protein interaction data set retrieved from PubChem AID1706 bioassay. The data is balanced and a randomly selected subset of a dataset of size 5000. The label is 1 if the score is greater than or equal to 15, otherwise it is 0.

Usage

example_bioassay

Value

compound-protein interaction data

Author(s)

Dongmin Jung

Source

Huang, K., Fu, T., Glass, L. M., Zitnik, M., Xiao, C., & Sun, J. (2020). DeepPurpose: A Deep Learning Library for Drug-Target Interaction Prediction. Bioinformatics.

10

example_cci

Description

The data is a randomly selected subset with size 1000 for chemical-chemical interactions. The two SMILES strings are for compound pairs and the label is for their interactions.

Usage

example_cci

Value

chemical-chemical interaction data

Author(s)

Dongmin Jung

Source

Huang, K., Xiao, C., Hoang, T., Glass, L., & Sun, J. (2020). CASTER: Predicting drug interactions with chemical substructure representation. AAAI.

example_chem

Example Data for Compounds

Description

Blood-Brain-Barrier (BBB) is a permeability barrier for maintaining homeostasis of Central Nervous System (CNS). The data is a curated compound dataset with known BBB permeability. Compounds are divided into two groups according to whether the brain to blood concentration ratio was greater or less than 0.1. The row name labels each row with the compound name.

Usage

example_chem

Value

compound data

Author(s)

Dongmin Jung

Source

Gao, Z., Chen, Y., Cai, X., & Xu, R. (2017). Predict drug permeability to blood-brain-barrier from clinical phenotypes: drug side effects and drug indications. Bioinformatics, 33(6), 901-908.

example_cpi

Example Data for Compound-Protein Interactions

Description

The data consist of compound-protein pairs and their interactions of human. The SMILES and amino acid sequences are used for compounds and proteins, respectively. The binary outcome label is whether or not they interact each other.

Usage

example_cpi

Value

compound-protein interaction data

Author(s)

Dongmin Jung

Source

Tsubaki, M., Tomii, K., & Sese, J. (2019). Compound-protein interaction prediction with end-toend learning of neural networks for graphs and sequences. Bioinformatics, 35(2), 309-318.

example_pd

Example Data for Primer-Dimer

Description

This is a primer-primer interaction data set with size 319. The two sequences are for primer pairs and the label is for their interactions.

Usage

```
example_pd
```

Value

primer sequences and dimer formation data

example_ppi

Author(s)

Dongmin Jung

Source

Johnston, A. D., Lu, J., Ru, K. L., Korbie, D., & Trau, M. (2019). PrimerROC: accurate conditionindependent dimer prediction using ROC analysis. Scientific reports.

example_ppi

Example Data for Protein-Protein Interactions

Description

The data is a randomly selected subset with size 5000 for protein-protein interactions of yeast. The two amino acid sequences are for protein pairs and the label is for their interactions.

Usage

example_ppi

Value

protein-protein interaction data

Author(s)

Dongmin Jung

Source

Chen, M., et al. (2019). Multifaceted protein-protein interaction prediction based on siamese residual rcnn. Bioinformatics, 35(14), i305-i314.

example_prot Example Data for Proteins

Description

This is a protein data set retrieved from Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB). The data consist of amino acid sequences with three classes. The row name labels each row with the PDB identification code.

Usage

example_prot

Value

protein data

Author(s)

Dongmin Jung

Source

Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) and https://www.kaggle.com/shahir/j data-set

get_canonical_smiles Convert SMILES strings to canonical SMILES strings

Description

There may be many different ways to construct the SMILES string for a given molecule. A canonical representation is a unique ordering of the atoms for a given molecular graph.

Usage

get_canonical_smiles(smiles)

Arguments

smiles SMILES strings

Value

canonical representation of SMILES

Author(s)

Dongmin Jung

References

Leach, A. R., & Gillet, V. J. (2007). An introduction to chemoinformatics. Springer.

See Also

rcdk::parse.smile, rcdk::get.smiles, rcdk::smiles.flavors

Examples

get_canonical_smiles(example_cpi[1, 1])

14

get_fingerprint

Description

A molecular fingerprint is a way of encoding the structural features of a molecule. The most common type of fingerprint is a sequence of ones and zeros. Fingerprints are special kinds of descriptors that characterize a molecule and its properties as a binary bit vector that represents the presence or absence of particular substructure in the molecule. For such a fingerprint, the Chemistry Development Kit (CDK) is used as a cheminformatics tool.

Usage

get_fingerprint(smiles, ...)

Arguments

smiles	SMILES strings
	arguments for "rcdk::get.fingerprint" but for molecule

Value

a fingerprint of a compound

Author(s)

Dongmin Jung

References

Balakin, K. V. (2009). Pharmaceutical data mining: approaches and applications for drug discovery. Wiley.

See Also

rcdk::get.fingerprint, rcdk::parse.smiles

Examples

get_fingerprint(example_cpi[1, 1])

get_graph_structure_node_feature

Graph structure and node features from SMILES strings

Description

In molecular graph representations, nodes represent atoms and edges represent bonds. For molecular features, the Chemistry Development Kit (CDK) is used as a cheminformatics tool. The degree of an atom in the graph representation and the atomic symbol and implicit hydrogen count for an atom are used as molecular features.

Usage

```
get_graph_structure_node_feature(smiles, max_atoms,
    element_list = c(
        "C", "N", "O", "S", "F", "Si", "P", "Cl",
        "Br", "Mg", "Na", "Ca", "Fe", "Al", "I",
        "B", "K", "Se", "Zn", "H", "Cu", "Mn"))
```

Arguments

smiles	SMILES strings
max_atoms	maximum number of atoms
element_list	list of atom symbols

Value

A_pad	a padded or turncated adjacency matrix for each SMILES string
X_pad	a padded or turncated node features for each SMILES string
feature_dim	dimension of node features
element_list	list of atom symbols

Author(s)

Dongmin Jung

References

Balakin, K. V. (2009). Pharmaceutical data mining: approaches and applications for drug discovery. Wiley.

See Also

matlab::padarray, purrr::chuck, rcdk::get.adjacency.matrix, rcdk::get.atoms, rcdk::get.hydrogen.count, rcdk::get.symbol rcdk::parse.smiles

Examples

get_graph_structure_node_feature(example_cpi[1, 1], 10)

get_seq_encode_pad Vectorization of characters of strings

Description

A vectorization of characters of strings is necessary. Vectorized characters are padded or truncated.

Usage

Arguments

sequences	SMILE strings or amino acid sequences
length_seq	length of input sequences
ngram_max	maximum size of an n-gram (default: 1)
ngram_min	minimum size of an n-gram (default: 1)
lenc	encoded labels for characters, LableEncoder object fitted by "CatEncoders::LabelEncoder.fit" (default: NULL)

Value

sequences_enco	de_pad
	for each SMILES string, an encoded sequence which is padded or truncated
lenc	encoded labels for characters
num_token	total number of characters

Author(s)

Dongmin Jung

See Also

CatEncoders::LabelEncoder.fit, CatEncoders::transform, keras::pad_sequences, stringdist::qgrams, tokenizers::tokenize_ngrams

Examples

get_seq_encode_pad(example_cpi[1, 2], 10)

metric_concordance_index

Concordance index

Description

The concordance index or c-index can be seen as one of the model performance metrics. It represents a good fit of the model.

Author(s)

Dongmin Jung

References

Kose, U., & Alzubi, J. (2020). Deep learning for cancer diagnosis. Springer.

See Also

keras::k_cast, keras::k_equal, keras::k_sum, tensorflow::tf

Examples

```
compound_length_seq <- 50</pre>
compound_embedding_dim <- 16</pre>
protein_embedding_dim <- 16</pre>
protein_length_seq <- 100</pre>
mlp_cnn_cpi <- fit_cpi(</pre>
    smiles = example_cpi[1:100, 1],
    AAseq = example_cpi[1:100, 2],
    outcome = example_cpi[1:100, 3],
    compound_type = "sequence",
    compound_length_seq = compound_length_seq,
    compound_embedding_dim = compound_embedding_dim,
    protein_length_seq = protein_length_seq,
    protein_embedding_dim = protein_embedding_dim,
    net_args = list(
    compound = "mlp_in_out",
    compound_args = list(
            fc_units = c(10),
            fc_activation = c("relu")),
        protein = "cnn_in_out",
        protein_args = list(
            cnn_filters = c(32),
            cnn_kernel_size = c(3),
            cnn_activation = c("relu"),
            fc_units = c(10),
            fc_activation = c("relu")),
        fc_units = c(1),
```

metric_f1_score

```
fc_activation = c("sigmoid"),
loss = "binary_crossentropy",
optimizer = keras::optimizer_adam(),
metrics = custom_metric("concordance_index",
    metric_concordance_index)),
epochs = 2,
batch_size = 16)
```

metric_f1_score F1-score

Description

The F1-score is a metric combining precision and recall. It is typically used instead of accuracy in the case of severe class imbalance in the dataset. The higher the values of F1-score, the better the validation of the model.

Author(s)

Dongmin Jung

References

Kubben, P., Dumontier, M., & Dekker, A. (2019). Fundamentals of clinical data science. Springer.

Mishra, A., Suseendran, G., & Phung, T. N. (Eds.). (2020). Soft Computing Applications and Techniques in Healthcare. CRC Press.

See Also

keras::k_equal, keras::k_sum, tensorflow::tf

Examples

```
compound_length_seq <- 50
compound_embedding_dim <- 16
protein_embedding_dim <- 16
protein_length_seq <- 100
mlp_cnn_cpi <- fit_cpi(
    smiles = example_cpi[1:100, 1],
    AAseq = example_cpi[1:100, 2],
    outcome = example_cpi[1:100, 3],
    compound_type = "sequence",
    compound_length_seq = compound_length_seq,
    compound_length_seq = protein_length_seq,
    protein_length_seq = protein_length_seq,
    protein_embedding_dim = protein_embedding_dim,
    net_args = list(
    compound = "mlp_in_out",
```

```
compound_args = list(
        fc_units = c(10),
        fc_activation = c("relu")),
    protein = "cnn_in_out",
    protein_args = list(
        cnn_filters = c(32),
        cnn_kernel_size = c(3),
        cnn_activation = c("relu"),
        fc_units = c(10),
        fc_activation = c("relu")),
    fc_units = c(1),
    fc_activation = c("sigmoid"),
    loss = "binary_crossentropy",
    optimizer = keras::optimizer_adam(),
    metrics = custom_metric("F1_score",
        metric_f1_score)),
epochs = 2,
batch_size = 16)
```

Description

This is a generator function that yields batches of data with multiple inputs.

Usage

Arguments

X_data	list of multiple inputs
Y_data	targets (default: NULL)
batch_size	batch size
shuffle	whether to shuffle the data or not (default: TRUE)

Value

generator for "keras::fit_generator" or "keras::predict_genertor"

Author(s)

Dongmin Jung

SARS_CoV2_3CL_Protease

Examples

```
X_data <- c(list(matrix(rnorm(200), ncol = 2)),
    list(matrix(rnorm(200), ncol = 2)))
Y_data <- matrix(rnorm(100), ncol = 1)
multiple_sampling_generator(X_data, Y_data, 32)
```

SARS_CoV2_3CL_Protease

```
Amino Acid Sequence for the SARS coronavirus 3C-like Protease
```

Description

306 amino acid residues of the SARS coronavirus 3C-like Protease

Usage

SARS_CoV2_3CL_Protease

Value

amino acid sequence

Author(s)

Dongmin Jung

Source

Huang, K., Fu, T., Glass, L. M., Zitnik, M., Xiao, C., & Sun, J. (2020). DeepPurpose: A Deep Learning Library for Drug-Target Interaction Prediction. Bioinformatics.

seq_check

Check SMILES strings and amino acid sequences

Description

In real-world cases, most of the data are not complete and contains incorrect values, missing values, and so on. Thus, there may be invalid sequences in the data. This function can find such sequences and remove them from the data. For SMILES strings, the function "webchem::is.smiles" is used. A valid amino acid sequence means a string that only contains capital letters of an alphabet.

Usage

```
seq_check(smiles = NULL, AAseq = NULL, outcome = NULL)
```

Arguments

smiles	SMILES strings (default: NULL)
AAseq	amino acid sequences (default: NULL)
outcome	a variable that indicates how strong two molecules interact with each other or whether there is an interaction between them (default: NULL)

Value

valid sequences

Author(s)

Dongmin Jung

References

Dey, N., Wagh, S., Mahalle, P. N., & Pathan, M. S. (Eds.). (2019). Applied machine learning for smart data analysis. CRC Press.

See Also

webchem::is.smiles

Examples

```
seq_check(smiles = example_cpi[1, 1], outcome = example_cpi[1, 3])
```

seq_preprocessing Preprocessing for SMILES strings and amino acid sequences

Description

Preprocessing helps make the data suitable for the model depending on the type of data the preprocessing works upon. Preprocessing is more time consuming for text data. The adjacency matrix and node feature, fingerprint, or string data are preprocessed from sequences.

Usage

```
seq_preprocessing(smiles = NULL,
    AAseq = NULL,
    type,
    convert_canonical_smiles,
    max_atoms,
    length_seq,
    lenc = NULL,
    ngram_max = 1,
    ngram_min = 1)
```

seq_preprocessing

Arguments

smiles	SMILES strings (default: NULL)
AAseq	amino acid sequences (default: NULL)
type	"graph", "fingerprint" or "sequence"
convert_canonical_smiles	
	SMILES strings are converted to canonical SMILES strings if TRUE
max_atoms	maximum number of atoms for compounds
length_seq	length of compound or protein sequence
lenc	encoded labels for characters of SMILES strings or amino acid sequenes (default: NULL)
ngram_max	maximum size of an n-gram for protein sequences (default: 1)
ngram_min	minimum size of an n-gram for protein sequences (default: 1)

Value

canonical_smiles canonical representation of SMILES convert_canonical_smiles canonical representation is used or not padded or turncated adjacency matrix of compounds if type is "graph" A_pad X_pad padded or turncated node features of compounds if type is "graph" fingerprint of compounds if type is "fingerprint" fp sequences_encode_pad encoded sequences which are padded or truncated encoded labels for characters of SMILES strings or amino acid sequenes lenc length_seq length of compound or protein sequence num_tokens total number of characters of compounds or proteins

Author(s)

Dongmin Jung

References

Dey, N., Wagh, S., Mahalle, P. N., & Pathan, M. S. (Eds.). (2019). Applied machine learning for smart data analysis. CRC Press.

Examples

```
seq_preprocessing(smiles = cbind(example_cpi[1, 1]),
    type = "fingerprint",
    convert_canonical_smiles = TRUE)
```

Index

antiviral_drug, 2 cnn_in_out (encoder_in_out), 8 cpi_model, 3 $\texttt{encoder_in_out, 8}$ $\texttt{example_bioassay, 10}$ example_cci, 11 example_chem, 11 example_cpi, 12 example_pd, 12 example_ppi, 13 example_prot, 13 fit_cpi(cpi_model), 3 gcn_in_out (encoder_in_out), 8 get_canonical_smiles, 14 get_fingerprint, 15 get_graph_structure_node_feature, 16 get_seq_encode_pad, 17 metric_concordance_index, 18 metric_f1_score, 19 mlp_in_out (encoder_in_out), 8 multiple_sampling_generator, 20 predict_cpi (cpi_model), 3 rnn_in_out (encoder_in_out), 8

SARS_CoV2_3CL_Protease, 21
seq_check, 21
seq_preprocessing, 22