Package 'ClusterSignificance'

October 14, 2021

Title The ClusterSignificance package provides tools to assess if class clusters in dimensionality reduced data representations have a separation different from permuted data

Version 1.20.0

Author Jason T. Serviss [aut, cre], Jesper R. Gadin [aut]

Maintainer Jason T Serviss <jason.serviss@ki.se>

Description The ClusterSignificance package provides tools to assess if class clusters in dimensionality reduced data representations have a separation different from permuted data. The term class clusters here refers to, clusters of points representing known classes in the data. This is particularly useful to determine if a subset of the variables, e.g. genes in a specific pathway, alone can separate samples into these established classes. ClusterSignificance accomplishes this by, projecting all points onto a one dimensional line. Cluster separations are then scored and the probability of the seen separation being due to chance is evaluated using a permutation method.

Depends R (>= 3.3.0)

URL https://github.com/jasonserviss/ClusterSignificance/

BugReports https://github.com/jasonserviss/ClusterSignificance/issues

Imports methods, pracma, princurve (>= 2.0.5), scatterplot3d, RColorBrewer, grDevices, graphics, utils, stats

License GPL-3

LazyData true

Suggests knitr, rmarkdown, testthat, BiocStyle, ggplot2, plsgenomics, covr

VignetteBuilder knitr

biocViews Clustering, Classification, PrincipalComponent, StatisticalMethod

NeedsCompilation no

Collate 'ClusterSignificance-package.R' 'All-classes.R'

'classifier-methods.R' 'initialize-methods.R' 'mlpMatrix.R' 'pcpMatrix.R' 'permutation-methods.R' 'plot-methods.R' 'projection-methods.R' 'show-methods.R'

RoxygenNote 6.0.1

git_url https://git.bioconductor.org/packages/ClusterSignificance

git_branch RELEASE_3_13

git_last_commit 493db1d

git_last_commit_date 2021-05-19

Date/Publication 2021-10-14

R topics documented:

ClusterSignificance-package	2
ClassifiedPoints-class	3
Mlp-class	5
mlpMatrix	7
Pcp-class	7
pcpMatrix	9
PermutationResults-class	10
1	13

ClusterSignificance-package

The ClusterSignificance package provides tools to assess if clusters have a separation different from random or permuted data.

Description

Index

The ClusterSignificance package provides tools to assess if clusters have a separation different from random or permuted data. ClusterSignificance investigates clusters of two or more groups by first, projecting all points onto a one dimensional line. Cluster separations are then scored and the probability of the seen separation being due to chance is evaluated using a permutation method.

Details

Package:	ClusterSignificance
Type:	Package
Version:	1.0
Date:	2016-02-28
License:	GPL-3

Author(s)

Author: Jason T. Serviss, Jesper R. Gadin

References

Reference to published application note (work in progress)

ClassifiedPoints-class

Classification of the one dimensional points in a Pcp or Mlp object.

Description

Classification based on ROC params (TN TP FP FN).

Usage

```
## S4 method for signature 'ClassifiedPoints'
getData(x, n = NULL)
classify(x, ...)
## S4 method for signature 'Pcp'
classify(x, ...)
## S4 method for signature 'Mlp'
classify(x, ...)
## S4 method for signature 'ClassifiedPoints'
initialize(.Object, ..., scores,
  scores.points = scores.points, scores.index = scores.index, ROC, AUC,
  class.color)
## S4 method for signature 'ClassifiedPoints,missing'
plot(x, y, comparison = "all",
  class.color = NULL, ...)
## S4 method for signature 'ClassifiedPoints'
show(object)
```

Arguments

x	Pcp or Mlp Object for the function classify otherwise it is a ClassifiedPoints object
n	data to extract from ClassifiedPoints (NULL gives all)
	additional arguments to pass on
.Object	internal object
scores	final scores
scores.points	sorted points
scores.index	index of sorted points
ROC	parameters (TN, TP, FN and FP)
AUC	area under the curve
class.color	user assigned group coloring scheme
У	default plot param, which should be set to NULL
comparison	Specify a comparison i.e. ("grp1 vs grp2") and plot only that comparison.
object	ClassifiedPoints Object

Details

Tests all possible discrimination lines and picks the one with highest score based on a score which is simply calculated by the formula (TP - FP) + (TN - FN).

The plot shows the distribution of scores for different discrimination lines. Each line is a separator that has a score for the separation of the two groups, and the height of the line marks the score for this separation.

Value

The classify function returns an object of class ClassifiedPoints

Author(s)

Jesper R. Gadin and Jason T. Serviss

Examples

```
#use demo data
data(pcpMatrix)
classes <- rownames(pcpMatrix)</pre>
```

```
#run function
prj <- pcp(pcpMatrix, classes)
cl <- classify(prj)</pre>
```

#getData accessor
getData(cl)

#getData accessor specific

Mlp-class

```
getData(cl, "scores")
#plot result
plot(cl)
```

Mlp-class

Projection of points into one dimension.

Description

Project points onto the mean based line.

Usage

```
## S4 method for signature 'Mlp'
getData(x, n = NULL)
## S4 method for signature 'Mlp'
initialize(.Object, ..., classes, points.orig, line,
points.onedim, class.color)
## S4 method for signature 'Mlp,missing'
plot(x, y, steps = "all", ...)
mlp(mat, ...)
## S4 method for signature 'matrix'
mlp(mat, classes, class.color = NULL, ...)
## S4 method for signature 'Mlp'
```

Arguments

show(object)

х	matrix object for the function mlp otherwise it is a Mlp object
n	data to extract from Mlp (NULL gives all)
.Object	internal object
	additional arguments to pass on
classes	vector in same order as rows in matrix
points.orig	multidimensional points describing the original data
line	multidimensional points describing a line
points.onedim	a vector of points
class.color	user assigned group coloring scheme
У	default plot param, which should be set to NULL(default: NULL)

steps	1,2,3,4,5,6 or "all"
mat	matrix with samples on rows, PCs in columns. Ordered PCs, with PC1 to the left.
object	Mlp object

Details

Projection of the points onto a line between the mean of two groups. Mlp is the abbreviation for 'mean line projection'. The function accepts, at the moment, only two groups and two PCs at a time.

An object containing results from a mean line projection reduction to one dimension.

The group and the one dimensional points are the most important information to carry out a classification using the classify() function. As a help to illustrate the details of the dimension reduction, the information from some critical steps are stored in the object. To visually explore these there is a dedicated plot method for Mlp objects, use plot().

Value

The mlp function returns an object of class Mlp

Author(s)

Jesper R. Gadin and Jason T. Serviss

Examples

```
#use demo data
data(mlpMatrix)
groups <- rownames(mlpMatrix)
#run function
prj <- mlp(mlpMatrix, groups)
#getData accessor
getData(prj)
#getData accessor specific
getData(prj, "line")
#plot result
plot(prj)
```

mlpMatrix

Description

Mlp demonstration matrix.

Usage

mlpMatrix

Format

Matrix

rownames Groups colnames dimension number

Value

simulated matrix

Examples

mlpMatrix

Pcp-class

Projection of points into one dimension.

Description

Project points onto a principal curve.

Usage

```
getData(x, ...)
## S4 method for signature 'Pcp'
getData(x, n = NULL)
## S4 method for signature 'Pcp'
initialize(.Object, ..., classes, points.orig, line,
points.onedim, index, class.color)
## S4 method for signature 'Pcp,missing'
```

```
plot(x, y, steps = "all", class.color = NULL, ...)
pcp(mat, ...)
## S4 method for signature 'matrix'
pcp(mat, classes, df = NULL, warn = TRUE,
    class.color = NULL, ...)
## S4 method for signature 'Pcp'
show(object)
```

Arguments

х	matrix object for the function pcp otherwise it is a Pcp object
	additional arguments to pass on
n	data to extract from Pcp (NULL gives all)
.Object	internal object
classes	vector in same order as rows in matrix
points.orig	multidimensional points describing the original data
line	multidimensional points describing a line
points.onedim	a vector of points
index	internal index from the projection
class.color	user assigned group coloring scheme
У	default plot param, which should be set to NULL
steps	1,2,3,4,5,6 or "all"
mat	matrix with samples on rows, PCs in columns. Ordered PCs, with PC1 to the left.
df	degrees of freedom, passed to smooth.spline
warn	logical indicating if a change in the default df argument should generate a warn- ing. mostly for internal use.
object	Pcp object

Details

The resulting Pcp object containing results from a principal curve reduction to one dimension. The group and the one dimensional points will be the information needed to carry out a classification using the classify() function. As a help to illustrate the details of the dimension reduction, the information from some critical steps is stored in the object. To visually explore these there is a dedicated plot method for Pcp objects, use plot().

Value

The pcp function returns an object of class Pcp

8

pcpMatrix

Author(s)

Jesper R. Gadin and Jason T. Serviss

Examples

```
#use demo data
data(pcpMatrix)
classes <- rownames(pcpMatrix)
#run function
prj <- pcp(pcpMatrix, classes)
#getData accessor
getData(prj)
#getData accessor specific
getData(prj, "line")
#plot the result (if dim >2, then plot in 3d)
plot(prj)
#plot the result (if dim=2, then plot in 2d)
prj2 <- pcp(pcpMatrix[,1:2], classes)
plot(prj2)
```

pcpMatrix

Simulated data used to demonstrate the Pcp method.

Description

Pcp demonstration matrix.

Usage

pcpMatrix

Format

Matrix

rownames Groups

colnames dimension number

Value

simulated matrix

Examples

pcpMatrix

PermutationResults-class

Permutation test

Description

Test how the classification performs compared to random (eg. permuted) data.

Usage

```
## S4 method for signature 'PermutationResults'
getData(x, n = NULL)
## S4 method for signature 'PermutationResults'
c(x, ..., recursive = FALSE)
pvalue(x, ...)
## S4 method for signature 'PermutationResults'
pvalue(x, ...)
conf.int(x, ...)
## S4 method for signature 'PermutationResults'
conf.int(x, conf.level = 0.99, ...)
## S4 method for signature 'PermutationResults'
initialize(.Object, ..., scores.real, scores.vec)
permute(mat, ...)
## S4 method for signature 'matrix'
permute(mat, classes, projmethod = "pcp", iter = 100,
  user.permutations = NULL, seed = 3, df = NULL, verbose = TRUE, ...)
## S4 method for signature 'PermutationResults,missing'
plot(x, y, comparison = "all", ...)
## S4 method for signature 'PermutationResults'
show(object)
```

Arguments

x	matrix for the function permute, otherwise it is a PermutationResults object
n	data to extract from ClassifiedPoints (NULL gives all)
	arguments to pass on
recursive	dont use (belongs to default generic of combine 'c()')
conf.level	confidence level for the returned confidence interval
.Object	internal object
scores.real	the real score
scores.vec	all permuted scores
mat	matrix with samples on rows, PCs in columns. Ordered PCs, with PC1 to the left.
classes	vector in same order as rows in matrix
projmethod	'pcp' or 'mlp'
iter	integer number of iterations to be performed.
user.permutations	
	user defined permutation matrix
seed	random seed to be used by the internal permutation
df	degrees of freedom, passed to smooth.spline
verbose	makes function more talkative
У	default plot param, which should be set to NULL
comparison	Specify a comparison i.e. ("grp1 vs grp2") and plot only that comparison.
object	ClassifiedPoints Object

Details

This is a test suit and will return a summarized object. The default of the parameter 'iter' is set quite low, and in principle the more iterations the better, or until the pvalue converges to a specifc value. If no pre-permuted data has been supplied by the user, then the internal permutation method will perform a sampling without replacement within each dimension.

Value

The permute function returns an object of class PermutationResults

Author(s)

Jesper R. Gadin and Jason T. Serviss

Examples

```
#use pcp method
data(pcpMatrix)
classes <- rownames(pcpMatrix)</pre>
#run function
iterations <- 10
pe <- permute(</pre>
    mat=pcpMatrix,
    classes=classes,
    iter=iterations,
    projmethod="pcp"
)
#use mlp method
data(mlpMatrix)
classes <- rownames(mlpMatrix)</pre>
pe <- permute(</pre>
    mat=mlpMatrix,
    classes=classes,
    iter=iterations,
    projmethod="mlp"
)
#getData accessor
getData(pe)
#getData accessor specific
getData(pe, "scores.vec")
#get pvalue
pvalue(pe)
#plot result
plot(pe)
#combine three (parallell) jobs on the same matrix
```

```
pe2 <- c(pe, pe, pe)
```

12

Index

* classification ClassifiedPoints-class, 3 * package ClusterSignificance-package, 2 * permutation PermutationResults-class, 10 * projection Mlp-class, 5 Pcp-class, 7 .ClassifiedPoints (ClassifiedPoints-class), 3 .Mlp(Mlp-class), 5 .Pcp (Pcp-class), 7 .PermutationResults (PermutationResults-class), 10 c, PermutationResults-method (PermutationResults-class), 10 ClassifiedPoints (ClassifiedPoints-class), 3 ClassifiedPoints-class, 3 classify (ClassifiedPoints-class), 3 classify,Mlp-method (ClassifiedPoints-class), 3 classify,Pcp-method (ClassifiedPoints-class), 3 ClusterSignificance (ClusterSignificance-package), 2 ClusterSignificance-package, 2 conf.int (PermutationResults-class), 10 conf.int,PermutationResults-method (PermutationResults-class), 10 getData (Pcp-class), 7 getData,ClassifiedPoints-method

getData, PermutationResults-method (PermutationResults-class), 10 initialize, ClassifiedPoints-method (ClassifiedPoints-class), 3 initialize, Mlp-method (Mlp-class), 5 initialize,Pcp-method(Pcp-class),7 initialize, PermutationResults-method (PermutationResults-class), 10 Mlp(Mlp-class), 5 mlp(Mlp-class), 5 mlp,matrix-method (Mlp-class), 5 Mlp-class, 5 mlpMatrix, 7 Pcp (Pcp-class), 7 pcp (Pcp-class), 7 pcp,matrix-method (Pcp-class), 7 Pcp-class, 7 pcpMatrix, 9 PermutationResults-class, 10 permute (PermutationResults-class), 10 permute, matrix-method (PermutationResults-class), 10 plot,ClassifiedPoints,missing-method (ClassifiedPoints-class), 3 plot,Mlp,missing-method(Mlp-class),5 plot,Pcp,missing-method(Pcp-class),7 plot, PermutationResults, missing-method (PermutationResults-class), 10 pvalue (PermutationResults-class), 10 pvalue, PermutationResults-method (PermutationResults-class), 10 show,ClassifiedPoints-method (ClassifiedPoints-class), 3 show, Mlp-method (Mlp-class), 5 show,Pcp-method(Pcp-class),7 show, PermutationResults-method

(PermutationResults-class), 10