Package ‘scp’

March 30, 2021
Title Mass Spectrometry-Based Single-Cell Proteomics Data Analysis
Version 1.0.0

Description Utility functions for manipulating, processing, and analyzing mass
spectrometry-based single-cell proteomics (SCP) data. The package is an
extension to the 'QFeatures' package designed for SCP applications.

Depends R (>=4.0), QFeatures

Imports methods, stats, utils, SingleCellExperiment,
SummarizedExperiment, MultiAssayExperiment, S4Vectors, dplyr,
magrittr, rlang

Suggests testthat, knitr, BiocStyle, rmarkdown, patchwork, ggplot2,
matrixStats, impute, scater, sva, uwot

License Artistic-2.0

Encoding UTF-8

VignetteBuilder knitr

biocViews GeneExpression, Proteomics, SingleCell, MassSpectrometry,
Preprocessing, CellBasedAssays

BugReports https://github.com/UCLouvain-CBIO/scp/issues

URL https://UCLouvain-CBIO.github.io/scp
Roxygen list(markdown=TRUE)

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/scp
git_branch RELEASE_3_12

git_last_commit 8a942fb

git_last_commit_date 2020-10-27
Date/Publication 2021-03-29

Author Christophe Vanderaa [aut, cre]
(<https://orcid.org/0000-0001-7443-5427>),
Laurent Gatto [aut] (<https://orcid.org/0000-0002-1520-2268>)

Maintainer Christophe Vanderaa <christophe.vanderaa@uclouvain.be>

1

https://github.com/UCLouvain-CBIO/scp/issues
https://UCLouvain-CBIO.github.io/scp

2 aggregateFeaturesOverAssays
R topics documented:
aggregateFeaturesOverAssays o 2
computetFDR 3
computeMedianCV L e 4
computeSCR e 5
divideByReference 5
mqScpData e 6
readSCP L e 10
readSingleCellExperiment 12
rowDataToDF e 13
sampleAnnotationl e e 14
SCPL o e e e 14
transferColDataToAssay 15
Index 16
aggregateFeaturesOverAssays
Aggregate features over multiple assays
Description
This function is a wrapper function around QFeatures::aggregateFeatures. It allows the user to
provide multiple assays for which aggregateFeatures will be applied sequentially.
Usage
aggregateFeaturesOverAssays(obj, i, fcol, name, fun, ...)
Arguments
obj A QFeatures object
i A numeric(1) or character (1) indicating which assay to transfer the colData
to.
fcol The feature variables for each assays i defining how to summarise the QFea-
tures. If fcol has length 1, the variable name is assumed to be the same for all
assays
name A character() naming the new assay. name must have the same length as 1i.
Note that the function will fail if of the names in name is already present.
fun A function used for quantitative feature aggregation.
Additional parameters passed the fun.
Value
A QFeatures object
See Also

QFeatures::aggregateFeatures

computeFDR

Examples

data("scp1")

scpl <- aggregateFeaturesOverAssays(scpl,

scpl

i=1:3
fcol = "peptide”,

name = paste@("peptides”, 1:3),
fun = colMeans,

na.rm = TRUE)

computeFDR Compute FDR from posterior error probabilities PEP

Description

The functions takes the posterior error probabilities (PEPs) from the given assay’s rowData and
adds a new variable to it (called . FDR) that contains the computed false discovery rates (FDRs).

Usage

computeFDR(object, i, groupCol, pepCol)

Arguments
object A QFeatures object
i A numeric() or character () vector indicating from which assays the rowData
should be taken.
groupCol A character(1) indicating the variable names in the rowData that contains the
grouping variable. The FDR are usually computed for PSMs grouped by peptide
ID.
pepCol A character(1) indicating the variable names in the rowData that contains the
PEPs. Since, PEPs are probabilities, the variable must be contained in (0, 1).
Value

A QFeatures object.

Examples

data("scp1")
scpl <- computeFDR(scpT,
i=1,

groupCol = "Sequence”,
pepCol = "dart_PEP")

Check results

rowDataToDF (scpl1, 1, c("dart_PEP", ".FDR"))

4 computeMedianCV

computeMedianCV Compute the median coefficient of variation (CV) per cell

Description

The function computes for each cell the median CV. The expression data is normalized twice. First,
cell median expression is used as normalization factor, then, the mean for each batch and peptide.
The CV is then computed for each protein in each cell. CV is the standard deviation divided by the
mean expression. The CV is computed only if there are more than 5 observations per protein per
cell.

Usage

computeMedianCV(object, i, peptideCol, proteinCol, batchCol)

Arguments
object A QFeatures object
i A numeric() or character() vector indicating from which assays the rowData
should be taken.
peptideCol A character (1) indicating the variable name in the rowData that contains the
peptide grouping.
proteinCol A character (1) indicating the variable name in the rowData that contains the
protein grouping.
batchCol A character (1) indicating the variable name in the colData of object that
contains the batch names.
Details

A new columns, .medianCV, is added to the colData of the assay i and contains the computed
median CVs.

Watch out that peptideCol and proteinCol are feature variables and hence taken from the rowData.
batchCol is a sample variable and is taken from the colData of the QFeatures object.

Value

A QFeatures object.

Examples

data("scpl1")

scpl <- computeMedianCV(scpl,
i = "peptides”,
proteinCol = "protein”,
peptideCol = "peptide”,
batchCol = "Set")

Check results

hist(scp1[["peptides”]]$.MedianCV)

computeSCR 5

computeSCR Compute the sample over carrier ratio (SCR)

Description

The function computes the ratio of the intensities of sample channels over the intentisty of the
carrier channel for each feature. The ratios are averaged within the assay.

Usage

computeSCR(obj, i, colDataCol, samplePattern, carrierPattern)

Arguments
obj A QFeatures object.
i A character() or integer () indicating for which assay(s) the SCR needs to
be computed.
colDataCol A character (1) indicating the variable to take from colData(obj) that gives

the sample annotation.
samplePattern A character (1) pattern that matches the sample encoding in colDataCol.

carrierPattern A character(1) pattern that matches the carrier encoding in colDataCol. Only
one match per assay is allowed, otherwise only the first match is taken

Value

A QFeatures object for which the rowData of the given assay(s) is augmented with the mean SCR
(.meanSCR variable).

Examples

data("scp1"”)
scpl <- computeSCR(scpl,
i=1,
colDataCol = "SampleType"”,
carrierPattern = "Carrier”,
samplePattern = "Blank|Macrophage|Monocyte”)
Check results
rowDataToDF (scp1, 1, ".meanSCR")

divideByReference Divide assay columns by a reference column

Description

The function divides the sample columns by a reference column. The sample and reference columns
are defined based on the provided colDataCol variable and on regular expression matching.

6 mqScpData

Usage
divideByReference(obj, i, colDataCol, samplePattern = "." refPattern)
Arguments
obj A QFeatures object
i A numeric() or character () vector indicating from which assays the rowData
should be taken.
colDataCol A character (1) indicating the variable to take from colData(obj) that gives

the sample annotation.

samplePattern A character (1) pattern that matches the sample encoding in colDataCol. By
default all samples are devided (using the regex wildcard .).

refPattern A character (1) pattern that matches the carrier encoding in colDataCol. Only
one match per assay is allowed, otherwise only the first match is taken
Details

The supplied assay(s) are replaced with the values computed after reference division.

Value

A QFeatures object

Examples

data("scp1")
scpl <- divideByReference(scpl,

i=1,
colDataCol = "SampleType”,
samplePattern = "Macrophage”,

refPattern = "Ref")

mqScpData Example MaxQuant/SCoPE2 output

Description

A data.frame with 1088 observations and 139 variables, as produced by reading a MaxQuant
output file with read.delim().

* Sequence: a character vector

* Length: a numeric vector

* Modifications: a character vector

* Modified.sequence: a character vector

¢ Deamidation..N..Probabilities: a character vector

¢ Oxidation..M..Probabilities: a character vector

¢ Deamidation..N..Score.Diffs: a character vector

¢ Oxidation..M..Score.Diffs: a character vector

mqScpData

* Acetyl..Protein.N.term.: a numeric vector

¢ Deamidation..N.: a numeric vector

¢ Oxidation..M.: a numeric vector

* Missed.cleavages: a numeric vector

¢ Proteins: a character vector

* Leading.proteins: a character vector

e protein: a character vector

¢ Gene.names: a character vector

¢ Protein.names: a character vector

» Type: a character vector

» Set: a character vector

e MS.MS.m.z: a numeric vector

* Charge: a numeric vector

* m.z: a numeric vector

¢ Mass: a numeric vector

¢ Resolution: a numeric vector

* Uncalibrated...Calibrated.m.z..ppm.: a numeric vector
¢ Uncalibrated...Calibrated.m.z..Da.: a numeric vector
* Mass.error..ppm.: a numeric vector

e Mass.error..Da.: a numeric vector

* Uncalibrated.mass.error..ppm.: a numeric vector
¢ Uncalibrated.mass.error..Da.: a numeric vector
* Max.intensity.m.z.0: a numeric vector

¢ Retention.time: a numeric vector

* Retention.length: a numeric vector

e Calibrated.retention.time: a numeric vector

¢ Calibrated.retention.time.start: a numeric vector
 (Calibrated.retention.time.finish: a numeric vector
¢ Retention.time.calibration: a numeric vector

* Match.time.difference: a logical vector

* Match.m.z.difference: a logical vector

* Match.q.value: a logical vector

* Match.score: a logical vector

* Number.of.data.points: a numeric vector

e Number.of.scans: a numeric vector

* Number.of.isotopic.peaks: a numeric vector

¢ PIF: a numeric vector

* Fraction.of total.spectrum: a numeric vector

* Base.peak.fraction: a numeric vector

e PEP: a numeric vector

MS.MS.count: a numeric vector

MS.MS.scan.number: a numeric vector

Score: a numeric vector

Delta.score: a numeric vector

Combinatorics: a numeric vector

Intensity: a numeric vector

Reporter.intensity.corrected.O:
Reporter.intensity.corrected. 1:
Reporter.intensity.corrected.2:
Reporter.intensity.corrected.3:
Reporter.intensity.corrected.4:
Reporter.intensity.corrected.5:
Reporter.intensity.corrected.6:
Reporter.intensity.corrected.7:
Reporter.intensity.corrected.8:
Reporter.intensity.corrected.9: a numeric vector

Reporter.intensity.corrected.10: a numeric vector

RII

RI11: a numeric vector

Reporter.intensity.count.0:
Reporter.intensity.count.1:
Reporter.intensity.count.2:
Reporter.intensity.count.3:
Reporter.intensity.count.4:
Reporter.intensity.count.5:
Reporter.intensity.count.6:
Reporter.intensity.count.7:
Reporter.intensity.count.8:
Reporter.intensity.count.9:

Reporter.intensity.count.10: a numeric vector

: a numeric vector
RI2:
RI3:
RI4:
RIS:
RI6:
RI7:
RIS:
RI9:

RI10: a numeric vector

a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector

a numeric vector

a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector

a numeric vector

Reporter.PIF: a logical vector

a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector

a numeric vector

mqScpData

mqScpData

* Reporter.fraction: a logical vector

* Reverse: a character vector

* Potential.contaminant: a logical vector

* id: a numeric vector

* Protein.group.IDs: a character vector

* Peptide.ID: a numeric vector

* Mod..peptide.ID: a numeric vector

* MS.MS.IDs: a character vector

* Best.MS.MS: a numeric vector

* AIFEMS.MS.IDs: a logical vector

* Deamidation..N..site.IDs: a numeric vector

* Oxidation..M..site.IDs: a logical vector

* remove: a logical vector

e dart_PEP: a numeric vector

e dart_qval: a numeric vector

* razor_protein_fdr: a numeric vector

* Deamidation..NQ..Probabilities: a logical vector
* Deamidation..NQ..Score.Diffs: a logical vector
* Deamidation..NQ.: a logical vector

* Reporter.intensity.corrected.11: a logical vector
* Reporter.intensity.corrected.12: a logical vector
* Reporter.intensity.corrected.13: a logical vector
* Reporter.intensity.corrected.14: a logical vector
* Reporter.intensity.corrected.15: a logical vector
* Reporter.intensity.corrected.16: a logical vector
* RI12: alogical vector

* RI13: alogical vector

* RIl4: alogical vector

» RIIS5: alogical vector

* RI16: alogical vector

* Reporter.intensity.count.11: a logical vector

* Reporter.intensity.count.12: a logical vector

* Reporter.intensity.count.13: a logical vector

* Reporter.intensity.count.14: a logical vector

* Reporter.intensity.count.15: a logical vector

* Reporter.intensity.count.16: a logical vector

¢ Deamidation..NQ..site.IDs: a logical vector

* input_id: a logical vector

 rt_minus: a logical vector

* rt_plus: alogical vector

10 readSCP

* mu: a logical vector

* muij: a logical vector

* sigmaij: a logical vector

* pep_new: a logical vector
 exp_id: a logical vector

* peptide_id: a logical vector

* stan_peptide_id: a logical vector
* exclude: alogical vector

* residual: a logical vector

* participated: a logical vector

* peptide: a character vector

Usage

data("mgScpbata”)

Format

An object of class data. frame with 1197 rows and 139 columns.

Details

The dataset is a subset of the SCoPE2 dataset (version 2, Specht et al. 2019, BioRXiv). The input
file evidence_unfiltered.csv was downloaded from a Google Drive repository. The MaxQuant
evidence file was loaded and the data was cleaned (renaming columns, removing duplicate fields,...).
MS runs that were selected in the scp1 dataset (see ?scp1) were kept along with a blank run. The
data is stored as a data. frame.

See Also

readSCP () for an example on how mgqScpData is parsed into a QFeatures object.

readSCP Read single-cell proteomics data as a QFeatures object from tabular
data and metadata

Description

Convert tabular quantitative MS data and metadata from a spreadsheet or a data.frame into a
QFeatures object containing SingleCellExperiment objects.

Usage

readSCP(quantTable, metaTable, batchCol, channelCol, verbose = TRUE, ...)

https://www.biorxiv.org/content/10.1101/665307v3
https://drive.google.com/drive/folders/1VzBfmNxziRYqayx3SP-cOe2gu129Obgx

readSCP

Arguments

quantTable

metaTable

batchCol

channelCol

verbose

Value

11

File or object holding the quantitative data. Can be either a character (1) with
the path to a text-based spreadsheet (comma-separated values by default, but
see ...) or an object that can be coerced to a data.frame. It is advised not to
encode characters as factors.

A data.frame or any object that can be coerced to a data.frame. metaTable
is expected to contains all the sample meta information. Required fields are the
acquisition batch (given by batchCol) and the acquisition channel within the
batch (e.g. TMT channel, given by channelCol). Additional fields (e.g. sample
type, acquisition date,...) are allowed and will be stored as sample meta data.

A numeric(1) or character(1) pointing to the column of quantTable and
metaTable that contain the batch names. Make sure that the column name in
both table are either identical (if you supply a character) or have the same
index (if you supply a numeric).

A numeric(1) or character (1) pointing to the column of metaTable that con-
tains the column names of the quantitive data in quantTable (see Example).

A logical(1) indicating whether the progress of the data reading and format-
ting should be printed to the console. Default is TRUE.

Further arguments that can be passed on to read.csv except stringsAsFactors,
which is always FALSE.

An instance of class QFeatures. The expression data of each batch is stored in a separate assay as a
SingleCellExperiment object.

Note

The SingleCellExperiment class is built on top of the RangedSummarizedExperiment class. This
means that some column names are forbidden in the rowData. Avoid using the following names:
segnames, ranges, strand, start, end, width, element

Author(s)

Laurent Gatto, Christophe Vanderaa

Examples

Load an example table containing MaxQuant output

data("mgScpData”)

Load the (user-generated) annotation table
data("sampleAnnotation”)

Format the tables into a QFeatures object
readSCP(quantTable = mgScpData,

metaTable

= sampleAnnotation,

batchCol = "Set”,
channelCol = "Channel”)

12 readSingleCellExperiment

readSingleCellExperiment
Read SingleCellExperiment from tabular data

Description

Convert tabular data from a spreadsheet or a data. frame into a SingleCellExperiment object.

Usage
readSingleCellExperiment(table, ecol, fnames, ...)
Arguments
table File or object holding the quantitative data. Can be either a character (1) with
the path to a text-based spreadsheet (comma-separated values by default, but
see ...) or an object that can be coerced to a data.frame. It is advised not to
encode characters as factors.
ecol A numeric indicating the indices of the columns to be used as assay values.
Can also be a character indicating the names of the columns. Caution must be
taken if the column names are composed of special characters like (or - that
will be converted to a . by the read. csv function. If ecol does not match, the
error message will dislpay the column names as seen by the read. csv function.
fnames An optional character (1) or numeric(1) indicating the column to be used as
row names.
Further arguments that can be passed on to read.csv except stringsAsFactors,
which is always FALSE.
Value

An instance of class SingleCellExperiment.

Note

The SingleCellExperiment class is built on top of the RangedSummarizedExperiment class. This
means that some column names are forbidden in the rowData. Avoid using the following names:
segnames, ranges, strand, start, end, width, element

Author(s)

Laurent Gatto, Christophe Vanderaa

See Also

The code relies on QFeatures::readSummarizedExperiment.

rowDataToDF 13

Examples

Load a data.frame with PSM-level data
data("mgScpData”)

Create the QFeatures object
sce <- readSingleCellExperiment(mgScpData,
grep("RI", colnames(mgScpData)))

rowDataToDF Extract the rowData of a QFeatures object to a DataFrame

Description

The methods takes the rowData of one or more given assay in a QFeatures object and combines
the data in a single DataFrame.

Usage

rowDataToDF (obj, i, vars)

Arguments
obj A QFeatures object
i A numeric() or character() vector indicating from which assays the rowData
should be taken.
vars A character () vector indicating which variables from the rowData should be
extracted.
Details

Along with the reuired rowData an additional . assay variable is created and holds the assay name
from which the metadata was taken.

Value

A DataFrame object with the rowData row-binded over the required assays.

Examples

Extract the peptide length and sequence from the first 3 assays
data("scp1")
rowDataToDF (scpl, i = 1:3, c("Length”, "Sequence"))

14 scpl

sampleAnnotation Single cell sample annotation

Description
A data frame with 48 observations on the following 6 variables.
* Set: a character vector
* Channel: a character vector
» SampleType: a character vector
* Icbatch: a character vector
* sortday: a character vector

* digest: a character vector

Usage

data("sampleAnnotation”)

Format

An object of class data. frame with 64 rows and 6 columns.

Details

The dataset is a subset of the SCoPE2 dataset (version 2, Specht et al. 2019, BioRXiv). The
input files batch.csv and annotation. csv were downloaded from a Google Drive repository. The
two files were loaded and the columns names were adapted for consistency with mqScpData table
(see ?mgScpData). The two tables were filtered to contain only sets present in “mqScpData. The ta-
bles were then merged based on the run ID, hence merging the sample annotation and the batch an-
notation. Finally, annotation for the blank run was added manually. The data is stored as a data.frame".

See Also

readSCP () to see how this file is used.

scpl Single Cell QFeatures data

Description
A small QFeatures object with SCoPE2 data. The object is composed of 5 assays, including 3
PSM-level assays, 1 peptide assay and 1 protein assay.

Usage

data("scp1")

https://www.biorxiv.org/content/10.1101/665307v3
https://drive.google.com/drive/folders/1VzBfmNxziRYqayx3SP-cOe2gu129Obgx

transferColDataToAssay 15

Format

An object of class QFeatures of length 5.

Details

The dataset is a subset of the SCoPE2 dataset (version 2, Specht et al. 2019, BioRXiv). This dataset
was converted to a QFeatures object where each assay in stored as a SingleCellExperiment
object. One assay per chromatographic batch ("LCA9", "LCA10", "LCB3") was randomly sampled.
For each assay, 100 proteins were randomly sampled. PSMs were then aggregated to peptides and
joined in a single assay. Then peptides were aggregated to proteins.

Examples

data("scpl1”)
scpl

transferColDataToAssay
Transfer the colData to an Assay

Description
The function transfers the colData from a QFeatures object to one of the assays it contains. The
transfered data is bound to the existing colData of the target assay.

Usage
transferColDataToAssay(obj, i)

Arguments
obj A QFeatures object
i A numeric(1) or character (1) indicating which assay to transfer the colData
to.
Value

A QFeatures object

Examples

data("scpl1”)

colData(scp1[["peptides”1])

scpl <- transferColDataToAssay(scpl, i = "peptides”)
colData(scp1[["peptides”1])

https://www.biorxiv.org/content/10.1101/665307v3

Index

+ datasets
mgScpData, 6
sampleAnnotation, 14
scpl, 14

aggregateFeaturesOverAssays, 2

computeFDR, 3
computeMedianCV, 4
computeSCR, 5

divideByReference, 5
mgScpData, 6

QFeatures, 10, 11, 14, 15

QFeatures: :aggregateFeatures, 2

QFeatures: :readSummarizedExperiment,
12

read.csv, /1, 12
read.delim(), 6

readScCP, 10

readSCP(), 10, 14
readSingleCellExperiment, 12
rowDataToDF, 13

sampleAnnotation, 14
scpl, 14
SingleCellExperiment, 10-12, 15

transferColDataToAssay, 15

16

	aggregateFeaturesOverAssays
	computeFDR
	computeMedianCV
	computeSCR
	divideByReference
	mqScpData
	readSCP
	readSingleCellExperiment
	rowDataToDF
	sampleAnnotation
	scp1
	transferColDataToAssay
	Index

